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A B S T R A C T

The input error model reference adaptive control (IE-MRAC) is employed to regulate the
longitudinal velocity of an autonomous vehicle to desired values by controlling both the throttle
and the braking system. The proposed method deals with matching the unknown longitudinal
model of the vehicle with a predefined model in the presence of various disturbances, including
road conditions and aerodynamic effects. Moreover, it is shown that the saturation on the
throttle and the brake pedals are successfully handled due to the properties of the derived
error equation. Besides analyzing the natural properties of IE-MRAC, a novel stability proof
of the closed-loop system is presented, and a robust modification of the adaptive control law
is given as well. By using the proposed control technique, higher-order tracking is captured,
and the effects on enhancing the vehicle responses are investigated. The applicability of the
presented theoretical results is validated via the CarSim simulator.

1. Introduction

The 100-year-old servomechanism cruise control (CC) systems were designed to speed up the vehicle to achieve the desired speed
that has been set by the driver [1]. Since the control actuator is only a throttle, the CC systems are applicable for speeds over 40
km/hr [1,2]. As has been proven in practice and studied enormously in the literature, the CC mechanism is unsuitable for controlling
autonomous cars in urban traffic speeds because braking and accelerating systems are needed. An alternative solution is adaptive
cruise control (ACC), in which the ability to brake in traffic situations is provided, and the velocity of vehicles can be controlled in
the full range [1–5].

The perfect design of ACC systems plays a significant role in driving safety, fuel consumption, and the capacity of traffic [6,7].
The conventional ACC is designed in two parts, known as upper and lower-level control structures [2,8]. In the upper level, the
desired velocity or acceleration is determined. In contrast, the lower level applies the brake/throttle signal command such that
the specified acceleration or velocity from the upper level is followed. In the realm of ACC, a multitude of methods have been
explored, including sliding mode control [9,10], control Lyapunov functions [11], adaptive control [3,8,12], fuzzy control [13,14],
PID control [3,15], and model predictive control [15–17]. Each of these methods has proven effective in certain scenarios, with
specific strengths and adaptability. However, the quest for a generic, adaptable, and robust control strategy remains challenging.
This challenge arises from the diverse range of operational conditions, vehicle dynamics, and environmental factors a controller
must manage effectively.
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For instance, in the case of the controller design proposed in [3], a system identification step is used first to determine the
arameters of the considered model as a function of operating conditions, which are then used to generate control input. The
ontroller’s performance is heavily dependent on the accuracy of these estimated parameters. Achieving high accuracy in parameter
stimation often requires persistent excitation, which is challenging to implement practically. For example, the authors in [3] noted
he impracticality of using a pseudorandom binary sequence (PRBS) signal for the brake system, as it would cause frequent stopping.
urthermore, since the controller’s efficacy is tightly coupled with the identified parameters, any change in vehicle or conditions
like environment, road surface, vehicle mass, etc.) might necessitate a complete re-identification process. The issues above persist
ith all adaptive and learning-based controller designs relying on exact system identification. Sliding mode control as a powerful,

obust control strategy suffers from chattering, a phenomenon of high-frequency oscillations caused by the switching nature of the
ontrol law, leading to increased wear and tear on mechanical components [10]. Additionally, the implementation of SMC can be
omplex, especially in designing the sliding surface and ensuring system stability, and it may be sensitive to noise, which can amplify
ear the sliding surface and affect performance. The model predictive control, while offering optimal control solutions, heavily relies
n the system model’s accuracy, and inaccuracies can lead to suboptimal control [15]. PID Control, a widely used method, is most
ffective in linear systems and can struggle in systems with significant nonlinearities or varying dynamics. Tuning PID parameters
o find the optimal balance can be a complex process, especially in systems with changing operating conditions. PID controllers
lso lack automatic adaptability to changes in system dynamics or external disturbances, often necessitating manual retuning [3].
he aforementioned challenges regarding complexity in controller design (e.g., SMC controller design), practical issues (e.g., the
equirement for persistent excitation and chattering), case-dependency (e.g., exact model requirement, and need for retuning under
arying operation conditions) motivated us introducing an approach facilitating an easy-to-use, flexible, and efficient control design
or the ACC system under both internal and external uncertainty effects. The aim is to propose a generic control strategy that can be
pplied to a vast majority of vehicles without knowing the exact vehicle powertrain and brake system under different environmental
onditions.

A robust adaptive controller for the lower-level structure of the ACC system is proposed in this study using the concept of model
eference adaptive control. The model reference adaptive control serves as a control strategy to achieve the desired performance
y dynamically adjusting the controller parameters based on the difference between the actual system’s output and the desired
eference model’s output [18]. The goal is to make the actual system behave similarly to the reference model, even in the presence
f uncertainties or changes in the system dynamics. This approach is particularly effective for ACC as the highly complex longitudinal
odel of an autonomous vehicle can be approximated with a simplified model and compelled to track a desired reference speed by

eal-time adjustments of the control parameters based on the observed behavior, allowing to adapt to changes in the system dynamics
r operating conditions [19]. In this study, the direct MRAC is considered, avoiding the explicit necessity for accurate system
dentification before controller design, which can be practically challenging due to persistent excitation requirements. Therefore,
he controller adapts directly to the observed system behavior without relying on a detailed model. The classical MRAC is based
n the output error (OE-MRAC) [19,20]. Despite the simplicity in design, it suffers from different aspects, including the inability
o handle the saturation on control signals (e.g., limits on the throttle) and the necessity of being strictly positive realness (SPR)
f the reference model, which makes it unsuitable for the ACC system. To deal with these mentioned limitations, we propose the
ontrol design for the longitudinal velocity (LV) of autonomous vehicles based on the input-error MRAC (IE-MRAC) [18,21]. In
ddition to the mentioned drawbacks of the OE-MRAC, controller design based on IE-MRAC enables faster adaptation, improved
racking performance, reduced sensitivity to measurement noise, more suitable for non-minimum phase systems, easier adaptation
n nonlinear systems, and more robust performance [22].

Our main contributions are given as follows:

(i) Designing an adaptive controller to regulate the speed of a vehicle by considering the throttle/brake mechanism as the control
inputs and switching criterion between them.

(ii) Presenting a novel stability proof for the IE-MRAC and modifying it with a robust adaptive control law to guarantee the
boundedness of controller parameters in the presence of uncertainties and disturbances.

(iii) Stating and proving the higher-order tracking (HOT) property of IE-MRAC for the first time in the literature. In the context
of ACC, we show that by smoothing the reference command (i.e., desired velocity), second-order tracking will be achieved,
leading to passenger comfort and reducing aging and maintenance costs.

(iv) Validating the proposed approach through its application to various classes of vehicles using the CarSim simulator. This
validation was conducted under a range of challenging path conditions, encompassing road curves, banking, elevation
changes, and aerodynamic effects, to ensure its effectiveness and robustness in diverse driving scenarios.

The manuscript is arranged as follows. Some preliminary backgrounds are reviewed in Section 2. Section 3 discusses the paper’s
ain results: an adaptive control technique is developed whose stability is analyzed with some natural extensions. The numerical

imulations are performed using CarSim to illustrate the obtained results in Section 4. Finally, several concluding remarks end the
aper in Section 5.
otation: A system with the transfer operator (𝑝), the input 𝑢(𝑡) and the output 𝑦(𝑡) is represented as 𝑦(𝑡) = (𝑝){𝑢(𝑡)} in which

𝑝 = d
d𝑡 is the differential operator; ‖‖

‖

⋅‖‖
‖

denotes the Euclidean norm; ℒ represents the Laplace operator.
bbreviations: Model reference adaptive control (MRAC); Longitudinal velocity (LV); Longitudinal velocity control (LVC); Higher-
2

rder tracking (HOT); Input error MRAC (IE-MRAC); output error MRAC (OE-MRAC); Cruise control (CC).
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2. Preliminaries

In this section, some preliminary facts are introduced so that the materials in the sequel can be simply followed.

