A Tracking Augmented Lagrangian Method for ℓ0 Sparse Consensus Optimization

Alireza Olama, Guido Carnevale, Giuseppe Notarstefano, Eduardo Camponogara

Forskningsoutput: Kapitel i bok/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Sparse convex optimization involves optimization problems where the decision variables are constrained to have a certain number of entries equal to zero. In this paper, we consider the case in which the objective function is decomposed into a sum of different local objective functions and propose a novel fully-distributed scheme to address the problem over a network of cooperating agents. Specifically, by taking advantage of a suitable problem reformulation, we define an Augmented Lagrangian function associated with the reformulated problem. Then, we address such an Augmented Lagrangian by suitably interlacing the Gradient Tracking distributed algorithm and the Block Coordinated Descent method giving rise to a novel fully-distributed scheme. The effectiveness of the proposed algorithm is corroborated through some numerical simulations of problems considering both synthetic and real-world data sets.
OriginalspråkEngelska
Titel på värdpublikation2023 9th International Conference on Control, Decision and Information Technologies (CoDIT)
FörlagIEEE
Sidor2360-2365
ISBN (elektroniskt)979-8-3503-1140-2
ISBN (tryckt)979-8-3503-1141-9
DOI
StatusPublicerad - 2023
Externt publiceradJa
MoE-publikationstypA4 Artikel i en konferenspublikation
EvenemangInternational Conference on Control, Decision and Information Technologies -
Varaktighet: 3 juli 2023 → …

Konferens

KonferensInternational Conference on Control, Decision and Information Technologies
Förkortad titelCoDIT
Period03/07/23 → …

Fingeravtryck

Fördjupa i forskningsämnen för ”A Tracking Augmented Lagrangian Method for ℓ0 Sparse Consensus Optimization”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här