Connected components in the space of composition operators on H functions of many variables

Richard Aron*, Pablo Galindo, Mikael Lindström

*Korresponderande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

17 Citeringar (Scopus)

Sammanfattning

Let E be a complex Banach space with open unit ball BE. The structure of the space of composition operators on the Banach algebra H(BE), of bounded analytic functions on BE with the uniform topology, is studied. We prove that the composition operators arising from mappings whose range lies strictly inside BE form a path connected component. When E is a Hilbert space or a C0(X)-space, the path connected components are shown to be the open balls of radius 2.

OriginalspråkEngelska
Sidor (från-till)1-14
Antal sidor14
TidskriftIntegral Equations and Operator Theory
Volym45
Utgåva1
DOI
StatusPublicerad - 2003
MoE-publikationstypA1 Tidskriftsartikel-refererad

Fingeravtryck

Fördjupa i forskningsämnen för ”Connected components in the space of composition operators on H<sup>∞</sup> functions of many variables”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här