.1. Lemmas and Definitions

Definitions 1–3 and Lemmas 1, 2 are related to the rate of signals growth, which are needed for analyzing the boundedness of
ignals.

efinition 1 ([23]). Let 𝛼(⋅), 𝛽(⋅) ∈ 𝐿𝑒
∞, where 𝐿𝑒

∞ is the space of bounded functions for finite time:

(i) If there exists a continuous function 𝑣(⋅) such that lim𝑡→∞ 𝑣(𝑡) = 0 and 𝛼(𝑡) = 𝑣(𝑡)𝛽(𝑡), then we define 𝛼(𝑡) = o[𝛽(𝑡)].
(ii) If there exist constants 𝑘1 and 𝑘2 such that ||

|

𝛼(𝑡)||
|

≤ 𝑘1
|

|

|

𝛽(𝑡)||
|

+ 𝑘2, then we define 𝛼(𝑡) = O[𝛽(𝑡)].

efinition 2 ([19]). Let 𝛼(⋅), 𝛽(⋅) ∈ 𝐿𝑒
∞. If 𝛼(𝑡) = O[𝛽(𝑡)] and 𝛽(𝑡) = O[𝛼(𝑡)], then they are defined to be equivalent signals and

ignified as follows

𝛼(𝑡) ≡ 𝛽(𝑡).

efinition 3 ([19]). Let 𝛼(⋅), 𝛽(⋅) ∈ 𝐿𝑒
∞. If sup𝜉≤𝑡

|

|

|

𝛼(𝜉)||
|

≡ sup𝜉≤𝑡
|

|

|

𝛽(𝜉)||
|

, then they are said to rise at the same rate.

emma 1 ([23]). Let 𝛼(⋅), 𝛽(⋅) ∈ 𝐿𝑒
∞, then we have

𝛼(𝑡) = O
[

𝛽(𝑡)
]

⇔ sup
𝜉≤𝑡

|

|

|

𝛼(𝜁 )||
|

= O
[

𝛽(𝑡)
]

.

emma 2 ([24]). Let 𝛼(𝑡) = 𝛥(𝑠){𝛽(𝑡)}, where 𝛽(⋅) ∈ 𝐿𝑒
∞.

(i) If 𝛥(𝑠) be a strictly proper and stable filter, then |

|

|

𝛼(𝑡)||
|

= O
[

sup𝜉≤𝑡
|

|

|

𝛽(𝜁 )||
|

]

.

(ii) If 𝛥(𝑠) is a proper transfer function with Hurwitz numerator and denominator, then 𝛼(⋅) and 𝛽(⋅) grow at the same rate.

In analyzing the HOT, the following definition is stated as a necessary and sufficient condition to prove signals converging to
ero.

efinition 4. For a signal 𝑧(𝑡) defined on [0,∞), if for every  > 0, there exists a  =  () > 0 so that ||
|

𝑧(𝑡)||
|

< 0 for all 𝑡 >  , then
(𝑡) vanishes asymptotically to zero.

.2. Direct model reference adaptive control

In the following, the commonly employed MRAC approach, called output-error-based MRAC, is briefly presented, and its
imitations in the context of ACC systems are discussed.

The objective of the MRAC is to seek a control law (𝑢(𝑡)) that causes the output of an unknown system:

𝑣(𝑡) = (𝑠){𝑢(𝑡)}, (𝑠) = 𝛾
𝑛𝑝(𝑠)
𝑝𝑝(𝑠)

(1)

to follow the output of a reference model:

𝑣𝑚(𝑡) = (𝑠){𝑟(𝑡)}, (𝑠) = 𝛾𝑚
𝑛𝑚(𝑠)
𝑝𝑚(𝑠)

(2)

where 𝑣 is the output of the plant, 𝑢(𝑡) is the control input, (𝑠) is the transfer function of the plant, 𝛾 is the high-frequency gain, and
𝑝𝑝(𝑠) and 𝑛𝑝(𝑠) are monic polynomials of degree n and m, respectively. (𝑠) is the transfer function of the reference model, 𝑣𝑚(𝑡) is
the output of the reference model, and 𝑟(𝑡) is the reference signal (i.e., desired velocity in our context). Similar to the assumption
on the plant, 𝑝𝑚(𝑠) and 𝑛𝑚(𝑠) are considered as monic polynomials of degree n and m, respectively.

The general assumptions for deriving the OE-MRAC are as follows [18]:

-OE1. The plant is strictly proper and minimum phase
-OE2. The reference model is stable, minimum phase, and strictly positive real
-OE3. The relative degree of the reference model 𝜅 is equal to or larger than the relative degree of the plant 𝜂 (though in the

representation, we considered it equal).
-OE4. The reference command 𝑟(𝑡) is a bounded piecewise continuous signal
3

-OE5. 𝛾 is known.
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According to the structure of the MRAC in literature [18,19], the throttle signal is considered to have the following form

𝑢𝑡(𝑡) =
𝑐

𝜙(𝑠)
{𝑢(𝑡)} +

𝑑(𝑠)
𝜙(𝑠)

{𝑣(𝑡)} + 𝑐0𝑟(𝑡) (3)

where 𝑑(𝑠) is a polynomial of 𝑛 − 1 one, 𝑐 and 𝑐0 are scalars and 𝜙(𝑠) is a monic Hurwitz polynomial 𝑛 − 1. As will be presented
in Section 3, a second-order transfer function is considered for representing the longitudinal model of an autonomous vehicle.
Therefore, we directly present the control strategy considering second-order systems (i.e., n=2). By substituting the controller Eq. (3)
in Eq. (1), and equating the resulting transfer function (i.e., from 𝑟(𝑡) to 𝑣(𝑡)) to the reference model Eq. (2), unique 𝑐∗0 , 𝑐∗, 𝑑∗(𝑠)
xist such that the following equivalence is satisfied

𝑐∗0 𝛾�̃�𝑚�̃�
𝛾𝑚

= (�̃� − 𝑐∗)�̃�𝑝 − 𝛾𝑑∗ (4)

where the tilde notation is used to represent a polynomial of 𝑠 (e.g., �̃�𝑝 ∶= 𝑝𝑝(𝑠)). The equality Eq. (4) implies that the plant behaves
similarly to the reference model by this choice of parameters. When the plant is known, 𝑐∗0 , 𝑐∗, 𝑑∗(𝑠) can be simply found, which
efers to the model reference control. Dividing both sides of Eq. (4) by �̃�𝑝�̃�, and then applying the resulting transfer functions to
he 𝑢𝑡(𝑡) signal, the following equation is achieved

𝑐∗0̃
−1{𝑣(𝑡)} = 𝑢𝑡(𝑡) −

𝑐∗

�̃�
{𝑢𝑡(𝑡)} −

𝑑∗

�̃�
{𝑣(𝑡)} + 𝜀(𝑡)

here 𝜀(𝑡) denotes the effect of initial conditions decaying exponentially in time and does not affect the properties of the adaptive
tructure [18]. Therefore, it is neglected for simplicity in the following derivations. Thus, the output can be written as follows

𝑣(𝑡) = 1
𝑐∗0

̃{𝑢𝑡(𝑡) −
𝑐∗

�̃�
{𝑢𝑡(𝑡)} −

𝑑∗

�̃�
{𝑣(𝑡)}}

nd by defining the difference between the actual and model velocity as the output error, the following equation is achieved

𝑒𝑜 = 𝑣(𝑡) − 𝑣𝑚(𝑡) =
1
𝑐∗0

̃{𝑢𝑡(𝑡) −
𝑐∗

�̃�
{𝑢𝑡(𝑡)} −

𝑑∗

�̃�
{𝑣(𝑡)} − 𝑐∗0 𝑟(𝑡)}. (5)

By defining the following vectors

𝝋 = 𝝑(𝑡) − 𝝑∗, 𝝑 =
[

𝑐0 𝑐 𝑑0 𝑑1
] 𝑇 , 𝝕 =

[

𝑟(𝑡) 𝜛1 𝑣(𝑡) 𝜛2
] 𝑇 (6)

where 𝝋 denotes parameter errors and 𝜛1 =
1

�̃�(𝑠) {𝑢𝑡(𝑡)}, 𝜛2 =
1

�̃�(𝑠) {𝑣(𝑡)} and

𝑑
�̃�
{𝑣(𝑡)} = 𝑑0𝑣(𝑡) +

𝑑1
�̃�(𝑠)

{𝑣(𝑡)}

the output error is rewritten as the following equation

𝑒𝑜 = 𝑣(𝑡) − 𝑣𝑚(𝑡) =
1
𝑐∗0

̃{𝝋𝑇 (𝑡)𝝕(𝑡)}. (7)

leading to the following gradient algorithm for updating controller parameters:

�̇�(𝑡) = �̇�(𝑡) = −𝜞 𝑒𝑜(𝑡)𝜛(𝑡) (8)

where 𝜞 ∈ R4×4 is a diagonal matrix with positive arrays that regulates the rate of parameter convergence.

