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Transcriptome level expression data connected to the spatial organization of the cells and molecules
would allow a comprehensive understanding of how gene expression is connected to the structure and
function in the biological systems. The spatial transcriptomics platforms may soon provide such informa-
tion. However, the current platforms still lack spatial resolution, capture only a fraction of the transcrip-
tome heterogeneity, or lack the throughput for large scale studies. The strengths and weaknesses in
current ST platforms and computational solutions need to be taken into account when planning spatial
transcriptomics studies.
The basis of the computational ST analysis is the solutions developed for single-cell RNA-sequencing

data, with advancements taking into account the spatial connectedness of the transcriptomes. The
scRNA-seq tools are modified for spatial transcriptomics or new solutions like deep learning-based joint
analysis of expression, spatial, and image data are developed to extract biological information in the spa-
tially resolved transcriptomes. The computational ST analysis can reveal remarkable biological insights
into spatial patterns of gene expression, cell signaling, and cell type variations in connection with cell
type-specific signaling and organization in complex tissues.
This review covers the topics that help choosing the platform and computational solutions for spatial

transcriptomics research. We focus on the currently available ST methods and platforms and their
strengths and limitations. Of the computational solutions, we provide an overview of the analysis steps
and tools used in the ST data analysis. The compatibility with the data types and the tools provided by the
current ST analysis frameworks are summarized.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

To decipher the functions of the cellular systems and organs in
multicellular organisms, one needs detailed information about the
components and interactions between them at every scale level. In
a homeostatic state, the cellular systems are in dynamic equilib-
rium. However, perturbations like immunological challenges (e.g.
pathogens, autoimmune reactions), can flip the system into differ-
ent states. While single-cell RNA-sequencing (scRNA-seq) provides
detailed information about the gene expression profiles and their
heterogeneity in dissociated cells, spatial transcriptomics (ST) links
the transcriptomes to their cellular locations providing spatial con-
text. This information can be used to lay out a map of the possible
connections between cells, factors affecting the cells (e.g. signaling
molecules, available nutritional resources, or pathogens), and con-
nections to the other systems or organs at the organism level.
These spatial relationships can reveal how the different cell types
and genetic programs are interconnected with each other and with
the surrounding environment. Thus, various ST methods integrated
with the other spatial and non-spatial methods are currently pav-
ing the way to a deep understanding of the structure and function
of the living organisms at the system level.

Spatial transcriptomics derives from tissue in situ hybridization
techniques detecting single mRNA species with DNA-oligo probes.
In current highly multiplexed in situ hybridization ST methods,
thousands of mRNA species are detected simultaneously by using
clever probing strategies. Currently, the widest probe sets detect
expressions of over 18 000 known protein-coding genes, and the
mRNA capture and sequencing-based methods can detect different
mRNA species in an untrageted manner (including, but not limited
to mRNAs, splice variants, lncRNAs, antisense RNAs, and structural
RNAs). The transcriptomes can be analyzed from different sample
types, including slices cut from freshly frozen and formalin-fixed,
paraffin-embedded (FFPE) tissues. Each ST platform has its
strengths and limitations, and therefore it is important to consider
which platforms or their combinations are best for given research.
The history of the spatial transcriptomics development is reviewed
for example in Moses et al. 2022 [1] and Asp et al. [2].

The spatial transcriptomics methods can be categorized into
three main approaches on the basis of how they capture and store
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spatial information: in situ methods, spatial DNA-barcoding, and
regional selection spatial transcriptomics methods (Table 1). In situ
methods contain both the spatial information and the identity of
the transcripts in the acquired images of the samples labeled with
fluorescent probes [3,4] or displaying in situ sequencing (ISS) sig-
nals [5,6]. These methods provide a location for each individual
detected transcript at the single-molecule level, and the expression
profiles at the subcellular, cellular, or regional levels are decoded
from the collected image data (Fig. 1A).

