Convex Minlp – An Efficient Tool for Design and Optimization Tasks?

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Convex mixed-integer nonlinear programming (MINLP) has reached a certain maturity, and this paper is intended to show that there are efficient solvers available for convex MINLP problems. The presence of efficient solvers, in combination with the extended modeling capabilities compared to mixed-integer linear programming, make convex MINLP an attractive framework for dealing with industry-relevant optimization tasks. In the paper, we describe some frequently used modeling techniques within MINLP, and a numerical comparison shows how these techniques affect some commonly available solvers. Some solver features are also described along with a discussion of future possibilities and challenges for convex MINLP solvers.
OriginalspråkOdefinierat/okänt
Titel på gästpublikationProceedings of the 9th International Conference on Foundations of Computer-Aided Process Design
RedaktörerSalvador Garcia Muñoz, Carl D. Laird, Matthew J. Realff
FörlagElsevier
Sidor245–250
Antal sidor6
ISBN (tryckt)978-0-12-818597-1
DOI
StatusPublicerad - 2019
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Foundations of Computer-Aided Process Design - 9th International Conference on Foundations of Computer-Aided Process Design
Varaktighet: 14 jul 201918 jul 2019

Konferens

KonferensInternational Conference on Foundations of Computer-Aided Process Design
Period14/07/1918/07/19

Nyckelord

  • Convex MINLP
  • FOCAPD 2019
  • MINLP modeling
  • MINLP solvers

Citera det här