TY - JOUR
T1 - Adsorption of Omeprazole on Biobased Adsorbents Doped with Si/Mg
T2 - Kinetic, Equilibrium, and Thermodynamic Studies
AU - Teixeira, Roberta A.
AU - Thue, Pascal S.
AU - Lima, Éder C.
AU - Grimm, Alejandro
AU - Naushad, Mu
AU - Dotto, Guilherme L.
AU - dos Reis, Glaydson S.
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/6
Y1 - 2023/6
N2 - This paper proposes an easy and sustainable method to prepare high-sorption capacity biobased adsorbents from wood waste. A biomass wood waste (spruce bark) was employed to fabricate a composite doped with Si and Mg and applied to adsorb an emerging contaminant (Omeprezole) from aqueous solutions, as well as synthetic effluents loaded with several emerging contaminants. The effects of Si and Mg doping on the biobased material’s physicochemical properties and adsorptive performance were evaluated. Si and Mg did not influence the specific surface area values but impacted the presence of the higher number of mesopores. The kinetic and equilibrium data presented the best fitness by the Avrami Fractional order (AFO) and Liu isotherm models, respectively. The values of Qmax ranged from 72.70 to 110.2 mg g−1 (BP) and from 107.6 to 249.0 mg g−1 (BTM). The kinetic was faster for Si/Mg-doped carbon adsorbent, possibly due to different chemical features provoked by the doping process. The thermodynamic data showed that the adsorption of OME on biobased adsorbents was spontaneous and favorable at four studied temperatures (283, 293, 298, 303, 308, 313, and 318 K), with the magnitude of the adsorption correspondent to a physical adsorption process (ΔH° < 2 kJ mol−1). The adsorbents were applied to treat synthetic hospital effluents and exhibited a high percentage of removal (up to 62%). The results of this work show that the composite between spruce bark biomass and Si/Mg was an efficient adsorbent for OME removal. Therefore, this study can help open new strategies for developing sustainable and effective adsorbents to tackle water pollution.
AB - This paper proposes an easy and sustainable method to prepare high-sorption capacity biobased adsorbents from wood waste. A biomass wood waste (spruce bark) was employed to fabricate a composite doped with Si and Mg and applied to adsorb an emerging contaminant (Omeprezole) from aqueous solutions, as well as synthetic effluents loaded with several emerging contaminants. The effects of Si and Mg doping on the biobased material’s physicochemical properties and adsorptive performance were evaluated. Si and Mg did not influence the specific surface area values but impacted the presence of the higher number of mesopores. The kinetic and equilibrium data presented the best fitness by the Avrami Fractional order (AFO) and Liu isotherm models, respectively. The values of Qmax ranged from 72.70 to 110.2 mg g−1 (BP) and from 107.6 to 249.0 mg g−1 (BTM). The kinetic was faster for Si/Mg-doped carbon adsorbent, possibly due to different chemical features provoked by the doping process. The thermodynamic data showed that the adsorption of OME on biobased adsorbents was spontaneous and favorable at four studied temperatures (283, 293, 298, 303, 308, 313, and 318 K), with the magnitude of the adsorption correspondent to a physical adsorption process (ΔH° < 2 kJ mol−1). The adsorbents were applied to treat synthetic hospital effluents and exhibited a high percentage of removal (up to 62%). The results of this work show that the composite between spruce bark biomass and Si/Mg was an efficient adsorbent for OME removal. Therefore, this study can help open new strategies for developing sustainable and effective adsorbents to tackle water pollution.
KW - adsorption
KW - magnesium carbon dopant
KW - omeprazole
KW - silica carbon dopant
KW - wood waste
UR - http://www.scopus.com/inward/record.url?scp=85163616918&partnerID=8YFLogxK
U2 - 10.3390/molecules28124591
DO - 10.3390/molecules28124591
M3 - Article
C2 - 37375145
SN - 1420-3049
VL - 28
JO - Molecules
JF - Molecules
IS - 12
M1 - 4591
ER -