Spatial barcoding (DNA-barcoding) is a collection of methods
that use mRNA capturing barcoded DNA-oligos to incorporate the
positional information in a DNA format with the transcript
sequences (Fig. 1B-C). The methods are based on DNA-oligos with
known barcoded capture regions that form either a solid surface
spot array or bead array to capture the mRNAs diffused from the
tissue sample [7–10]. Alternatively, the barcoded capture-oligos
are injected on the sample from arrayed inlets in a custom chip
[10,11]. The positional information as DNA-barcodes is attached
to the copies of the transcripts in an enzymatic reaction on the
mRNA capture sites. The spatial origins of transcripts are resolved
from the transcript-spatial-barcode DNA-libraries by sequencing
and mapping the transcripts to the spot-level spatial coordinates
with the DNA-barcodes. The size and shape of the identifiable cap-
ture region depend on the used methodology and the smallest
spots in high-density arrays capture transcripts at subcellular res-
olution (Fig. 1B). However, these are not yet generally available,
and the spots in current commonly used spatial barcode arrays
cover the area of more than one cell (Fig. 1C). The transcripts and
cell profiles at spots can be visualized on the image of the sample
as a sample/spot image (tissue image). Computational methods are
then used to resolve spot or region-level cell compositions and sin-
gle or subcellular level transcriptomes from the data.

Alternative to spot spatial barcoding are regional illumination
and collection methods (Fig. 1D). Region selection barcoding is
accomplished by the use of photoactivatable markers and regional
photo-activation with laser illumination. In different approaches,
the transcripts or cells on the target regions are tagged with
barcode-oligos (TIVA tag, Zip-Seq) [12,13], which requires sequen-
tial labeling of each targeted region and, therefore, strongly limits
the feasible number of samples. On the other hand, these methods



Table 1
Spatial transcriptomics methods.

Method Principle Spatial resolution Data level Coverage Capture efficiency Reference

In situ ST methods
FISSEQ RT,ISS single molecule subcellular untargeted 200 UMI/cell [5]
STARmap PL-lig,ISS single molecule subcellular 1 k 2000 UMI/cell [6]
BOLORAMIS PL-lig,ISS/FISH single molecule subcellular 96 11%-35% [18]
MERFISH sequ-smFISH single molecule subcellular 10 k 60–99% [19,20]
seqFISH+ sequ-smFISH single molecule subcellular 10 k 49 % [4]
osmFISH sequ-smFISH single molecule subcellular 33 NA [21]
CosMx SMI sequ-smFISH single molecule subcellular 1 k 96 % [22]
Spatial barcoding ST methods
Visium spatial barcoding 100 lm cell groups untargeted >6,9% [23]
DBiT-seq spatial barcoding 10–25 lm cell level untargeted 15.5 % [10,11]
Slide-seq2 spatial barcoding 10 lm cell level untargeted 1/2 scRNA-seq [8]
HDST spatial barcoding 2 lm subcellular untargeted 1,30 % [9]
Pixel-seq spatial barcoding 1 lm subcellular untargeted �scRNA-seq [24]
Seq-Scope spatial barcoding 0.6 lm subcellular untargeted �scRNA-seq [7]
Stereo-seq spatial barcoding 0.6 lm subcellular untargeted �scRNA-seq [25]
Regional selection ST methods
TIVA tag photoactivatable tag ROI flexible untargeted na [12]
GeoMx DSP photo-release BC ROI flexible 18 k na [14]
LCM-seq physical separation ROI flexible untargeted na [16,17]
ZipSeq photoactivatable cell-BC ROI single cell untargeted scRNA-seq [13]
scRNA-seq physical separation NA single cell untargeted 10–40% [26]

Abbreviations in Table 1: RT; Reverse transcription, ISS;in situsequencing, lig; ligation, PL; padlock.

