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A B S T R A C T

This paper addresses the problem of designing a safe and optimal control strategy for typical cancer using
the Control Barrier Function (CBF) technique. Cancer is a complex and highly dynamic disease characterized
by uncontrolled cell growth and proliferation. By formulating the cancer dynamics as a control system,
this study introduces a CBF-based controller that guides the cancerous tissue towards safe and controlled
behaviors. The controller is designed to simultaneously optimize treatment efficacy and patient safety. The
methodology involves modeling the cancer growth dynamics, incorporating relevant biological constraints,
and designing the CBF-based controller to regulate the tumor’s evolution within acceptable bounds. Simulation
results demonstrate the effectiveness of the CBF-based strategy in achieving safe and optimal cancer control.
The controller showcases the ability to drive the cancerous tissue towards desired states while respecting
predefined safety constraints.
1. Introduction

Cancer emerges from cells escaping standard control mechanisms,
which can exist due to various causes. Growing cancer statistics are
a sign that more emphasis should be placed on improving the effi-
ciency of treatments [1]. The collaboration of medicine and engineering
can lead to remarkable progress by scheduling new drug administra-
tion, which began years ago. Conventional cancer treatments such as
surgery, chemotherapy, and radiotherapy are essential to help patients
in the fight against cancer. Despite their significance, it is evident that
in some cases, these treatments are not as effective as they need to
be [2]. As such, there is a need for alternative therapies that can be
used to improve clinical outcomes for patients. As a matter of fact, im-
munotherapies have become increasingly popular among conventional
treatments as anti-tumor activity has improved in recent years [3,4].
This therapy boosts the immune system with external adjuvants, and
the body’s inherent mechanism aids in cancer treatment by focusing on
the immune system rather than the tumor cells [5,6]. It should be noted
that eliminating the harmful agents induces toxicity effects on healthy
cells and organs in each treatment which requires further studies [7].

The complicated interaction of cells and agents can be described by
the mathematical model that facilitates scheduling external drugs as the
control input wherein the mathematical model serves as a useful link
between the phenomena and the application of control theories. One of
the primary goals of a cancer control study is to eliminate tumor cells
while reducing the concentration of non-related drug therapy. In [8],
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the optimal control problem was stated using simple assumptions to
minimize tumor size at the end of the treatment period and to keep
the normal cell population at an appropriate level as a target to reduce
side effects. A problem of optimal control can be solved numerically to
achieve objectives, such as control parameterization, which generates a
series of approximations and is solved by non-linear programming [9].

Some strategies of control like linear control, bang–bang, quadratic
control, and solution of state constraint were comprised for the op-
timization problem in [10]. A series of estimates of the linear time-
variant for the non-linear model has led to the development of a
linear quadratic regulator in [11]. A moving horizon estimation-based
model predictive control (MPC) has been created by [12], and [13] has
shown a proportional–integral–derivative (PID) utilized as an optimal
control method. Studies on various control techniques, including a
controller based on reinforcement learning with reward functions [14],
the application of robust control [15], and a controller employing
adaptive-fuzzy theories [16], have been explored in different studies
recently.

When administering treatment for a disease, it is essential to ac-
knowledge that side effects may arise independent of individual patient
characteristics. Current treatment strategies often neglect to consider
potential drug toxicity, highlighting the urgency to account for these
side effects, constraints, and control objectives to ensure a safe and
effective treatment plan. Depending on the patient’s health condition,
one of the primary goals of immunotherapy should be to minimize
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toxicity within the body, despite the fact that this may present a
technical challenge. In order to address this issue and provide a safe
and effective treatment, it is crucial to identify a set of responses that
are deemed safe and reliable. Considering such issues in a rigorous
mathematical framework, required some advanced theoretical studies
which roots in the invariant set theory. As one of the first steps, in
the 1940’s, a research has been conducted establishing the necessary
and sufficient conditions for an invariant set [17]. Subsequently, in the
2000’s, barrier certificates were introduced as a method of optimization
aimed at ensuring the safety of non-linear and hybrid systems [18–20].

Barrier certificates are a class of continuous functions essential
in performance indices. Their primary purpose is to prevent the oc-
currence of undesirable zones, thus enhancing the safety of complex
systems. This approach has been widely adopted in various engineering
and related domains, owing to its effectiveness in ensuring safety [21–
24]. Furthermore, following the Lyapunov function definition, a con-
tinuously differentiable Lyapunov function adheres to inequality condi-
tions and yields level sets. Consequently, this definition has led to the
introduction of a ‘‘Lyapunov-like’’ function as a safety barrier function,
which causes its values to approach infinity when the states approach
the boundary of a set [25]. The barrier function has helped validate the
invariant set but has limited use in controller design.

The motivation for accessing control input can be influenced by the
Lyapunov function, which was extended to control Lyapunov function
(CLF). The CLF is an inspiration for the Control Barrier Function (CBF),
which utilizes the barrier function as a safety means. On the other hand,
the CBF is a safety control method that ensures that the system stays
within a safe set by utilizing a barrier function. System control can
be created by combining the CLF with the CBF, stabilizing the system,
and ensuring its safety with quadratic programming (QP). It is worth
noting that, to the best of our knowledge, while this approach has been
effective in developing robots and motion-control systems, its potential
applications in the field of cancer have yet to be explored. Some
applications of such technique have been studied on the epidemic of
Covid-19 by a constraint on the infected population [26,27]. In order to
address intricate issues that involve various constraints, implementing
a high-order control barrier function (HOCBF) was proposed in [23,24].

