Active targeting of mesoporous silica drug carriers enhances γ-secretase inhibitor efficacy in an in vivo model for breast cancer

R Wittig, Jessica Rosenholm, Eva von Haartman, Jarl Hemming, F Genze, Lotta Bergman, T Simmet, M Lindén, Cecilia Sahlgren

    Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

    28 Citeringar (Scopus)

    Sammanfattning

    Aim: In this article, we use an alternative cancer model for the evaluation of nanotherapy, and assess the impact of surface functionalization and active targeting of mesoporous silica nanoparticles (MSNPs) on therapeutic efficacy in vivo. Materials & methods: We used the chorioallantoic membrane xenograft assay to investigate the biodistribution and therapeutic efficacy of folate versus polyethyleneimine-functionalized γ-secretase inhibitor-loaded MSNPs in breast and prostate tumor models. Results: γ-secretase inhibitor-loaded MSNPs inhibited tumor growth in breast and prostate cancer xenografts. Folate conjugation improved the therapeutic outcome in folic acid receptor-positive breast cancer, but not in prostate cancer lacking the receptor. Conclusion: The results demonstrate that therapeutic efficacy is linked to cellular uptake of MSNPs as opposed to tumor accumulation, and show that MSNP-based delivery of γ-secretase inhibitors is therapeutically effective in both breast and prostate cancer. In this article, we present a model system for a medium-to-high throughput, cost-effective, quantitative evaluation of nanoparticulate drug carriers.
    OriginalspråkOdefinierat/okänt
    Sidor (från-till)971–987
    TidskriftNanomedicine
    Volym9
    Nummer7
    DOI
    StatusPublicerad - 2014
    MoE-publikationstypA1 Tidskriftsartikel-refererad

    Citera det här