Fig. 1. Spatial transcriptomics methods produce data at different spatial resolu-
tions. A) In situ ST methods detect selected targets at single-molecule resolution in
their original location. Spatial information at molecular complex level localization is
available. B) High-resolution spatial barcode arrays capture transcripts at subcel-
lular resolution allowing cell organelle level localization. C) Lower resolution
barcode arrays cover the area of more than one cell. Cell type analysis requires spot
deconvolution methods. D) Regional illumination and collection methods offer
flexibility in the target selection. The selected area can be any shape based on
marker thresholding or the use of regular shapes (red or violet outline).
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can be used even with living cells and can potentially be used to
label cellular states differing in time in addition to location.
Another method that uses light activation is the commercially
available GeoMx system, which uses RNA-hybridization probe sets
to detect the target RNAs. In GeoMx, the light is used to release the
photocleavable indexing oligonucleotides from the probed samples
in a cell-, marker-, or region-specific manner [14]. The target
region can be of any shape and even discontinuous (Fig. 1D). The
released probe indexing oligonucleotides are collected after each
illumination and enzymatically associated with DNA-barcodes to
indicate the collection set and through that the original region of
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the transcripts in the sample. The laser capture microdissection
(LCM) has also been used to capture the individual cells or regions
from the samples for LCM coupled RNA-sequencing (LCM-seq)
[15,16]. Similar to GeoMx, transcripts from each collected cell or
cell group are barcoded before sequencing or they can be processed
as independent sequencing libraries [17].

Already now, the insights gleaned with the developing ST plat-
forms have shown the value of spatial transcriptomics in learning
detailed information about the heterogeneity of the cells and inter-
connectedness of the transcriptomes in multicellular systems.
However, the availability of a myriad of platforms to produce large
and complex omics datasets raise the requirement of advanced
computational tools and skills needed to analyze the data. Careful
experimental design and data analysis planning can streamline the
production of high-quality findings. The recent reviews on spatial
transcriptomics and multiomics [1,27–32] cover the history, tech-
nology, and advances in the analysis in more detail; this review
focuses on covering ways to help in choosing the suitable platform
and analysis framework for spatial transcriptomics studies. We
focus on the currently widely (and commercially) available plat-
forms, their limitations, the available data analysis tools, and their
suitability for the collection of different types of data. The state-of-
the-art systems, not commercially available, are mentioned when
appropriate and when expected to improve the methodology in
the near future. The current computational ST analysis steps and
frameworks are summarized, supplemented with optional stan-
dalone analysis options.
2. In situ spatial transcriptomics methods

2.1. Strengths and limitations

The sequential single-molecule fluorescent in situ hybridization
(sequ-smFISH) and the in situ sequencing (ISS) offer the highest
spatial resolution among the ST methods by detecting individual
transcript molecules in the samples at the optical resolution of
the microscope system (Table 1, Fig. 1A). Of the ST methods, the
sequ-smFISH methods have also the highest sensitivity, as they
can detect transcripts with over 80% efficiency even when thou-
sands of RNAs are targeted [3,6,33–35]. However, the in situ ST
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methods are not quite yet detecting different mRNAs at transcrip-
tome coverage level like the spatial barcoding ST methods based on
polyA targeting mRNA capture.

A particular strength of in situ ST methods is their exceptional
resolution and capture efficiency. The high capture efficiency
allows reliable detection of even very lowly expressed transcripts.
A targeted design of probe sets focusing on, for example, signaling
pathways or transcription and genomic imprinting regulation has
proven a great strategy with in situ ST. A prime example of this is
a study of the early T cell progenitor development [36], in which
Zhou et al. designed a probe set to analyze the expression of other-
wise elusive transcription factors and master regulators expressed
in progenitor T cells. In combination with a scRNA-seq, the study
was able to provide insight into the synchronized and asynchro-
nized developmental patterns in gene expressions during the early
T cell development. The study also elegantly demonstrated the fea-
sibility of sequential use of seqFISH, smFISH, and immunostaining
on the same sample. However, it should be noted that the signals
from transcripts degrade each FISH cycle [21] setting limits to
the number of successive probing rounds and sets the preferential
probing order to start from the weakest expressing transcripts.
Indicating the power of integration of in situ ST and scRNA-seq
methods, seqFISH was used to identify the exact location of
scRNA-seq characterized cell types in mouse organogenesis [37].
The Brain Initiative Cell Census Network (BICCN), a collaborative
effort to produce reference brain transcriptome atlases is showing
in situ ST use in a very large-scale cell mapping project [38].