Our main contributions can be pursued in the following objec-
tives: incorporating the dynamic characteristics of toxicity levels into
the Kirschner–Panetta immunotherapy model; achieving continuous
drug administration with optimal control to minimize time and drug
consumption using PMP as the reference control with the fewest con-
straints; implementing CLF as stability constraints to minimize tumor
volume while effector cell volume is maintained at the desired value;
and investigating safety therapy by constraining toxicity levels in two
ways. This achievement has the potential to establish a fundamental
basis for the development of innovative clinical trials.

This study provides a detailed discussion of the model in Sec-
tion 2, followed by a comprehensive explanation of the preliminary
in Section 3 and formulation problem in Section 4. The results will
be presented through a series of case studies in Section 5. The final
section will be concluded and suggest potential research topics for
future exploration.

2. Model description

This research employs the Kirschner–Panetta model [2], a widely
utilized mathematical model in immunotherapy, to illustrate the cen-
tral concept of safe-optimal treatment. The mathematical aspects con-
cerning immunotherapy encompass the interplay among effector cells,
tumor cells, and cytokine IL2 concentration through nonlinear terms.

he effector cells are assumed to be all activated cells in the immune
ystem that kill tumor cells, while the tumor cells are proliferated cells
aused by disease agents. The cytokine IL2 is a protein that helps plays

a role in regulating and distinguishing immune cells. The state-space
2

r

representation of the model that is considered in our study can be
described as follows:
d𝐸(𝑡)
d𝑡

= 𝛼𝑎𝑇 (𝑡) − 𝑑1𝐸(𝑡) +
𝜌1𝐸(𝑡)𝐶(𝑡)
𝛼501 + 𝐶(𝑡)

+ 𝑎1𝑢1(𝑡) (1)

d𝑇 (𝑡)
d𝑡

= 𝑟1𝑇 (𝑡)
(

1 − 𝑏𝑇 (𝑡)
)

−
𝑐1𝐸(𝑡)𝑇 (𝑡)
𝛼502 + 𝑇 (𝑡)

(2)

d𝐶(𝑡)
d𝑡

=
𝜌2𝐸(𝑡)𝑇 (𝑡)
𝛼503 + 𝑇 (𝑡)

− 𝑑𝑈𝐶(𝑡) + 𝑎2𝑢2(𝑡) (3)

here 𝐸(𝑡), 𝑇 (𝑡), and 𝐶(𝑡) denote the volume of effector cells, tumor
ells, and concentration of cytokine IL2 at time 𝑡, respectively. The
ontrol input labeled 𝑢1(𝑡) refers to adoptive cell transfer [28]. The
econd input, 𝑢2(𝑡), is used to deliver an IL2 injection as an adjunct
or enhancing the immune system.

As shown in Fig. 1, upon detecting a tumor cell, the immune
ystem initiates a cascade of events resulting in the proliferation of
ffector cells, which is facilitated by intervening IL2. This proliferation
s represented in Eq. (1) as 𝛼𝑎𝑇 (𝑡), in which 𝛼𝑎 signifies the antigenicity
f the tumor. The increasing number of tumor cells leads to the death
f effector cells through an apoptosis process, which is determined by
he death rate 𝑑1 in the term 𝑑1𝐸(𝑡). Another proliferation occurs by
epresenting the Michaelis–Menten form as the term 𝜌1𝐸(𝑡)𝐶(𝑡)

𝛼501+𝐶(𝑡) , defining
rowth effector cells due to IL2. The parameters 𝜌1 and 𝛼501 determine
he immune response rate and half-saturation constant.

Tumor cells need sufficient resources to grow, represented by the
erm 𝑟1𝑇 (𝑡)

(

1−𝑏𝑇 (𝑡)
)

in Eq. (2). This term considers the growth rate 𝑟1
nd the inverse carrying capacity 𝑏 to model limited resource access.
ext, the effector–tumor interaction is defined by terms 𝑐1𝐸(𝑡)𝑇 (𝑡)

𝛼502+𝑇 (𝑡)
, which

causes a decrease in tumor cells as a competition. Moreover, the nonlin-
ear term 𝜌2𝐸(𝑡)𝑇 (𝑡)

𝛼503+𝑇 (𝑡)
describes an increase in the concentration of IL2 due

o the interaction between the effector cell and tumor cell in Eq. (3).
he parameters 𝛼502 and 𝛼503 determine the half-saturation constants.
he parameter 𝑐1 introduces the competition rate between effector and
umor cells, and the 𝜌2 is immune response rates. The effects of each
ell on the other are drawn in Fig. 1 by arrows.

The IL2 protein has a natural depletion modeled by 𝑑𝑈𝐶(𝑡), and 𝑑𝑈
is the depletion rate of cytokine in Eq. (3). The body’s innate immune
system may become weakened when faced with an increased number
of tumor cells. As a result, it is necessary to administer an injection of
drugs to enhance the immune cells’ ability to fight. The latest terms
of Eqs. (1) and (3), 𝑎1𝑢1(𝑡) and 𝑎2𝑢2(𝑡) represent the injection rate
of drugs, where 𝑎1 and 𝑎2 are the treatment factors to enhance the
effector cell populations and IL2 concentration, respectively, as shown
in Fig. 1. The model has undergone significant improvement, with a
notable enhancement being the addition of a dynamic toxicity level.
This enhancement now facilitates the measurement of the impact of
drugs on the body, providing a more comprehensive understanding of
their effects, as detailed below:
d𝑈𝑐1 (𝑡)

d𝑡
= −𝛾1𝑈𝑐1 (𝑡) + 𝑢1(𝑡) (4)

d𝑈𝑐2 (𝑡)
d𝑡

= −𝛾2𝑈𝑐2 (𝑡) + 𝑢2(𝑡) (5)

d𝑇𝑥(𝑡)
d𝑡

= −𝜂𝑒𝑇𝑥(𝑡) +
2
∑

𝑖=1
𝑇𝑥𝑥𝑖𝑈𝑐𝑖 (𝑡). (6)