Remark 1. There exist specific limitations with applying OE-MRAC for the ACC system, listed in the following:

• The derived error equation given in Eq. (7) has the form of the well-known strictly positive real (SPR) error equation. To
guarantee the stability of the adaptive control design using projection update law, the reference model ̃ must be SPR.
Satisfying such a strict condition may not be possible in some problems like the one considered in this manuscript (i.e., the
relative degree of ̃ is two) Several methods, such as defining an augmented error, have been suggested in the literature to
cope with this issue [18,19].

• It is necessary to know the high-frequency gain (e.g., 𝛾 in this paper), or at least its sign.
• The derivation of the error equation assumes that the input signal 𝑢𝑡(𝑡) consistently equals the computed value 𝑢𝑡(𝑡) = 𝜗𝑇𝜛 at

all times. However, should the input experience saturation (e.g., limits on the throttle), this could lead to erroneous updates
of the identifier [18].

In the next section, we will propose the input-error-based direct MRAC design, addressing the limitations above of the OE-MRAC
or the ACC system.

. Control design

In this section, the essential achievements of the paper will be presented through four subsections. As a first step, a brief model
escription of the LV is given. Then, the IE-MRAC is designed to control the speed of an autonomous vehicle, which is provided in
ection 3.1. The stability of the proposed controller design is developed in Section 3.2, and subsection 3.3 reveals some essential
roperties of the IE-MRAC method known as HOT. The controller design presented in Section 3.1 considers the idealized situations.
ue to the presence of uncertainties, the controller is to be modified in order to ensure stability, presented in subsection 3.4.
4
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3.1. Longitudinal dynamical model of an autonomous vehicle

According to Newton’s second law, the balance of longitudinal forces on a car is obtained as the following relation [1]

𝑣�̇� =
2
∑

𝑖,𝑗=1
𝑥𝑖𝑗 −

2
∑

𝑖,𝑗=1
𝑥𝑖𝑗 − 𝑎 − 𝜃 (9)

where 𝑣 is the vehicle mass, 𝑣 is the LV, 𝐹𝑥𝑖𝑗 and 𝑥𝑖𝑗 are the longitudinal and rolling resistance forces acting on each wheel,
respectively, 𝑎 and 𝜃 are the longitudinal aerodynamic drag and road inclination forces. In [1], Chapter 4 is fully devoted to
details and modeling of these forces. Considering no-slip situations, 𝑥𝑖𝑗 for 𝑖, 𝑗 = 1, 2 can be considered as the sum of the brake and
the engine forces as

2
∑

𝑖,𝑗=1
𝑥𝑖𝑗 = 𝑒𝑛𝑔 + 𝑏𝑟𝑎.

An idealized condition is considered initially for developing the longitudinal model of an autonomous vehicle, where the vehicle
moves through a flat surface with no brake. Consequently, 𝑒𝑛𝑔 can be considered the dominant force controlling the movement. The
engine force is shifted to the vehicle by the transmission system, which raises difficulty in modeling the longitudinal dynamic due to
the presence of nonlinear behavior. Instead, we employ a simplified second-order model to capture the relation between throttle as
control input and longitudinal velocity outputted from the high-fidelity simulator (i.e., CarSim) under specific operating conditions,
verified through experiments (see [3]). Thus, the following input–output description with the unknown slowly time-varying
parameters is assumed to represent the LV dynamics

𝑣(𝑡) = (𝑠){𝑢𝑡(𝑡)}, (𝑠) =
𝛾

𝑠2 + 𝛽1𝑠 + 𝛽0
=

𝛾
𝑝𝑝(𝑠)

(10)

where (𝑠) is the frequency domain representation of the LV dynamics with the unknown parameters 𝛽1, 𝛽0, and 𝛾 that refers to the
system specifications around operating conditions. 𝑣(𝑡) is the LV, and 𝑢𝑡(𝑡) is the throttle level. As will be shown in the simulation
results, a significant contribution of this paper lies in demonstrating that, despite the strictly linear nature of the selected model, we
have the capability to adjust its parameters based on the vehicle’s operating points. This approach effectively captures the nonlinear
behaviors of the engine and the transmission. Such an approach has been verified in the earlier study [3]. In contrast to the approach
in [3], which necessitates a system identification step followed by controller design based on the identified system parameters, our
proposed method, as will be shown in the next section, involves direct adaptation of controller parameters. This adaptation is based
on the received input/output and error signals, thereby diminishing the reliance on precise model identification and enhancing the
generality of the approach.

3.2. Input-error MRAC design for ACC systems

In this section, we will propose input-error-based direct MRAC for the control design of the ACC system. We first define a
second-order reference model as:

𝑣𝑚(𝑡) = (𝑠){𝑟(𝑡)}, (𝑠) =
𝛾𝑚

𝑠2 + 2𝜁𝑤𝑛𝑠 +𝑤2
𝑛
=

𝛾𝑚
𝑝𝑚(𝑠)

. (11)

The assumptions that will be used for the IE-MRAC are listed as follows:

-IE1. The plant is strictly proper and minimum phase
-IE2. The reference model is a stable and minimum phase
-IE3. The relative degree of the reference model 𝜅 is equal to or larger than the relative degree of the plant 𝜂
-IE4. The reference command 𝑟(𝑡) is a bounded piecewise continuous signal
-IE5. The upper bound on the 𝛾 is known.

As can be understood from the assumptions, the SPR condition and the necessity to have complete information on 𝛾 (at least the
sign) are no longer needed. Besides, as will be discussed throughout the paper and verified in the simulation results, the IE-MRAC
demonstrates superior performance over OE-MRAC in several aspects. These include enhanced handling of saturation, improved
robustness, and the feasibility of employing more effective adaptive laws, such as the normalized gradient algorithm, as highlighted
in the works of [18,21].

Let us proceed with designing the IE-MRAC controller for the ACC system. We first divide both sides of Eq. (4) by �̃�𝑝�̃�̃, and
then apply the resulting transfer functions to 𝑢𝑡(𝑡)

̃−1{𝑢𝑡(𝑡)} − 𝑐∗(̃̃)−1{𝑣(𝑡)} = ̃−1 𝑑∗

�̃�
{𝑣(𝑡)} + ̃−1 𝑐∗

�̃�
{𝑢𝑡(𝑡)} + 𝜀(𝑡) (12)

here ̃−1 is a stable and minimum phase filter to be determined such that (̃̃)−1 is a proper transfer function, and 𝜀(𝑡) shows
he effect of initial conditions. By defining the following vectors

�̄�∗ =
[

𝑐∗ 𝑑∗0 𝑑∗1
] 𝑇 , �̄�(𝑡) =

[

1
�̃� {𝑢𝑡(𝑡)} 𝑣(𝑡) 1

�̃� {𝑣(𝑡)}
]

𝑇 , 𝜩(𝑡) = ̃−1{𝜮(𝑡)}
[ −1 ] 𝑇

(13)
5

𝜮(𝑡) = ̃ {𝑣(𝑡)} �̄�
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Fig. 1. Block diagram representation of IE-MRAC.