MERFISH and seqFISH have a single-molecule level resolution
which allows analysis of subcellular transcript distributions at
the single-cell level adding on top of single-cell transcriptome pro-
filing. The spatial distribution can be used to detect single-cell level
features like mRNA targeting, cell polarization, and localization of
specific molecular complexes [4]. For functional single-cell tran-
scriptome analysis, the nuclear to cytoplasmic ratio of immature
and mature transcripts can be used to infer the regulatory states
of genes at the single-cell level through the so-called RNA velocity
analysis [33]. RNA velocity data can be used, for example, to con-
struct detailed transcript regulatory profiles and to organize cells
to pseudotime trajectories to analyze, for example, cell cycle pro-
gression [33]. Showing the use of sequential smFISH at the molec-
ular complex level, Takei et al. resolved the functional architecture
of cell nucleus in detail by adapting seqFISH+ method to co-detect
localization of 3660 chromosomal loci with 17 functional chromo-
somal markers, and 70 selected mRNA species [39]. The study indi-
cated a good general correlation between gene activity, localization
to different functional nuclear zones, and association of functional
chromosomal markers. However, at the single-cell level discordant
localization of individual genes with active nuclear zones and the
actual transcriptional activity of the genes suggested slower tem-
poral dynamics for a chromosomal spatial organization than for
the gene activity regulation.

A major limitation with the in situ ST methods is that the optical
crowding poses a problem with very high-plexed probe sets as the
detection efficiency degrades along with the number of the target
mRNAs. This technological limitation is particularly noticeable
with ISS methods as the molecular amplification used for signal
enhancement increases the optical size of the targets [5,6,18].
Detection of transcriptome level number of targets would require
resolving up to hundreds of thousands of transcripts per cell. The
current state-of-the-art seqFISH+ with 60 pseudocolor probe set
combined with a clever transcript encoding scheme, optimized
sequential probing, and adoption of confocal microscope platform
for detection allowed detection of over 30 000 individual tran-
scripts with �10 000 genes in cultured fibroblasts [4].

The number of simultaneously detected RNA targets in in situ ST
is not limited only by the physical limitations set by the used
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microscopes. The sensitivity of smFISH is based on the number of
in situ hybridization probes (ISH) targeting a given gene. For exam-
ple, seqFISH+ needs the target RNA length to be at least 1 kb to
accommodate the in situ hybridization probes for sensitive detec-
tion and encoding. This leaves out for example short mRNAs and
many other short RNA species including miRNAs from the target
repertoire. In MERFISH probes, the use of branched-DNA increased
the detection sensitivity of MERFISH technology, and it can now
detect even short 100–200 nucleotide long RNA targets with up
to 60% efficiency and long RNAs with almost perfect efficiency
[20]. This also allows the detection of a dramatically wider variety
of RNA species including mRNA alternative splice variants.
Remarkably, the increased sensitivity did not increase the optical
size of the fluorescent pixel and with adoption of expansion micro-
scope with more sensitive probes Xia et al. were able to measure
the expression of around ~10 000 different RNAs simultaneously
in cultured cells [33].

The ISS-based ST methods can detect very short RNA species,
and the recently published new padlock ligation (PL-lig) based
smFISH/ISS ST method BOLORAMIS can detect even miRNAs and
single point mutations in cellular RNAs [18]. The sensitivity and
specificity of BOLORAMIS and STARmap allow the detection of
even different alternative splice forms of transcripts. However,
the use of probes to cover transcripts in an untargeted manner is
not feasible due to the cost of probes and without a technological
leap in microscopy or probe design, the methodology is still limited
by the optical crowding. The reverse transcription capture-based
ISS methods [40,41] can detect RNA molecules in an untargeted
manner but due to very low capture efficiency, they detect only a
low number of transcripts per cell compared to other ST methods
(Table 1).