The cumulative effect of all enzymatic reactions between the toxic
ompounds in the drug and the intracellular components determines
rug toxicity levels by these equations. The state variables 𝑇𝑥(𝑡) and
𝑐𝑖 (𝑡) define the toxicity level and concentration of drugs, respectively.
he concentration of drugs is determined by the decay of each drug,
hich occurs at a half-life of 𝛾𝑖 in Eqs. (4)–(5). The drug infusion rate

s denoted by 𝑢𝑖(𝑡) in all equations for 𝑖 = 1, 2. The toxicity level is
alculated by adding up the concentration of drugs multiplied by the
mpact coefficient 𝑇𝑥𝑥𝑖 and decreasing with respect to the metabolic
ate of drugs in the body denoted by 𝜂 in Eq. (6). The purpose of
𝑒
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Fig. 1. Tumors develop due to aberrant cell division, which causes the activation of immune system, including immune cells and cytokine IL2 cells which initiate a cellular assault
against the tumor cells via reciprocal interactions. Complicated phases of intercellular interactions have been elucidated by means of the immunotherapy model.
Table 1
Model variable description and unit.

Var. Description Unit

𝐸(𝑡) General effector cells

volume
𝑇 (𝑡) Tumor cell
𝐶(𝑡) Cytokine IL2 concentration
𝑈𝑐𝑖 (𝑡) Concentration of the drug
𝑇𝑥(𝑡) Toxicity level of therapy

𝑢𝑖(𝑡) Rate of drug volume day−1

this study is to examine the stability and safety goals of the combined
immunotherapy-toxicity model, which is represented by Eqs. (1)–(6).
Tables 1 and 2 provide a brief summary of the variables and parameters
used in the model. Lastly, It is worth noting that the medications
mentioned in this study have been assessed in a general manner.

3. Preliminaries

The complex cancer dynamic can be elucidated by representing it
with a nonlinear vector field denoted as 𝑓 accompanied by the affine
component that encompasses the control parameter 𝑢𝑖 in the following
manner:

�̇� = 𝑓 (𝐱) +
𝑚
∑

𝑖=1
𝑔𝑖(𝐱)𝑢𝑖 (7)

in which 𝐱 = [𝑥1 𝑥2 … 𝑥𝑛]𝑇 ∈  ⊂ R𝑛 and 𝐮 = [𝑢1 𝑢2 … 𝑢𝑚]𝑇

∈  ⊂ R𝑚 are the state vector and the control input, respectively. The
functions 𝑓 ∶ R𝑛 → R𝑛 and 𝑔 = [𝑔 𝑔 … 𝑔 ] ∶ R𝑛 → R𝑛×𝑚 are
3

1 2 𝑚
assumed globally Lipschitz and 𝑔𝑖 is the 𝑖th column of the matrix 𝑔.
The control inputs provide some trajectories according to the objectives
or constraints, while trajectories may not always be satisfied to stay in
a certain set. However, safety is defined as not exceeding a particular
enclosed zone by determining several constraints. To be more exact, in
the sequel, formal description of the concepts are given.

A set  is defined as forward invariant to an affine system if the
unique solution 𝐱(𝑡) stays in the set for every initial state 𝐱0 ∈  in
𝑡 ∈ [𝑡0, 𝑡max). In order to describe the movement of the state variable
within the forward invariant set, it is beneficial to establish a scalar
function, e.g., ℎ(𝐱), that serves as an indicator of the state’s condition.
A typical representation is as follows:

 ={𝐱 ∈ 𝐷 ⊂  ∶ ℎ (𝐱) ≥ 0} (8)

whose boundary, 𝜕 and interior region, Int(), are defined as:

𝜕 ={𝐱 ∈ 𝐷 ⊂  ∶ ℎ (𝐱) = 0}

Int() = {𝐱 ∈ 𝐷 ⊂  ∶ ℎ (𝐱) > 0}
(9)

which refers to a safe set with a smooth indicator function ℎ ∶ R𝑛 → R.
According to this definition, a well-known theorem, i.e., the Nagumo
theorem, provides a necessary and sufficient condition for a set, , to
be invariant [29]. More specifically, it says that  is invariant if and
only if ℎ̇(𝐱) ≥ 0,∀𝐱 ∈ 𝜕. It is clear that the value of the function ℎ(𝐱)
is positive within the set and decreases to zero when approaching the
boundary. The condition on ℎ̇(𝐱) declares that ℎ(𝐱) should be increased
again and pushed back into the set as the boundary and resulting in
the verification of Nagumo theorem. Therefore, ℎ(⋅) can be identified
as a barrier function, and its behavior in this set is illustrated in Fig. 2.
It is a natural tool to represent and constrain the feasible region of a
problem.
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Table 2
Description and unit of model parameters.

Param. Description Unit Param. Description Unit

𝛼𝑎 Antigenicity of tumor

day−1

𝑏 Reciprocal carrying capacity unit of volume
𝜌𝑖 Immune response rate 𝛼50𝑖 Half saturation constant

𝑑𝑈 Elimination rate of therapeutic agent 𝜂𝑒 Metabolic rate
day−1𝑑1 Death rate 𝛾𝑖 Half-life depletion rate of drag

𝑟1 Growth rate 𝑇𝑥𝑥𝑖 Toxicity rate of drug

𝑐1 Competition rate 𝑎𝑖 Fractional cell-kill rate due to therapy –
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Fig. 2. Typical trajectory of the barrier function in the safe set.