Eq. (12) can be written as the following equation

̃−1{𝑢𝑡(𝑡)} = 𝝑∗𝑇 𝜩(𝑡) + 𝜀(𝑡). (14)

Now, the input error can be defined as follows

𝑒𝑖 = 𝝑𝑇 (𝑡)𝜩(𝑡) − ̃−1{𝑢𝑡(𝑡)} = 𝝋𝑇 (𝑡)𝜩(𝑡) − 𝜀(𝑡) (15)

which is the form of linear regression. As can be seen, the strict SPR assumption is avoided, and in addition to the projection update
law, other well-known algorithms can be employed. Since the normalized gradient algorithm has good convergence properties, it
is chosen to update the controller parameters in this paper

�̇�(𝑡) = �̇�(𝑡) = −𝜞
𝑒𝑖𝜩(𝑡)

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
(16)

where 𝜞 ∈ R4×4 is a diagonal matrix with positive arrays that regulates the rate of parameter convergence, and 𝜁 is a positive
constant. The selection of these parameters is crucial and necessitates a careful balance between stability, speed of adaptation,
responsiveness, and noise sensitivity. Large 𝛤 generally leads to a quicker adaptive response, beneficial for rapidly changing dynamic
systems and fast-tracking objectives. However, it may induce instability, particularly when the error gradient is substantial. Other
drawbacks include oscillations and heightened sensitivity to noise. Large 𝜁 effectively prevents instability caused by small values in
the normalization factor, particularly when the error gradient is minimal. On the flip side, this can reduce the system’s sensitivity to
changes in the error gradient, resulting in slower adaptation rates. For this study, we take into account these trade-offs to optimize
the performance of the adaptive control approach. Notice that the effects of the initial condition have been neglected in deriving
the adaptive law in Eq. (16). In Appendix A, we show that neglecting this exponentially decaying term does not affect the stability
analysis. The signal flow graph of the input error scheme is illustrated in Fig. 1.

4. Stability analysis

In the view of the normalized gradient algorithm Eq. (16), the boundedness of 𝝋 and its derivative �̇� is resulted [18,23,25].
Moreover, it can be concluded that

𝜇 =
𝑒𝑖(𝑡)

√

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
∈ 𝐿2 (17)

which in turn results in �̇� ∈ 𝐿2 [19]. In addition to the boundedness of controller parameters, the boundedness of all signals is
needed to show lim𝑡→∞ 𝑒𝑖(𝑡) = 0 and, in turn, concluding the convergence of output error to zero (i.e., lim𝑡→∞ 𝑒𝑜(𝑡) = 0). In this
section, using the idea of the ordering of signals [23], a novel stability proof is developed for IE-MRAC. The stability proof is given
for the LVC. However, it can be extended to a general case by following the same line in proving stability.
6
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The steps for proving stability are as follows. First, a lemma is stated and proven that says if signals |

|

|

𝑣(𝑡)||
|

, ‖‖
‖

𝝕(𝑡)‖‖
‖

, ‖‖
‖

𝜩(𝑡)‖‖
‖

and
𝜮(𝑡)‖‖

‖

grow in an unbounded fashion, they grow at the same rate. In the next step, by analyzing the input and output errors, it
s shown that the same signals grow at different rates, which contradicts the former assumption. Therefore, by showing such a
ontradiction, the boundedness of all signals can be concluded, which results in

lim
𝑡→∞

𝑒𝑖(𝑡) = 0.

Before continuation, a necessary lemma is presented.

emma 3. Let 𝜞 𝑇 ∶=
[

𝜞 𝑇
1 𝜞 𝑇

2 ⋯ 𝜞 𝑇
𝑛
]

where 𝜞 ∶ R+ → R𝑛, 𝜞 𝑖 ∶ R+ → R𝑛𝑖 for 𝑖 = 1,… , 𝑛 and 𝑛𝑖 ∈ N such that ∑𝑛
𝑖=1 𝑛𝑖 = 𝑛. If

rises in unbounded fashion, then

sup
𝜉≤𝑡

1≤𝑖≠𝑗≤𝑛

‖

‖

‖

𝜞 𝑖(𝜉)
‖

‖

‖

= O
[

sup
𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
]

‖

‖

‖

if and only if sup
𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

≡ sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

. (18)

roof. Since ‖

‖

‖

𝜞‖

‖

‖

2 =
∑𝑛

𝑖=1
‖

‖

‖

𝜞 𝑖
‖

‖

‖

2, one can conclude

sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

2 −
𝑛
∑

𝑘=1≠𝑖
sup
𝜉≤𝑡

‖

‖

‖

𝜞 𝑘(𝜉)
‖

‖

‖

2 ≤ 𝜅2
𝑖 sup

𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

2, ∀𝑖 ∶ 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛. (19)

rom Lemma 1. Repeating this inequality Eq. (19) for all 𝑖’s, we can finally conclude

(𝑛 − 1) sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

2 ≤ (
𝑛
∑

𝑖=1≠𝑗
𝜅2
𝑖 + 1) sup

𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

2 + (𝑛 − 2) sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

2

sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

2 ≤ �̄�2 sup
𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

2

here �̄�2 = (
∑𝑛

𝑖=1≠𝑗 𝜅
2
𝑖 + 1), which in turn results in

sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

= O
[

sup
𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

]

.

ince ‖

‖

‖

𝜞 (𝑡)‖‖
‖

= O
[

sup𝜉≤𝑡
‖

‖

‖

𝜞 (𝜉)‖‖
‖

]

, sup𝜉≤𝑡
‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

= O
[

sup𝜉≤𝑡
‖

‖

‖

𝜞 (𝜉)‖‖
‖

]

can be directly resulted. Thus

sup
𝜉≤𝑡

‖

‖

‖

𝜞 𝑗 (𝜉)
‖

‖

‖

≡ sup
𝜉≤𝑡

‖

‖

‖

𝜞 (𝜉)‖‖
‖

hich proves the sufficiency part. To prove the necessity, we can utilize a similar approach. □

Now, the central lemma in proving the boundedness of signals is stated.

emma 4. Consider the IE-MRAC structure; if the signals in the adaptive loop rise in an unbounded sense, ||
|

𝑣(𝑡)||
|

, ‖‖
‖

𝝕(𝑡)‖‖
‖

, ‖‖
‖

𝜩(𝑡)‖‖
‖

and
𝜮(𝑡)‖‖

‖

rise at the same rate.

roof. Since the parameter error vector is uniformly bounded, all signals in the adaptive loop can grow at most exponentially and,
herefore, belong to 𝐿𝑒

∞. As 𝑣(⋅) is related to 𝜛(⋅) through a linear exponentially stable filter Eq. (6), one can result
|

|

|

𝝕2(𝑡)
|

|

|

= O
[

sup
𝜉≤𝑡

|

|

|

𝑣(𝜉)||
|

]

. (20)

rom Lemma 2. Considering the update law Eq. (16), 𝝑(𝑡) is bounded, thus 𝝕(𝑡) can rise at most exponentially. The reason is that
(𝑡) is the state of the LTV system with bounded parameters Eq. (39). Therefore, the following inequality is held

|

|

|

�̇�1(𝑡)
|

|

|

≤ 𝜅1
‖

‖

‖

𝝕(𝑡)‖‖
‖

+ 𝜅2

here 𝜅1, 𝜅2 ∈ R+. As ̃{𝝕1} = 𝝕2, and ̃ has Hurwitz numerator, according to the Corollary 4 in [23], we can write
|

|

|

𝝕1(𝑡)
|

|

|

= O
[

sup
𝜉≤𝑡

|

|

|

𝝕2(𝜉)
|

|

|

]

. (21)

y using Lemma 3 and Eqs. ((20),(21)) we can say that 𝑣(𝑡) and 𝝕(𝑡) grow at the same rate

sup
𝜉≤𝑡

‖

‖

‖

𝑣(𝜉)‖‖
‖

≡ sup
𝜉≤𝑡

‖

‖

‖

𝝕(𝜉)‖‖
‖

. (22)

s can be concluded from Lemma 2, (̃̃)−1{𝑣(𝑡)} and 𝑣(𝑡) grow at the same rate, moreover, Lemma 2 implies that
|

|

|

̃−1{𝜛1(𝑡)}
|

|

|

= O
[

sup
𝜉≤𝑡

|

|

|

𝜛1(𝜉)
|

|

|

]

= O
[

sup
𝜉≤𝑡

|

|

|

𝑣(𝜉)||
|

]

|

|

|

̃−1{𝜛2(𝑡)}
|

|

|

= O
[

sup
𝜉≤𝑡

|

|

|

𝜛2(𝜉)
|

|

|

]

= O
[

sup
𝜉≤𝑡

|

|

|

𝑣(𝜉)||
|

]

|

|̃−1{𝑣(𝑡)}|| = O
[

sup ||𝑣(𝜉)||
]