The in situ ST methods are limited also by the speed of the imag-
ing. In both ISS and sequential smFISH, the transcripts are identi-
fied by sequentially imaging fluorescence signals using a
microscope. Each cycle involves FISH probing or re-probing and
imaging steps. The speed of imaging of the multiple FISH cycles
with a high-resolution microscope is thus a bottleneck limiting
the sample and detection area throughput with the in situ ST meth-
ods. The use of 60 pseudocolours for encoding transcripts in seq-
FISH+ lowered the needed FISH cycles to four (with the included
error correction cycle) for theoretical detection of the expression
of up to 24 000 genes [4]. This methodological advancement short-
ened the sample processing time to 1/8th (imaging and hybridiza-
tion) from the original in seqFISH [34]. Commercial platforms with
automated liquid handling and imaging and with the use of opti-
mized probe sets for in situ ST are expected to improve the
throughput and increase the availability of in situ ST for
researchers.
2.2. Specific data processing steps with ST

Deriving cell-by-gene and cell-by-location matrices for ST anal-
ysis from the large set of raw in situ microscopy image data takes
several computational steps. For example, in a 69-bit 10 000 gene
MERFISH experiment, for each of 256 tiled fields of views (FOV), 23
rounds of three color fluorescent images were taken at six different
focal z-planes with an additional single image at fiducial bead z-
plane [33]. This is 111 872 single-channel microscope images to
process into a form that can be used to extract 69-bit transcript
codes and locations to construct cellular transcriptome profiles.
This section covers the in situ ST-specific data analysis steps from
the raw image data to the spatial cell type pattern analysis. The
more advanced analysis steps commonly used with many ST data-
set types are covered in Section 5.
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2.2.1. Preprocessing and spot registration
The probed transcripts show in raw images as signal spots that,

due to limitations in automated microscopy imaging and due to
chromatic aberrations, are not necessarily in the same position
(in register) in the sequentially imaged FOVs (Fig. 2A). Therefore,
the images in each FOV are aligned using cross-correlation of the
fiducial marker peak signals or nuclear stains (Fig. 2B) [4,6,42].
Usually, the signal aligning and enhancing steps also include chro-
matic aberration and illumination correction with microscope
setup specific control images, image deconvolution, and back-
ground subtraction [43]. For a composite representation of the
whole imaged sample, the single or multi-channel FOVs can be
stitched together with a process guided by the overlaps in the
FOV tiles [28,44].

In aligned images, each positive spot/pixel/voxel is a potential
transcript, with a location in the pixel coordinate system and tran-
script identifier encoded by the levels of the sequential image
channels. The transcript spots are called by finding the local max-
ima of the images and by selecting the values that are above a cer-
tain pixel threshold [45]. The barcodes are then extracted as per
location signal strings for decoding (Fig. 2D) [3,42]. Details of the
above steps and the barcode decoding with error correction and
spot quality control (QC) heavily depend on the used microscope
setup and in situ ST method (MERFISH, seqFISH or ISS). Readers
interested in these details are referred to the procedures explained
in the original research referenced in Table 1. The decoded tran-
scripts are arranged into a gene-by-location matrix containing
the identifiers and 2D or 3D location of every identified transcript
in the used coordinate system.
Fig. 2. Preprocessing of raw in situ image data. A) Image alignment is required since
the corresponding signal spots in raw images from sequential probing and imaging
cycles (img1, img2, img3) are not in the register in shared Euclidean space. To align
the spots, the images are moved and rotated in relation to each other. B) In the
aligned sequential data, the corresponding signal spots are in the register in the
whole image stack, and they form the sequ-FISH barcode. C) Cell segmentation
assigns every location in the image to defined cells, nuclei, or background.
Transcripts are assigned to cells based on their spatial coordinates in relation to
cell mask coordinates. Cells are also assigned with spatial coordinates (X, Y) in the
same Euclidean space. D) Connected strings of signal spots, which are called from
the image stack in panel B, are the barcodes to identify the transcript/gene at that
particular coordinate location (left). The gene identities are decoded from the
barcodes and counted into the cell with an overlapping coordinate location in the
cell to gene matrix (right).
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2.2.2. Spatial segmentation
To construct single-cell or other spatial unit transcript profiles