The barrier functions are used in two notions: reciprocal barrier
function (RBF) and zeroing barrier function (ZBF), with RBF’s seen as
logarithmic or inverse forms of ZBF’s as

𝐵(𝐱) = − log
(

ℎ(𝐱)
1 + ℎ(𝐱)

)

or 𝐵(𝐱) = 1
ℎ(𝐱)

(10)

while this function should satisfy the properties

inf
𝐱∈Int()

𝐵(𝐱) ≥ 0, lim
𝐱→𝜕

𝐵(𝐱) = ∞. (11)

According to definition (9), the barrier function ℎ(⋅) is a ZBF equaled to
zero when the trajectory hits the set’s boundary, resulting in the RBF
being set to infinity at that point. The infinity values of the RBF give
unbounded properties that may be unfavorable for implementation in
real-time or embedded systems, making ZBF the recommended option.
Therefore, the barrier function will henceforth refer to the ZBF.

The initial principles of theories and system information have been
raised to facilitate comprehension of further details. Lastly, the follow-
ing definitions are presented in sequence.
Def. A scalar continuous function 𝛼 ∶ [0, 𝑎) → [0,∞) is defined to belong
a class , for 𝑎 > 0 if it is strictly increasing and 𝛼(0) = 0.
Def. A continuous function 𝛼 ∶ [−𝑏, 𝑐) → [−∞,∞) is called an extended
class , for 𝑏, 𝑐 > 0, denoted by 𝑒, if it is strictly increasing and
𝛼(0) = 0.

4. Main method

The barrier function takes inspiration from the Lyapunov function.
The Lyapunov function can evaluate the convergence to a specific
point (like an equilibrium point) without the need for computing the
exact solution. The control Lyapunov function (CLF) has been defined,
corresponding to stabilizing and controlling a system. It is specified for
the positive function 𝑉 (𝐱) ∶ R𝑛 → R≥0 as

�̇� (𝐱,𝐮) = 𝐿𝑓𝑉 (𝐱) +
𝑚
∑

𝑖=1
𝐿𝑔𝑖𝑉 (𝐱)𝑢𝑖 ≤ −𝜆

(

𝑉 (𝐱)
)

, (12)

where the derivative function �̇� (𝐱,𝐮) is the negative function that
descends by the rate of the class  function 𝜆(⋅). The Lie derivative
4

f

𝐿𝑋(⋅)𝑌 (⋅) = ⟨∇𝑌 (⋅), 𝑋(⋅)⟩ is used for indicating the derivative of 𝑉 (𝐱)
with respect to 𝑓 (𝐱) and 𝑔𝑖(𝐱) with specifying 𝐿𝑓𝑉 (𝐱) and 𝐿𝑔𝑖𝑉 (𝐱)
espectively. Thus, stability objectives can be defined by inequality
onstraints that make the function 𝑉 (𝐱). These objectives are often con-
idered for minimizing the number of tumor cells while maintaining the
umber of effector cells for modeling cancer systems. Stability is finally
eached by determining the control input to satisfy the condition (12).
he set of CLF inputs is considered as,

𝑐𝑙𝑓 (𝐱) = {𝑢 ∈  ∶ 𝐿𝑓𝑉 (𝐱) +
𝑚
∑

𝑖=1
𝐿𝑔𝑖𝑉 (𝐱)𝑢𝑖 + 𝜆

(

𝑉 (𝐱)
)

≤ 0}. (13)

Ensuring safety is a critical component of any system, and it requires
ontrol input that satisfies the safety constraint. Unlike stability, safety
ust be maintained for the duration of any trajectory rather than just

t the final point. Therefore, the function ℎ(⋅) is defined for the forward
nvariant set  by the CLF motivation, with the safety constraint
eclared as satisfying definition (8)–(9). The barrier function cannot be
irectly used for system control. Therefore, the control barrier function
s defined as follows:
ef. Consider the affine system (7) and the set  defined by (8)–(9), the
ontinuously differentiable function ℎ(⋅) ∶ R𝑛 → R is called a control
arrier function if there exists an extended class  function 𝛼(⋅) for all
∈ 𝐃 with  ⊆ 𝐷 ⊂ R𝑛 such that

sup
𝐮∈𝑈

(

𝐿𝑓ℎ(𝐱) +
𝑚
∑

𝑖=1
𝐿𝑔𝑖ℎ(𝐱)𝑢𝑖 + 𝛼(ℎ(𝐱))

)

≥ 0.

The objective behind the enactment of 𝛼(ℎ(𝐱)) is to mitigate the
endency of conservation of responses, thereby facilitating the develop-
ent of more fitting controllers for heuristically determined practical

mplementations. Furthermore, by incorporating this term, it becomes
asier to compare it to CLF. Thus, the set of controllers is described by
his definition CBF a

𝑐𝑏𝑓 (𝐱) ∶= {𝐮 ∈  ∶ 𝐿𝑓ℎ(𝐱) +
𝑚
∑

𝑖=1
𝐿𝑔𝑖ℎ(𝐱)𝑢𝑖 + 𝛼(ℎ(𝐱)) ≥ 0}. (14)

Once more, if 𝛼(⋅) and ℎ̇(⋅) are both locally Lipschitz continuous,
hen the CBF is locally Lipschitz continuous.