7
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which in turn results in

sup
𝜉≤𝑡

|

|

|

𝑣(𝜉)||
|

≡ sup
𝜉≤𝑡

‖

‖

‖

𝜩(𝜉)‖‖
‖

that shows 𝑣(𝑡) and 𝜩(𝑡) rise at the same rate. By defining 𝑟𝑠(𝑡) ∶= ̃−1{𝑣(𝑡)} and applying ̃ to the both sides of Eq. (12), we have

𝑢𝑡(𝑡) = 𝑐∗0 𝑟𝑠(𝑡) + �̄�∗𝑇 �̄�(𝑡)

hich is equal to 𝑢𝑡(𝑡) = 𝝑𝑇 (𝑡)𝜛(𝑡) Eq. (3). By some algebraic manipulation, 𝑟𝑠(𝑡) can be written as the following equation

𝑟𝑠(𝑡) = 𝑟(𝑡) + 1
𝑐∗0

𝝋𝑇 (𝑡)𝝕(𝑡).

ince 𝝋 is uniformly bounded, the following relation can be concluded (see Lemma 3 in [23])
|

|

|

𝑟𝑠(𝑡)
|

|

|

= O
[

sup
𝜉≤𝑡

‖

‖

‖

𝝕(𝜉)‖‖
‖

]

which in turn results in |

|

|

𝑟𝑠(𝑡)
|

|

|

= O
[

sup𝜉≤𝑡
|

|

|

𝑣(𝜉)||
|

]

by using Eq. (22). Consequently, by employing Lemma 3, it can be shown that
𝑣(𝑡) and 𝜮(𝑡) grow at the same rate, which completes the proof. □

Theorem 1. Let us consider a second-order system ((𝑠)) representing the longitudinal dynamics of an autonomous vehicle with unknown
slowly varying parameters given in Eq. (10), a second-order reference model ((𝑠)) given in Eq. (2), and a bounded (piecewise) continuous
signal 𝑟(𝑡), satisfying assumptions -IE1--IE5. The control law 𝑢𝑡(𝑡) = 𝜗𝑇𝜛 with the following identifier structure

𝜩(𝑡) = ̃−1
{

[

̃−1{𝑣(𝑡)} 1
�̃� {𝑢𝑡(𝑡)} 𝑣(𝑡) 1

�̃� {𝑣(𝑡)}
]

𝑇
}

𝑒𝑖(𝑡) = 𝝑𝑇 (𝑡)𝜩(𝑡) − ̃−1{𝑢𝑡(𝑡)}
(23)

nd the normalized gradient algorithm to update controller parameters

�̇�(𝑡) = �̇�(𝑡) = −𝜞
𝑒𝑖𝜩(𝑡)

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
(24)

guarantees the boundedness of all states within the adaptive system, and the velocity of the autonomous vehicle tracks the output of the
reference model as 𝑡 approaches infinity, i.e., lim𝑡→∞ 𝑒𝑜(𝑡) = lim𝑡→∞ 𝑣(𝑡) − 𝑣𝑚(𝑡) = 0. In Eq. (23), 𝜙(𝑠) is a monic Hurwitz polynomial of
degree 1 and −1(𝑠) is a stable and minimum phase filter to be determined such that ((𝑠)(𝑠))−1 is a proper transfer function.

Proof. It was shown in Lemma 4 that if signals grow unboundedly, they grow at the same rate. We start by assuming all the signals
in the adaptive system grow in an unbounded manner. By using Swapping Lemma [18], one can write the relation between the
output and input error as follows

𝑒0(𝑡) = 𝑣(𝑡) − 𝑣𝑚(𝑡) = ̃̃{ 1
𝑐0(𝑡)

𝝋𝑇 (𝑡)𝜩(𝑡)} + ̃̃̃−1
𝑐
{

̃−1
𝑏 {𝜮𝑇 }{

�̇�
𝑐0

}
}

(25)

where here ̃−1 is used instead of ̃ in the swapping Lemma. Considering the properties of the normalized gradient algorithm, we
can establish (Eq. (17))

𝝋𝑇 (𝑡)𝜩(𝑡) = 𝜇 ⋅
√

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)

where 𝜇 ∈ 𝐿2. Because it is assumed that the upper bound on 𝛾 ≤ 𝛾𝑚𝑎𝑥 is known (-IE5) (i.e., lower bound on 𝑐0 is known), 𝑐−10 (𝑡)
s bounded, which implies

̃̃{ 1
𝑐0(𝑡)

𝝋𝑇 (𝑡)𝜩(𝑡)} = o
[

sup
𝜉≤𝑡

‖

‖

‖

𝜩(𝜁 )‖‖
‖

]

̃̃̃−1
𝑐
{

̃−1
𝑏 {𝜮𝑇 }{

�̇�
𝑐0

}
}

= o
[

sup
𝜉≤𝑡

‖

‖

‖

𝜮(𝜁 )‖‖
‖

]

from Lemma 2.9 in [19]. Since 𝜩(𝑡) and 𝜮(𝑡) grow at the same rate, we can write
|

|

|

𝑣(𝑡)||
|

= o
[

sup
𝜉≤𝑡

‖

‖

‖

𝜮(𝜉)‖‖
‖

]

which contradicts the statement of growing at the same rate, and as a result, all signals are uniformly bounded.
In the next step, the convergence of 𝑒𝑖(𝑡) and �̇� to zero is proven. Based on the used normalized gradient update law, we have

�̇� ∈ 𝐿2
⋂

𝐿∞. From �̇� ∈ 𝐿2, 𝑒𝑖(𝑡) ∈ 𝐿2 is concluded. In order to show the convergence of lim𝑡→∞ 𝑒𝑖(𝑡) = 0 and also lim𝑡→∞ �̇�𝑖(𝑡) = 0,
�̇�𝑖(𝑡) = �̇�𝑇 (𝑡)𝜩(𝑡) + 𝝋𝑇 (𝑡)�̇�(𝑡) needs to bounded. For the boundedness of �̇�𝑖(𝑡), we need to show the boundedness of 𝝋𝑇 (𝑡)�̇�(𝑡).

he Eq. (13) implies that the boundedness of �̇�(𝑡) is needed for showing the boundedness of 𝝋𝑇 (𝑡)�̇�(𝑡). By taking the first-order
erivative from Eq. (7), the following equation is obtained

�̇�(𝑡) = �̇�𝑚(𝑡) +
1
∗ ̃𝑠{𝝋𝑇 (𝑡)𝝕(𝑡)} = ̃𝑠{𝑟(𝑡) + 1

∗ 𝜑
𝑇 (𝑡)𝝕(𝑡)} (26)
8

𝑐0 𝑐0



Journal of the Franklin Institute 361 (2024) 106700A. Simorgh et al.

g

s

f

t
𝑠

w


f
D
E
h

f
o


c
z

5

o

T
z

where �̇�(𝑡) is related to the bounded signal 𝑟(𝑡) + 1
𝑐∗0
𝜑𝑇 (𝑡)𝝕(𝑡) through the strictly proper and stable transfer function ̃𝑠, thus, it is

bounded. Therefore, 𝑒𝑖(𝑡) ∈ 𝐿2
⋂

𝐿∞, and �̇�𝑖(𝑡) ∈ 𝐿∞. Using Barbalat’s lemma, the convergence of 𝑒𝑖(𝑡) and, therefore, �̇� to zero is
uaranteed.

To ensure the convergence of the output error to zero, we need to show that the right-hand side of Eq. (25) tends to zero for
ufficiently large 𝑡. By defining

𝑧1(𝑡) = ̃̃{ 1
𝑐0

𝝋𝑇 (𝑡)𝝂(𝑡)} (27)

𝑧2(𝑡) = ̃̃̃−1
𝑐
{

̃−1
𝑏 {𝜩𝑇 }{

�̇�
𝑐0

}
}

(28)

the objective is to ensure the convergence of the following equation to zero

lim
𝑡→∞

𝑒𝑜(𝑡) = lim
𝑡→∞

𝑧1(𝑡) + lim
𝑡→∞

𝑧2(𝑡) = 0.

