Aspect Based Sentiment Analysis of Finnish Neighborhoods: Insights from Suomi24

Laleh Davoodi, Anssi Öörni*, Ville Harkke*

*Korresponderande författare för detta arbete

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

This study presents an approach to Aspect-Based Sentiment Analysis (ABSA) using Natural Language Processing (NLP) techniques to explore public sentiment across 12 suburban neighborhoods in Finland. We employed and compared a range of machine learning models for sentiment classification, with the RoBERTa model emerging as the best performer. Using RoBERTa, we conducted a comprehensive sentiment analysis(SA) on a manually annotated dataset and a predicted dataset comprising 32,183 data points to investigate sentiment trends over time in these areas. The results provide insights into fluctuations in public sentiment, highlighting both the robustness of the RoBERTa model and significant shifts in sentiment for specific neighborhoods over time. This research contributes to a deeper understanding of neighborhood sentiment dynamics in Finland, with potential implications for social research and urban development.
OriginalspråkEngelska
Titel på värdpublikationProceedings of the 9th International Workshop on Computational Linguistics for Uralic Languages
FörlagAssociation for Computational Linguistics
Sidor1-11
ISBN (tryckt)979-8-89176-128-5
StatusPublicerad - dec. 2024
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangThe 9th International Workshop on Computational Linguistics for Uralic Languages - Finland, Helsinki, Finland
Varaktighet: 28 nov. 202429 nov. 2024
Konferensnummer: ISBN 979-8-89176-128-5
https://acl-sigur.github.io/iwclul2024.html

Konferens

KonferensThe 9th International Workshop on Computational Linguistics for Uralic Languages
Förkortad titelIWCLUL2024
Land/TerritoriumFinland
OrtHelsinki
Period28/11/2429/11/24
Internetadress

Fingeravtryck

Fördjupa i forskningsämnen för ”Aspect Based Sentiment Analysis of Finnish Neighborhoods: Insights from Suomi24”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här