Separate CLFs and CBFs can be used to establish the objectives and
onstraints of a system. These inequality constraints, identified as (13)
nd (14), are affine and linear to the control input. As a result, they can
e combined to determine the appropriate control input that satisfies
he constraints. This unification process can be achieved by employing
uadratic programming (QP) as

𝐮(𝑡), 𝛿) = argmin
(𝐮,𝛿)∈R𝑚+1

(

‖𝐮(𝑡) − 𝐮𝑟𝑒𝑓 (𝑡)‖2 + 𝑝𝛿2
)

𝑠.𝑡. 𝐿𝑓𝑉 (𝐱) +
∑𝑚

𝑖=1 𝐿𝑔𝑖𝑉 (𝐱)𝑢𝑖 ≤ −𝜆
(

𝑉 (𝐱)
)

+ 𝛿

𝐿𝑓ℎ(𝐱) +
∑𝑚

𝑖=1 𝐿𝑔𝑖ℎ(𝐱)𝑢𝑖 ≥ −𝛼(ℎ(𝐱)),

(15)

hich its convexity form is suitable for real-time application. The
ontrol input 𝐮(𝑡) obtained from the QP aims to achieve stability
nd safety by balancing between them. Although there are multiple
onstraints, they must be prioritized during implementation. Therefore,
afety is the top priority and is treated as a hard constraint. Meanwhile,
tability is a soft constraint, and the variable 𝛿 is defined as the
elaxation, weighted by the penalizing coefficient 𝑝 in the QP. The QP

ormulation allows for incorporating a reference input, 𝐮𝑟𝑒𝑓 (𝑡), which
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Table 3
Parameters of the model.

Para. Value Para. Value Para. Value

𝛼𝑎 0−0.05 𝜌1 0.1245 𝛾1 0.27
𝛼501 2 × 107 𝜌2 5 𝛾2 0.2
𝛼502 1 × 105 𝑟1 0.18 𝑇𝑥𝑥1 1
𝛼503 1 × 103 𝑐1 1 𝑇𝑥𝑥2 1
𝑏 1 × 10−9 𝑑1 0.03 𝑎1 500
𝜂𝑒 0.4 𝑑𝑈 10 𝑎2 7 × 107

may entail any control strategy. This study considers it the optimal
control by utilizing Pontryagin’s minimum principle for minimizing fuel
and time. This enables the QP to effectively integrate various objectives
straightforwardly without the need for complex solving. As a result, the
solution provided delivers a sub-optimal response.

Sometimes, the conditions in the QP may be modified to identify a
more comprehensive safe set or to resolve the problem under multiple
conditions. One of these is particularly relevant when dealing with
safety constraints for nonlinear systems. A practical approach to imple-
mentation involves selecting the control barrier function by a relative
degree greater than one, which is defined as the function ℎ(𝐱) with the
relative degree 𝑟 as

ℎ(𝑟)(𝐱,𝐮) = 𝐿(𝑟)
𝑓 ℎ(𝐱) +

𝑚
∑

𝑖=1
𝐿𝑔𝑖𝐿

(𝑟−1)
𝑓 ℎ(𝐱)𝑢𝑖

that 𝐿𝑔𝑖𝐿
(𝑟−1)
𝑓 ℎ(𝐱) ≠ 0 and 𝐿𝑔𝑖𝐿

(𝑗)
𝑓 ℎ(𝐱) = 0, 𝑗 ∈ {1,… , 𝑟−2} for all 𝐱 ∈ 𝐷.

herefore, the inequality condition to subject the QP must be changed
o a linear and affine condition for 𝐮(𝑡). Although a definitive method
or solving this challenge has not yet been found, one potential solution
nvolves using the sequence of the function 𝛷𝑗 (𝐱) as:

𝛷0(𝐱) = ℎ(𝐱)
𝛷𝑗 (𝐱) = �̇�𝑗−1(𝐱) + 𝜑𝑗 (𝛷𝑗−1(𝐱)), 𝑗 ∈ {1,… , 𝑟},

(16)

here 𝜑𝑗 (⋅) is a (𝑟 − 𝑗)th order differentiable class  function. A
equence of corresponding super-level sets follows as

𝑗 = {𝐱 ∈ 𝐷 ∶ 𝛷𝑗 ≥ 0}, 𝑗 ∈ {1,… , 𝑟}. (17)

t is well-known that if 𝑟 is forward invariant and 𝐱0 ∈
⋂𝑟

𝑗=0 𝑗 , then
 is forward invariant [30].

Now, the high-order control barrier function (HOCBF) can be de-
fined as
Def. A function ℎ(𝐱) ∶ 𝐷 ∈ R𝑛 → R is a high-order control barrier
unction of a relative degree 𝑟 for an affine system by considering 𝛷𝑗 (⋅)
efined in (16) and its associated set 𝑗 (17) for 𝑗 ∈ {1,… , 𝑟}, if there
xist (𝑟− 𝑗)th order differentiable class  functions 𝜑𝑗 (⋅), 𝑗 ∈ 1,… , 𝑟 − 1

and a class  function 𝜑𝑟(⋅) such that

sup
𝐮∈

[𝐿𝑟
𝑓ℎ(𝐱) +

𝑚
∑

𝑖=1
𝐿𝑔𝑖𝐿

𝑟−1
𝑓 ℎ(𝐱)𝑢𝑖 + 𝛼(ℎ(𝐱)) + 𝜈𝑟.𝜑𝑟(𝛷𝑟−1(𝐱))] ≥ 0 (18)

for all 𝐱 ∈ 1
⋂

⋯
⋂

𝑟 and the parameter 𝜈𝑗 for 𝑗 ∈ 1,… , 𝑟 is included
to minimize a conflicting effect among constraints.