As a first step, the following filters are defined

𝜆(𝑠) =
𝜚2

𝑠2 + 2𝜚𝑠 + 𝜚2
, 𝑠𝛱(𝑠) = 1 − 𝜆(𝑠) =

𝑠2 + 2𝜚𝑠
𝑠2 + 2𝜚𝑠 + 𝜚2

(29)

where 𝜚 is a constant parameter to be determined. As can be seen from Eq. (29), 𝛱(𝑠) is a stable and strictly proper which has the
ollowing 𝐿1 norm

‖

‖

‖

𝜋(𝑡)‖‖
‖

1 =
‖

‖

‖

ℒ−1{𝛱(𝑠)}‖‖
‖

1 =
2
𝜚

(30)

where ℒ−1{⋅} is the Laplace inverse operator. Applying both sides of Eq. (27) by 𝑠𝛱(𝑠)+𝜆(𝑠) = 1, the following equation is received

𝑧1(𝑡) = �̃�̃̃𝑠{ 1
𝑐0(𝑡)

𝝋𝑇 (𝑡)𝜩(𝑡)}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑧11(𝑡)

+ �̃�̃̃{ 1
𝑐0(𝑡)

𝝋𝑇 (𝑡)𝜩(𝑡)}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑧12(𝑡)

. (31)

As �̃�̃̃ is a stable and strictly proper transfer function, 𝑐−10 (𝑡) is bounded by assumption, and lim𝑡→∞ 𝑒𝑖(𝑡) = 0, it can be concluded
hat the second term of Eq. (31) converges to zero for sufficiently large 𝑡. To analyze the first term of Eq. (31), the boundedness of
{𝑐−10 (𝑡)𝝋𝑇 (𝑡)𝜩(𝑡)} is considered, which can be written as

𝑠{ 1
𝑐0(𝑡)

𝝋𝑇 (𝑡)𝜩(𝑡)} =
𝑐0(𝑡)[�̇�𝑇 (𝑡)𝜩(𝑡) + 𝝋𝑇 (𝑡)�̇�(𝑡)] − 𝝋𝑇 (𝑡)𝜩(𝑡)�̇�0(𝑡)

𝑐20 (𝑡)
(32)

here the boundedness of terms can be simplicity verified (see properties of update laws Eq. (16)). Since Eq. (32) is bounded and
̃ ̃ is stable and proper, using 𝑧11(𝑡) and the well-known norm inequality, it can be concluded that

|

|

|

𝑧11(𝑡)
|

|

|

≤ ‖

‖

‖

𝜋(𝑡)‖‖
‖

1 =
𝛽
𝜚

(33)

or some constant 𝛽 independent of 𝜚 > 0. To show the convergence of 𝑧1(𝑡), the approach of [26] is employed. According to
efinition 4, we need to show that there is a  > 0, for every  > 0 so that |

|

|

𝑧1(𝑡)
|

|

|

<  for all 𝑡 >  . By choosing 𝜚 = 2𝛽−1 in
q. (29) such that 𝛽𝜚−1 ≤ 0.5 in Eq. (33), and assuming  = 𝜚(𝜚(),) ∶=  () > 0, such that |

|

|

𝑧12(𝑡)
|

|

|

< 0.5 for all 𝑡 >  , we
ave

|

|

|

𝑧1(𝑡)
|

|

|

≤ |

|

|

𝑧11(𝑡)
|

|

|

+ |

|

|

𝑧12(𝑡)
|

|

|

< 0.5 + 0.5 =  (34)

or all 𝑡 >  . By referring to Definition 4, Eq. (34) implies lim𝑡→∞ 𝑧1(𝑡) = 0. Notice that, ||
|

𝑧12(𝑡)
|

|

|

< 0.5 for all  () > 0 is guaranteed
wing to the property of the convergence of 𝑧12(𝑡) to zero.

Since 𝑐−10 (𝑡) is bounded, �̇�𝑐−10 vanishes as 𝑡 goes infinity in 𝑧2(𝑡). On the other hand, 𝜩 is bounded as previously shown, and
̃−1
𝑏 is a strictly proper and stable transfer function. Thus the boundedness of ̃−1

𝑏 {𝜩𝑇 } can be concluded, which in turn results in
onverging ̃−1

𝑏 {𝜩𝑇 }{ �̇�
𝑐0
} to zero. Therefore, as ̃̃̃−1

𝑐 is a strictly proper and stable transfer function, the convergence of 𝑧2(𝑡) to
ero for sufficiently large 𝑡 is obtained, which completes the prove and guarantees lim𝑡→∞ 𝑒𝑜(𝑡) = 0. □

. Higher-order tracking

In this subsection, we extend the capability of the IE-MRAC mechanism. As one can see, this idea guarantees the convergence
f the first-order derivative of the output error to zero for the LVC, as well as the original signal.

heorem 2. In the IE-MRAC of the LV, in addition to the output error (i.e., speed tracking error), its first-order derivative also tends to
ero as 𝑡 approaches infinity or

lim
𝑡→∞

d𝑘𝑒𝑜(𝑡)
d𝑡𝑘

= 0

for 𝑘 = 0, 1.
9
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Proof. By taking the first-order derivative of Eq. (7), and applying 𝑠𝛱(𝑠) + 𝜆(𝑠) = 1 to the both sides, one can yield

�̇�𝑜(𝑡) =
1
𝑐∗0

�̃�̃𝑠2{𝝋𝑇 (𝑡)𝝕(𝑡)} + 1
𝑐∗0

�̃�𝑠{𝑒0(𝑡)}.

Since ̃𝑠2 is proper and stable, 1
𝑐∗0
̃𝑠2{𝝋𝑇 (𝑡)𝝕(𝑡)} is bounded and also, 𝑠�̃� is a strictly proper and stable filter. Thus, by following

he same line as the approach of showing the convergence of the output error to zero, it can be shown that

lim
𝑡→∞

d𝑒𝑜(𝑡)
d𝑡 = 0. □

By using a similar trend, it can be verified that for a reference model with the relative degree 𝜅 in the IE-MRAC, we have

lim
𝑡→∞

d𝑒(𝑞)𝑜 (𝑡)
d𝑞𝑡

= 0

or 𝑞 = 1,… , 𝜅 − 1.

orollary 1. If the first-order derivative of the reference signal is bounded �̇�(𝑡) ∈ 𝐿∞, then IE-MRAC of LV has the following convergence
property:

lim
𝑡→∞

d𝑘𝑒𝑜(𝑡)
d𝑡𝑘

= 0

for 𝑘 = 0, 1, 2.

Proof. By taking the second-order derivative from the output error, the following equation is received

𝑒(2)𝑜 (𝑡) = 1
𝑐∗0

�̃�̃𝑠2
{

𝑠{𝝋𝑇 (𝑡)𝝕(𝑡)}
}

+ 1
𝑐∗0

�̃�𝑠{�̇�0(𝑡)}.

As it can be seen, if the boundedness of 𝑠{𝝋𝑇 (𝑡)𝝕(𝑡)} be ensured, by employing the results acquired so far, the convergence of 𝑒(2)𝑜 (𝑡)
o zero can be concluded. Since 𝝋, 𝑠{𝝋} and 𝝕 are bounded, the boundedness of 𝑠{𝝋𝑇 (𝑡)𝝕(𝑡)} can be resulted by ensuring the
oundedness of 𝑠{𝝕}, that is

𝑠{𝝕} =
[

�̇�(𝑡) 𝑠{𝜛1} �̇�(𝑡) 𝑠{𝜛2}
]

here �̇�(𝑡) is bounded by assumption and �̇�(𝑡) was previously proven to be bounded (see Eq. (26)). The 𝑠{𝜛1}, 𝑠{𝜛2} are bounded
ecause the bounded signals 𝑢𝑡(𝑡) and 𝑣(𝑡) are filtered through a proper and stable transfer function, respectively. Therefore,

lim
𝑡→∞

d2𝑒𝑜(𝑡)
d𝑡2

= 0

which completes the proof. □

The Corollary 1 can be extended to the general case when the relative degree of the reference model is 𝜅, resulting in the 𝜅-th
order tracking.

6. Modifications for robustness

In the control design subsection, it was assumed that the longitudinal model is linear and time-invariant, and the signals are
measured precisely, which are the best possible situations that can occur. However, in the practical implementation, systems may
vary with operating conditions such as gear shifting and road conditions in the longitudinal model [3]. Moreover, the collected data
from measurement is mostly affected by noise. Here, a modification of the adaption law is proposed to ensure the robust performance
of the presented control design.