So, it is necessary to modify the constraint of the HOCBF in the QP
formulation. After that, the new formulation is rewritten to determine
proper control inputs in the QP as

(𝐮(𝑡), 𝛿) = argmin
(𝐮,𝛿)∈R𝑚+1

(

‖𝐮(𝑡) − 𝐮𝑟𝑒𝑓 (𝑡)‖2 + 𝑝𝛿2
)

𝑠.𝑡. 𝐿𝑓𝑉 (𝐱) +
∑𝑚

𝑖=1 𝐿𝑔𝑖𝑉 (𝐱)𝑢𝑖 ≤ −𝜆
(

𝑉 (𝐱)
)

+ 𝛿

𝐿𝑟
𝑓ℎ(𝐱) +

∑𝑚
𝑖=1 𝐿𝑔𝑖𝐿

𝑟−1
𝑓 ℎ(𝐱)𝑢𝑖 ≥ −𝛼(ℎ(𝐱))

−𝜈𝑟.𝜑𝑟(𝛷𝑟−1(𝐱)).

(19)

The results of the method will be investigated in the many case
studies for enhancing treatment in the following. The stability objec-
tives will be considered to minimize the tumor cells, as demonstrated in
previous studies. Furthermore, the safety constraints will be discussed
on the concentration of drugs and toxicity level.
5

The concise and informative pseudocode summary of the control
method is provided herein, which serves as a valuable tool for facil-
itating easy tracking. The summary offers a clear and comprehensive
overview of the implementation and control method as

Specify 𝐮𝑟𝑒𝑓
Lyp Func: 𝐾𝑐𝑙𝑓
if 𝐽 only satisfies the stability then

Solve QP in Eq. (15) without the safety constraint.
else

Brr Fun: 𝐾𝑐𝑏𝑓
if 𝑟 = 1 then

Solve QP in Eq. (15)
else

Solve QP in Eq. (19)
end if

end if

5. Case studies and results

The control strategies have been studied by focusing on optimizing
drug consumption and minimizing tumor volume so far. However,
a comprehensive administration for any therapy must contain side
effects. So, the present study confirmed the findings about safe con-
trollers by utilizing CBF. This method provides safety for the immunoth-
erapy-toxicity model (1)–(6) in the affine description (7) with 𝐱 =
[

𝐸(𝑡) 𝑇 (𝑡) 𝐶(𝑡) 𝑈𝑐1 (𝑡) 𝑈𝑐2 (𝑡) 𝑇𝑥(𝑡)
]

and 𝐮 =
[

𝑢1(𝑡) 𝑢2(𝑡)
]𝑇 as

(𝐱, 𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛼𝑎𝑇 (𝑡) − 𝑑1𝐸(𝑡) + 𝜌1𝐸(𝑡)𝐶(𝑡)
𝛼501+𝐶(𝑡)

𝑟1𝑇 (𝑡)
(

1 − 𝑏𝑇 (𝑡)
)

− 𝑐1𝐸(𝑡)𝑇 (𝑡)
𝛼502+𝑇 (𝑡)

𝜌2𝐸(𝑡)𝑇 (𝑡)
𝛼503+𝑇 (𝑡)

− 𝑑𝑈𝐶(𝑡)

−𝛾1𝑈𝑐1 (𝑡)

−𝛾2𝑈𝑐2 (𝑡)

−𝜂𝑒𝑇𝑥(𝑡)
∑2

𝑖=1 𝑇𝑥𝑥𝑖𝑈𝑐𝑖 (𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑔 =
[

𝑔1 𝑔2
]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎1 0
0 0
0 𝑎2
1 0
0 1
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ith the valued parameters in Table 3 by restricting toxicity due to the
oncentration drug, which is investigated in two ways: the CBF on the
oncentration drug and the HOCBF on the toxicity. The schematic of
his control strategy is shown in Fig. 3; it is supposed to be implemented
n three steps. First, the optimal controller is designed to be subject to
he affine model by certain constraints under states and control input
ith given conditions and a specific performance index. Next, defining

he objectives for stability and safety by the function of states, and
inally, unifying in the QP.

ptimal response

The optimal problem is focused on therapy time and consumption
f drugs. Therefore the performance index is defined for the free final
ime as simply as

in
𝐱,𝐮,𝑡 ∫

𝑡𝑓

𝑡0
‖𝐮(𝑡)‖2d𝑡. (20)

he affine model (1)–(6) is subject to this performance index by con-
idering all states’ initial values and the final value of tumor value
s 𝐴(𝑡𝑓 ) = 𝜖 as point constraints. Additionally, some inequality state-
ontrol constraints are specified for obtaining a reasonable response
s

(𝑡) ≤ 3 × 104, and 0 ≤ 𝐮(𝑡) ≤ 1.

Thus, the first step is structured to obtain reference input 𝐮𝑟𝑒𝑓 (𝑡) by
he requirements of the problem, as shown in Fig. 3. Open-OCL [31]
olves the optimal problem due to the complex model numerically.
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Fig. 3. Schematic of the optimal control barrier function approach.

Fig. 4. The rates of drugs administered are illustrated for the first and second infusions in (a, b) as optimal control by satisfying conditions, (c, d) using CLF by choosing parameters
𝜇1 = 10 and 𝐸𝑣 = 2.2 × 104, and (e, f) using OC-CBF and OC-HOCBF for implementing stable and safe responses under optimality.
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Fig. 5. Changes in states of the immunotherapy-toxicity model for the parameter 𝛼𝑎 = 0.035 are depicted subject to fuel-time optimal control under point and boundary conditions,
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onsidering the Eqs. (1)–(3), the final point constraint on tumor cells
s satisfied by the indirect effect of both control inputs. So, they must
e consumed to minimize the index while maintaining the point and
oundary constraints. The coefficient of rate first drug is significantly
ess than the second drug, according to Table 3; hence, the second drug
s consumed at the low range, as shown in parts (a) and (b) of Fig. 4.
owever, to optimize time, they select maximum values that allow the
oundary condition. After that concentration of IL2 increases until the
llowed boundary and causes no decrease in the volume of effector cells
hen there is a large volume of tumor cells. Assuming 𝜖 = 0, it occurs

n less than 80 days. The results have demonstrated the trajectory of
tates in Fig. 5. Therefore, the values of cells are compelling, and
he concentration drug and toxicity values are acceptable as long as
o condition is included in them and will be further discussed and
ompared.

tability investigation

The level of stability of a system is crucial in determining its
ffectiveness. In the case of the cancer model, the aim is to reduce the
umber of tumor cells that can be realized using CLF. The easiest way
o select the positive function for this method is to choose a quadratic
erm of tumor cells. However, Eq. (2) reveals that a function solely
ncorporating the tumor cell state variable would not achieve stability,
s there is no presence of control inputs in its derivative. As a result, it
s more fitting to utilize effector cell terms to attain the desired value.
he candidate function is selected as

(𝐱) = 𝜇1𝑇 (𝑡)
2 + 𝑇 (𝑡)(𝐸𝑣 − 𝐸(𝑡)) + (𝐸𝑣 − 𝐸(𝑡))2

where 𝐸𝑣 serves as the desired parameter for the effector cells to
achieve as the tumor cells decrease to a minimum value by minimizing
the difference between them. The resulting binomial expansion is pos-
itive, and the set of stable controllers is determined by employing CLF
by Eq. (13).

The stabilization outcomes were achieved by applying QP in (15),
without reference input or related constraints, over a specific time
horizon. Investigating this result enables one to perceive the potential
of the CLF response alone, and it could prove useful in distinguishing
7

variations in subsequent results. It is important to note that the value
assigned to the particular function and parameter, 𝜆 and 𝑝, respectively,
can considerably impact the resulting outcomes. In the study of func-
tion class , it is deemed 𝜆

(

𝑉 (𝐱)
)

= 𝜆𝑉 (𝐱), and a suitable coefficient
must be chosen. It is important to note that choosing a small value

or both 𝜆 and 𝑝 simultaneously may fail to achieve stability objectives.
onversely, selecting significant values for both parameters may lead
o non-smooth control input. Therefore, a trade-off between the two
s necessary, where a large value for one parameter requires a small
alue for the other. It is important to consider that selecting a small
alue of p results in an actively relaxed CLF in the QP, which may not
e suitable when dealing with several constraints. In light of this, it is
ecommended to choose a small value for 𝜆 and a large value for 𝑝.

The control input outcomes are depicted by selecting 𝜆 = 1 and 𝑝 =
00 in parts (c) and (d) of Fig. 4. The value of 𝑢1(𝑡) changes smoothly,
nd 𝑢2(𝑡) takes small values, and the changes are reasonable due to
he time scale being a day. It should be noted that these outcomes
re situated in a lower range than optimal drug use results. These
ontrol input outcomes bring about the growth of cells shown in parts
a–c) of Fig. 5. The changes of the effector cells and tumor cells are
imilar to optimal responses until optimal time; however, the values
f tumor cells do not reach zero but have a small final volume. The
L2 concentration does not increase following the infusion rate 𝑢2(𝑡)
ompared to optimal response. Consequently, the rate 𝑢2(𝑡) manifests

the effect of changing in limited ranges on the state variable 𝑈𝑐2 (𝑡). The
ecreasing growth of 𝑢1(𝑡) on day 40 to about 50 also shows its effect
n 𝑈𝑐1 (𝑡). Considering that the concentration values of the first drug are
igher than the second drug, the effect of this decreasing growth on
oxicity is also evident, as seen in parts (d–f) of Fig. 5.

ptimality/safety investigation

So far, the study has found the optimal and stable response, but
he primary purpose of this study is to explore the safe response. As
reviously mentioned, this study is dedicated to prioritizing the safety
f this model (1)–(6) by conducting a thorough analysis of its toxicity
evels. Our approach to addressing this matter involves an examination
rom two standpoints. The level of toxicity is directly related to the
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oncentration of drugs, with the first concentration having a more
ignificant impact due to its higher volume consumption. Thus, the con-
entration of the first drug is limited in the first standpoint. Assuming
hat the value of 𝑈𝑐1 (𝑡) must not exceed 𝑈𝑐1max

, then the CBF is selected
s follows,

(𝐱) =
(

𝑈𝑐1max
− 𝑈𝑐1 (𝑡)

)2 ≥ 0.

The control safe set is obtained by selecting the proper extended
lass , which is considered as 𝛼(.) = 𝛼1ℎ(𝐱) in this case by Eq. (14).
n order to effectively enforce hard constraints during unification, it
s crucial to select the appropriate parameter carefully. Given the pres-
nce of stability and safety constraints, it is advised that this parameter
e even stricter than the parameter 𝜆, which can be achieved using a
maller value. The second standpoint entails a direct consideration of
oxicity constraints. By selecting the maximum value 𝑇𝑥max

, the simple
unction ℎ(𝐱) is chosen as follows,

(𝐱) =
(

𝑇𝑥(𝑡) − 𝑇𝑥max

)2 ≥ 0.

fter analyzing this function, it has become evident that no discernible
ontrol input is present. However, upon further examination of the
econd derivative, it is apparent that control input is present, indi-
ating that the function has a relative degree of two. So according
o the HOCBF definition and the sequence function 𝜑𝑖(⋅), Eq. (18) is
etermined as

sup
∈

[𝐿2
𝑓ℎ(𝐱) + 𝐿𝑔𝐿𝑓ℎ(𝐱)𝐮 + 𝜈1

(

𝑇𝑥(𝑡) − 𝑇𝑥max

)2 + 𝜈2𝑇𝑥(𝑡)] ≥ 0.