In this manuscript, the longitudinal model is considered as a linear and slowly time-variant case, which is an approximation
of a nonlinear dynamic around the operating condition. These assumptions, however, may be violated by nonlinearities in the
system, tire characteristics, dynamic changes in vehicle mass, impact of road conditions, temperature effects on engine performance,
nonlinearities in throttle response, external disturbances such as wind gusts, changes in wind direction, time delays. These situations
can result in growing the controller parameters in an unbounded fashion. To avoid such drift and ensure the boundedness of
parameters in the presence of uncertainties, the adaptive law Eq. (16) must be improved. A natural solution is to add a damping
term to the update law, which is known as leakage [25]. The 𝜎-modification is one of the leakage methods aiming to introduce
a modification term into the standard adaptive law to prevent the parameters from drifting too far, guaranteeing stability even in
the face of uncertainties, which is achieved by ensuring that the time derivative of the Lyapunov function employed to analyze the
adaptive scheme, becomes negative within the space of parameter estimates when these parameters surpass specified bounds: [25]:

�̇�(𝑡) = −𝜌
𝑒𝑖𝜩(𝑡)

− 𝜎𝝑(𝑡) (35)
10
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Fig. 2. The schematic of proposed adaptive control.

where 𝜎 is a positive constant. The modified adaption law Eq. (35) guarantees the boundedness of control parameters, but it has
the drawback of having a nonzero error, even when all assumptions are perfectly assured [25]. Because the motivation for using
the 𝜎-modification is to guarantee the boundedness of controller parameters, it is rational to be inactive whenever the parameters
are inside some predefined admissible bounds. Thus, a more sensible choice would be as follows

�̇�𝑖(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝜞 𝑖𝑖
𝑒𝑖𝜩(𝑡)

1+𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
|

|

|

𝜗𝑖(𝑡)
|

|

|

< 𝛿𝑖

−𝜞 𝑖𝑖
𝑒𝑖𝜩(𝑡)

1+𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
− 𝜎(||

|

𝜗𝑖(𝑡)
|

|

|

𝛿−1𝑖 − 1)𝜗𝑖(𝑡) 𝛿𝑖 ≤
|

|

|

𝜗𝑖(𝑡)
|

|

|

≤ 2𝛿𝑖

−𝜞 𝑖𝑖
𝑒𝑖𝜩(𝑡)

1+𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
− 𝜎𝜗𝑖(𝑡)

|

|

|

𝜗𝑖(𝑡)
|

|

|

> 2𝛿𝑖

which is known as switching 𝜎-modification. The first adaptive law implies that if the parameters are within acceptable ranges,
the original adaptive law is used to maintain convergence properties. In case of having unexpected large values, the term should
be activated through second and third adaptive laws. The second adaptive law is used for smooth switching between the first and
third, avoiding oscillations on the switching surface. Notice that 𝛿𝑖 is a constant that should satisfies 𝛿𝑖 >

|

|

|

𝜗∗𝑖
|

|

|

. The determination of
𝛿𝑖 is one of the main limitations of using such modifications that must be considered. Some methods exist to empirically determine
the value of 𝛿𝑖, which has been discussed in [27]. In this paper, the proposed method is applied to the vehicle several times without
any robust modification, and the controller parameters are observed at various operating conditions. These observations lead to
considering a bound on each parameter such that the parameter drifts from the admissible bounds are avoided. As a result, using
such a method will ensure the boundedness of controller parameters.

7. Simulation results

Until now, the proposed controller has been designed for the throttle; however, to control the LV, the control of the braking
system is needed. The behavior of the braking system is profoundly affected by some physical situations, including friction and
temperature. The friction causes a nonlinear behavior in the braking system, while the temperature makes the performance time-
variant. Our approach to controlling the braking system is the same as the throttle control, in which the brake level is related to
the corresponding deceleration through a second-order linear system with slowly time-variant parameters. Using simplified relation
(a cubic polynomial) for specific operating conditions has been experimentally validated in [3]. In this respect, we used a second-
order model for the brake system, capturing more characteristics than a polynomial function and keeping the control design simple
enough as a unified control structure is used for both the throttle and brake systems. Although the behavior of the braking system is
considered a linear system, employing the modified IE-MRAC with the robust adaptive control law, as will be shown in this section,
performs acceptably for controlling LV.

In this section, the proposed method is applied to the precise vehicle model software package known as CarSim [28]. The CarSim
is an accurate vehicle simulator that provides precise, complete, and efficient techniques to predict the response of vehicles to the
control inputs (e.g., throttle, brakes, steering, clutch) in a designable environment. The proposed adaptive control design schematic
is illustrated in Fig. 2, and the software implementation is depicted in Fig. 3. Based on the development, the reference model for
simulations should be in the form of a second-order system. In this respect, we have selected the following reference model:

(𝑠) = 1 (36)
11
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Fig. 3. The software implementation of the proposed adaptive control.

Fig. 4. (A) LVC on a straight path without filtering the reference signal. (B) LVC on a straight path with filtering of the reference signal.

which has the damping ratio of one, indicating a critically damped response. This can provide fast and smooth tracking of the
reference signal. The filters 𝜙(𝑠) and −1(𝑠) are considered as

𝜙(𝑠) = 𝑠 + 1, −1(𝑠) = 1
𝑠2 + 3𝑠 + 4

where −1(𝑠) is chosen so that ̃̃ is proper. After conducting several experiments, we selected the parameters of the adaptive
law to achieve a balance between rapid convergence and stability. The parameters were set as: 𝛤 = −10 × 𝐼3 and 𝜁 = 1, ensuring
relatively fast convergence while minimizing oscillatory behavior. In implementing the 𝜎-modification algorithm, we set 𝛿𝑖 = 100, a
decision guided by observations of the controller parameters, which approximately range around 2. Finally, we used 𝜎 = 0.1×𝛿𝑖 = 10
for the leakage parameter.

First, a straight path is chosen, and the results are provided in Figs. 4–6(A). As can be seen, the actual velocity in Fig. 4(A)
successfully tracks the reference velocity. The control parameters in Fig. 5(A) vary slowly, referring to the operating conditions,
such as gear shifting, changes in reference velocity, and path situations. Frequent gear shifting and non-smooth throttle signal are
observed in Fig. 5(A), and moreover, the second-order derivative of the output error is not converged to zero, as can be concluded
from Fig. 6(A). Theorem 2 guarantees the first-order tracking that has been achieved (Fig. 6(A)). However, to ensure the second-
order tracking and using the result of Corollary 1, the step reference function should be filtered to be smooth and have a bounded
first-order derivative. In this manuscript, the following transfer function is used to filter the reference input

𝑟 (𝑡) = 1 . (37)
12

𝑓 0.001𝑠2 + 1𝑠 + 1



Journal of the Franklin Institute 361 (2024) 106700A. Simorgh et al.
Fig. 5. (A) Control parameters, gear status, and normalized throttle/brake signals without filtering the reference signal. (B) Control parameters, gear status, and
normalized throttle and brake signals with filtering of the reference signal.

Fig. 6. (A) First and second order derivatives of the output error without filtering the reference signal. (B) First and second-order derivatives of the output error
with filtering of the reference signal.
13
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Fig. 7. Performance comparison of the IE-MRAC and OE-MRAC controllers.

The selection of the filter provides very fast-tracking of the step command (desired velocity) and ensures higher-order tracking.
The simulation results are provided in Figs. 4–6(B). As can be observed, second-order tracking is achieved, frequent gear-shifting
is avoided, and the throttle signal is almost smooth. The convergence of the second-order derivative of the output error to zero
implies that the abrupt variations in the system are avoided. Consequently, the acceleration is decreased and kept limited. Such
improvements in response lead to passenger comfort and reduce aging and maintenance costs.

Remark 2. Since the objective of the MRAC is to follow the output of a reference model, by adjusting the characteristics of the
reference model, including settling time, rise time, and overshoot, the comfort of passengers can be captured.