In the preceding stages, the reference control input and stability
onstraints were precisely delineated, and each CBF and HOCBF func-
ion has been specified at this point. Therefore, the requirements for
chieving a safe and optimal response are provided in which the QP
nifies the constraints by using the formulations (15) and (19) for
BF and HOCBF, respectively. The outcomes of this unification are
cquired according to the optimal time horizontal, where 𝑡𝑓 < 80
llustrates the unified process’s efficacy in attaining optimal results
ithin a designated time, as illustrated in the Figs. 5, 4, and 6. Upon
xamination of the CBF control inputs in Fig. 4, it is evident that
he lack of limitations on the second input leads to an infusion rate
hat closely resembles the optimal response. This is manifested in the
lterations observed in the concentration of IL2 and the second drug,
hich are influenced by the second input, see parts (c) and (e) in Fig. 5.

In the beginning, the first control input is set to the highest possible
alue until the concentration of the first drug reaches its peak; then, the
nput value decreases, as shown in part (d) of Fig. 5 and parts (e) and
f) of Fig. 4. Once the drug concentration reaches its maximum value,
he CBF value drops to zero and remains at zero as long as it stays at
he safe set, as depicted in Fig. 6. Due to the reduction and strictness
f this constraint, the number of tumor cells has decreased below the
ptimal level. However, the final count is around a third of the initial,
8

d

hich is acceptable. Additionally, the number of effector cells is still
ithin the appropriate range. See parts (a) and (b) of Fig. 5.

It is clear that the toxicity level can be restricted by binding the
rug concentration. Alternatively, a specific constraint can be set on the
oxicity level directly. However, selecting the appropriate function ℎ(𝐱)
ecomes more complex when the relative degree is greater than one.
he results are also displayed in the figures with the proper parameter
election to obtain a set of appropriate responses. The condition has
ractical implications that affect both control inputs. As illustrated in
arts (e) and (f) of Fig. 4, the infusion rate of the second drug remains
lmost zero, except for the initial days. The first drug shows exponential
rowth with lower amounts than in other cases.

These control inputs effectively enforce the safety condition. As the
tate 𝑇𝑥(𝐱) approaches its maximum threshold value 𝑇𝑥max

, the control
unction ℎ(𝐱) progressively diminishes towards zero, depicted in Fig. 6.
ased on the state variable changes depicted in Fig. 5, the current
dministration has resulted in the tumor cell volume with only half
he initial value remaining. However, there has been an increase in
he number of effector cells, which now exceeds the initial value. After
onsidering both variables, the result can be considered satisfactory.

. Conclusion and discussion

In this study, the safe treatment was addressed in the model by im-
lementing the control barrier function method. The examined model
s a combination of the Kirschner–Panetta immunotherapy model and
he dynamics of drug toxicity, including drug concentration and level of
oxicity. This combination has the potential to quantify and restrict the
oxicity of medications in order to guarantee safer treatment. Drug con-
entration is comprised of the drug rate, a control input, and the rate
t which the concentration decays. Toxicity level is also determined
hrough the summation of drug concentrations, their corresponding im-
act coefficients, and a degradation term associated with toxicity. The
irschner–Panetta model for association toxicity has been established
s an adequate foundation for investigation.

Achievement of the final response by using this method was consid-
red in three steps. First, the optimal control was obtained by specifying
he simple performance index and constraints using PMP, which pro-
ided the reference input for the following steps. Next, the CLF was
sed to provide stability concurrently with safety in administration,
hich was brought about by reducing the volume of tumor cells. On the
ther hand, according to the formulation of it, which is linear and affine
oncerning the control input, it is possible to unify different constraints
f stability and safety by using QP.

The examination of safety was approached from two standpoints:
irstly, the constraint placed on the concentration of drugs, and sec-
ndly, the constraint placed on the level of toxicity. Based on the system

ynamic, it can be inferred that the toxicity level is also limited when
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the drug concentration is kept within limits. Safety is achieved through
CBF with a relative degree of one. Choosing an appropriate function
with a relative degree of one makes it easier to obtain a suitable set
of responses with less difficulty. The next point was to directly limit
the toxicity level, which leads to choosing a function with a relative
degree greater than one, also known as HOCBF. However, this can
make selecting the proper function more difficult and result in a more
conservative response.

The current study utilized a widely accepted model in the field, but
it may not accurately represent the study population or medications
being investigated. Therefore, the integration of clinical data holds
promise for furnishing a more nuanced and dependable response in
subsequent research endeavors. In this regard, it should be mentioned
that the model has been evaluated based on precise parameters and
measurable variables. So, future research could benefit from investi-
gating models with uncertainty using a robust control barrier function
strategy and observable filters such as the Kalman filter.

Modifying the boundary on variables or coefficients of controllers
under a particular drug can also add greater realism. Prospective in-
vestigations are encouraged to direct attention towards the formulation
of algorithms for the most suitable HOCBF (or CBF), thereby diversify-
ing the array of available options. The continuous-time approach for
obtaining drug rate results in each step is recommended over previous
studies that relied on piecewise assumptions, as it increases efficiency.
However, implementing this approach in real-world scenarios requires
prerequisite medical equipment. Despite this, it presents an opportunity
to advance the field.
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