In the next simulation, we aim to compare the performance of the IE-MRAC and OE-MRAC for controlling LV. Directly designing
OE-MRAC with the structure outlined in the preliminaries is not feasible, as the reference model does not satisfy the SPR condition.
To address this issue, we employed an augmented error scheme as presented in [18,23]. The simulation results, depicted in Fig. 7,
illustrate the performance in terms of used throttle settings and actual velocity. The results clearly indicate the limitations of
OE-MRAC for the ACC system; it fails to achieve the tracking objective, and the throttle input is impractical and undesired. In
contrast, IE-MRAC successfully controls the LV with reasonable throttle settings. One potential source of error when using OE-
MRAC is the inability to perform acceptably in the presence of input saturation, leading to erroneous identification, as stated in
the following remark. In the beginning, both controllers experience saturation. Unlike OE-MRAC, the input-error-based strategy
effectively manages such limitations on the throttle.

Remark 3. One of the main differences between the output and input MRAC is when the input to the system saturates. The error
derived in OE-MRAC depends on the control signals 𝑢(𝑡) being the same as the calculated one 𝑢(𝑡) = 𝝑𝑇 (𝑡)𝝕(𝑡); thus, identification
in the presence of saturation will be inaccurate (see [18,29]). However, such difficulty is absent in the IE-MRAC since the derived
error equation Eq. (39) that uses Eq. (14) does not rely on any specified value of 𝑢(𝑡). Therefore, the proposed technique can deal

ith saturation on both throttle and brake input signals, and no modification of the adaptive law is needed in this case.

In the next step, the simulation test is carried out through unfavorable and more realistic path conditions, including road curves,
14

anking, and elevation, and the aerodynamic effects are applied by inserting wind in the opposite direction of the LV. The simulation
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Fig. 8. The designed path for simulation.

Fig. 9. The comparison between the velocity responses of three different vehicle classes in CarSim, wind velocity in the opposite direction of LV, and road
levation.

ath is illustrated in Fig. 8. The proposed robust IE-MRAC is applied to the three different classes of vehicles in CarSim, and the
esults are depicted in Figs. 9,10. Fig. 9 reveals that the three types of vehicles have successfully tracked the reference command
n adverse path conditions. As can be seen from Fig. 9, the road elevation changes continuously, and the aerodynamic force is
ermanently present. Therefore, a high-performance control design is needed to handle such disturbances. The modified IE-MRAC
as performed well, and as can be observed from Fig. 10, the control signals were obtained so that the adaption to the change
f conditions has occurred. The results depict that vehicles’ responses are different from each other. However, they have followed
he desired velocity acceptably. The reason is apparent because these vehicles have different technical specifications, including
ass, dimensions, cylinders, maximum power, and maximum torque; their dynamics are different, which leads to different control
arameters and, as a result, different responses. However, in all cases, the control signals were received such that the reference
elocities were tracked. As a result, the proposed approach can successfully handle various road conditions and vehicle dynamics,
15

hich implies the method’s applicability.
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Fig. 10. The comparison between the throttle/brake signals and gear status of three different vehicle classes CarSim.

Remark 4. Since a generic model of cars is used in designing the adaptive controller, it can be applied to a vast majority of vehicles
without knowing the exact vehicle powertrain and brake system.

Remark 5. The proposed method is not restricted to step tracking; a ramp or combination of ramp and step commands can be
tracked. However, the reference model and controller structure differ in this case. For instance, the following reference model can
ensure the track of combined ramp and step reference velocities:

(𝑠) = 𝑏𝑠 + 𝑎
𝑠3 + 𝑐𝑠2 + 𝑏𝑠 + 𝑎

(38)

where 𝑎, 𝑏, and 𝑐 are constants that determine the characteristics of the responses. Notice that the chosen model Eq. (38) satisfies
he assumptions -IE2 and -IE3, thus the IE-MRAC can be employed, and the HOT properties are still held.

. Conclusion

In this paper, the IE-MRAC was employed to control the LV of autonomous vehicles. It was shown that the IE-MRAC performs
etter than the classical OE-MRAC owing to handling saturation on input signals, having a linear regression error equation, and
erforming more robustly. Besides the analysis of IE-MRAC properties, a novel stability proof was presented and given within a
heorem. The presence of modeling error, time-varying parameters, nonlinear behavior, disturbances, and noisy measurements led
s to modify the IE-MRAC with a robust adaptive control law to guarantee the boundedness of the controller parameters in the
resence of uncertainties. The unknown approximation of the longitudinal model was forced to follow a predefined reference model
y generating bounded throttle/brake control signals. Although the results were satisfactory, by stating the higher-order tracking
roperty and proving it for the longitudinal velocity control, we showed that second-order tracking could be achieved via smoothing
he reference signal. Moreover, it enhanced vehicle responses, such as smoothing the throttle/brake signals and avoiding frequent
ear shifting. Such improvements in response lead to passenger comfort because the variation in acceleration is decreased and kept
imited. The applicability of the presented approach was validated by the CarSim simulator by considering realistic path conditions
uch as road curves, banking, elevation, and the presence of aerodynamic effects.
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ppendix A. Effect of the initial condition on the stability proof

In presenting the proposed IE-MRAC for ACC, we ignored the effects of the initial condition. However, given the nonlinearity
f the overall system, it becomes imperative to demonstrate that neglecting this term does not impact the stability analysis. To
how that, we will use a similar approach presented in [23]. We show boundedness of 𝝋 and also �̇� ∈ 𝐿2 which are central to

prove stability is not affected by the initial condition. The remaining parts of stability proof are related to arguments about the
unboundedness of signals and, therefore, unchanged by 𝜀(𝑡). The original input error equation is given in the following:

𝑒𝑖 = 𝝋𝑇 (𝑡)𝜩(𝑡) − 𝜀(𝑡). (39)

The update law without considering 𝜀(𝑡) is:

�̇�(𝑡) = −
𝜩(𝑡)𝜩(𝑡)𝑇

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
𝝋(𝑡). (40)

By selecting the following Lyapunov function:

𝑉 (𝜑(𝑡)) = 0.5 ⋅ 𝜑𝑇 (𝑡)𝜑(𝑡) (41)

we obtain the time derivative evaluated along the trajectories of Eq. (40) as

�̇� (𝜑(𝑡)) =
𝑒2𝑖 (𝑡)

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
≤ 0 (42)

implying that 𝝋(𝑡) is uniformly bounded. In addition, as − ∫ ∞
𝑡0

�̇� d𝑡 = −𝑉 (∞) + −𝑉 (𝑡0) ≤ ∞, we have 𝑒𝑖(𝑡) ⋅ (1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡))−0.5 ∈ 𝐿∞.
rom Eq. (40), we conclude, �̇� ∈ 𝐿∞ ∩𝐿2. Now let us consider the original error equation with the effects of initial condition. The
pdate law with projection is obtained as:

�̇�(𝑡) = 𝜩(𝑡)𝜩(𝑡)𝑇

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
𝝋(𝑡) − 𝜩(𝑡)𝜖(𝑡)

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
(43)

𝜖(𝑡) can be considered the output of a system, represented by:

�̇� = 𝑀𝐩, 𝜖(𝑡) = 𝐦𝑇 𝐩 (44)

where 𝑀 is a stable matrix and the pair (𝐦𝑇 ,𝑀) is detectable. We select the following Lyapunov function

𝑉 (𝜑(𝑡),𝐩) = 0.5 ⋅ 𝜑𝑇 (𝑡)𝜑(𝑡) + 0.25 ⋅ 𝐩𝑇 𝑃𝐩 (45)

where

𝑀𝑇 𝑃 + 𝑃𝑀 = −𝐦𝐦𝑇 −𝑄; 𝑃 = 𝑃 𝑇 ≻ 0, 𝑄 ≻ 0. (46)

By taking derivative along the trajectories Eqs. ((43), (44)), the following equation is received:

�̇� ≤ −
(𝝋𝑇 (𝑡)𝜩)2

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)
−

(𝝋𝑇 (𝑡)𝜩)𝜖(𝑡)
1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)

− 𝜖2

4

=
(

𝝋𝑇 (𝑡)𝜩 + 0.5𝜖(𝑡)
√

1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡)

)2
−

𝜁𝜩𝑇 (𝑡)𝜩(𝑡)𝜖2(𝑡)
4(1 + 𝜁𝜩𝑇 (𝑡)𝜩(𝑡))

.
(47)

It can be concluded that 𝜑 ∈ 𝐿∞ and �̇� ∈ 𝐿2, and thus, the results are identical to the case that the term 𝜖(𝑡) was neglected.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jfranklin.2024.106700.
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