in the sample, segmentation and counting steps are performed to
assign the detected transcripts into desired functional spatial units.
Segmentation masks defining coordinates of the spatial units are
done by tracing the shapes of the targeted features from the
acquired images or algorithmically with the spatial distribution
of the transcripts (Fig. 2C). Reflecting the challenges in the segmen-
tation of different biological samples, several different computa-
tional methods and strategies have been developed for
segmentation. These start from simple manual segmentation by
marker thresholding and end with various automated machine
learning utilizing strategies [43]. In a standard cell segmentation,
the specific markers are used to divide the FOV area into nuclear,
cytoplasmic, and empty regions. The individual cells are delineated
by selecting the nuclei of each cell as a center and then propagating
the cytoplasmic area around the nuclei. Different computational
methods are employed to estimate the extent and shape of cell
boundaries mathematically or by using marker signals or both.
The various machine learning-based segmentation tools, like U-
net [46], DeepCell [47], Mesmer [48], and CellPose [49], use ST
images and pre- or post-stain marker data to predict spatial seg-
mentation [50]. In cases where only transcript signals are present,
the cell segmentation or segmentation-free cell transcriptome
identification relies on algorithms that use spatial transcript distri-
butions [51] or annotated transcript profiles are used in combina-
tion with the ST data to jointly segment and annotate the cell
types, as in the recent methods SSAM [51], Baysor [52], and JSTA
[53]. Finally, the identified transcripts within the spatial unit
regions are counted based on the segmentation masks to construct
the cell-by-gene and cell-by-location matrices for ST data analysis
(Fig. 2D).

The image processing, segmentation, decoding, and counting
steps can be performed by scripting with Python, R, or MatLab
image processing packages or modules. The Starfish [54] and its
fork SMART-Q with multiomics capabilities collect python tools
and scripts for building pipelines to process images and get the
cell-by-gene and cell-by-location matrices from raw microscope
images of different in situ ST methods. Other options offering useful
functionalities for image processing, spot calling, and cell segmen-
tation include PySpots [53,55], Cellpose [49], and FISH-quant [56]
in python, and EBImage [57] and imager [58] in R. Of the complete
ST data analysis frameworks Squidpy [59] has cell and nuclei seg-
mentation capabilities available (Table 2).
3. Spatial barcoding methods

3.1. Strengths and limitations

Spatial barcoding ST methods are based on the limited diffusion
of the target RNA molecules and their capture by the position-
indicating barcoded DNA-oligos (Fig. 1B-C). Compared to in situ
ST methods, spatial barcoding ST excels in availability, simplicity,
and untargeted mRNA capture1. Nonetheless, it is behind in resolu-
tion and capture efficiency compared to many in situ ST methods
(Table 1). Both the resolution and capture efficiency in spatial bar-
coding ST methods have increased gradually since early spot arrays
[23] and custom microarrays [63], in which the center-to-center dis-
tance was in the 200 to 100-micron range. In these first-generation
arrays, each ‘‘spot” captured transcripts from multiple cells, which
complicated the cell and spatial data analysis.
1 New strategies are developed to widen the functional RNA species being captured
and sequenced in scRNA-seq analysis. [60–62].



Table 2
Spatial data analysis frameworks.

Package Giotto Seurat STUtility SPATA2 Squidpy scvi-tools stLearn GeoMx tools

Platforms R/Python R R R Python Python Python R
Input data ig,mt,lc ig,mt,lc ig,mt,lc ig,mt,lc ig,mt,lc mt,lc ig,mt,lc mt,lc
Datacontainer Giotto Seurat Seurat SPATA Adt,img Adt Adt S4
ST data types is,sb is,sb sb is,sb is,sb is,sb is,sb gmx
Spatial segmentation ��
Nuclei count �
QC and preprocessing � � � � � � � �
Descriptive statistics � � � � � � � �
Dimensionality reduction ��� ������� �������� ��� ��� ���� ����� ��
Cell/spot clustering ���� ����� ����� ��� ���� ���� �� �
Data visualizations � � � � � � � �
Factor analysis � �
Differential expression � � � � � � � �
Cell type annotation � �
Deconvolution �� � � � ��� �
Reverse deconvolution �
Cell type signature inference � �
Spatial representations ��� � � � �� � �
Genes with spatial patterns ���� � � � �
Spatial domains �� � �
Cell neighborhood analysis � �
Neighbor dependent genes �
Cell–cell interaction � � �
Ligand-receptor analysis � � �
Intergroup gene expression � �
GSEA and GSVA �
CNV estimation �
Spatial visualization � � �� � � � �
Interactive visualization � � � � � �
Interactive annotation � � �
Image analysis � � �
Features extraction images �
Deep learning analysis � � �
Cell trajectory analysis � �

Note: Each dot represents single method for the task. Squidpy and scvi are build on top of Scanpy. Table 2 abbreviations see 2.
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Recently, the spatial resolution in spatial barcoding arrays has
increased to a level of single-cell size and beyond. In Slide-seq, this
was obtained by micro ball-arrays [8,64] and, in DbiT-Seq, by chips
with microchannels injecting the spatial barcode oligos [10]. The
spatial barcoding reached the subcellular resolution with high-
definition spatial transcriptomics (HDST) oligo arrays [9]. The high-
est resolution and the best capture efficiencies have so far been
achieved with Seq-Scope, Stereo-Seq, and Pixel-seq [7,24,25].
These recent high-resolution and high-density DNA-oligo spatial
barcoding arrays not only increased the resolution to the sub-
micron level, but the mRNA capture efficiency has also improved
to a comparable level with the droplet-based scRNA-seq methods
(Table 1). This allows robust untargeted detection of medium
expression level genes at the single-cell level and even between
the cellular compartments.

The HDST and Seq-Scope studies demonstrated that the high-
resolution arrays can locate even rare cell types and resolve the
gene expression differences at subcellular resolution, which makes
for example the nuclear-to-cytoplasmic type of RNA-velocity of
analysis feasible for spatial barcode ST methods [9,25]. The pre-
prints showcase the capabilities and limitations of Stereo-Seq with
tumor leading-edge samples [65] and high-resolution spatial tran-
scriptome atlases produced from regenerating axolotl brains and
the developmental stages of the mouse, zebrafish, and fruit fly
embryos [7,66–68]. Already these detailed transcriptome atlases,
after being released into the public domain, could provide a rich
resource of transcriptomic data to analyze the developmental pro-
cess and brain regeneration of multicellular organisms. It will also
be a great resource for testing and developing bioinformatics, data
storage, and data handling methods for the analysis of such large
spatial transcriptomics datasets.
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The high-density spatial barcoding arrays are a big develop-
mental step towards a universal method in ST, even though the
Seq-Scope, Stereo-seq, Pixel-seq, HDST, and DbiT-Seq are still
behind in resolution and capture efficiency compared to the
in situ ST methods. However, wide adoption of high-density spatial
barcoding arrays may be bottlenecked by the array production and
array indexing as these require special techniques like customized
use of Illumina sequencer [7], custom microchip production [10],
or highly optimized arraying of oligos on to a polyacrylamide gel
matrix [24]. Even though the state-of-the-art spatial barcoding
methods are not yet widely available, they have shown that the
fast pace in the development of ST is still going on strong and that
by optimizing spatial barcoding, it is possible to acquire untargeted
high gene coverage subcellular resolution data.

The latest high-density spatial barcode arrays are not yet gener-
ally available for researchers, and hence only pioneering studies
have been published. Nonetheless, the spatial barcoding methods
with lower resolution arrays have been available for some time
and several studies have indicated their power for biological dis-
coveries. The lower resolution spatial barcoding methods have
been successfully used to dissect regional gene expression profiles
in homeostatic tissues and developmental settings. For example,
Slide-seq was used to produce an ST atlas of the mouse testis to
decipher the complex organization of mammalian spermatogene-
sis at an unprecedented level [69]. The spatial transcriptomics with
different pattern detection algorithms has allowed a detailed char-
acterization of the normal gut functions and the functions in
inflammatory disease [70,71]. The spatial transcriptomics has also
revealed many novel features in various tumor samples [63,72–
75]. These studies have, for example, revealed regional enrichment
patterns for cancer cell subtypes and co-enrichments of cancer
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cells with different subtypes of non-malignant cells [63]. These
regional gene expression patterns in turn help to identify candi-
date signaling pathways and mechanistic interactions between
cancer, stromal, and immune cells and to identify prognostic mark-
ers [76,77].

3.2. Specific data processing steps with spatial barcoding ST

In spatial barcoding, the transcript and the location data are in a
DNA format. The sequencing step converts this into a digital format
that can be processed computationally. This section covers the spa-
tial barcoding-specific data analysis steps from the raw sequence
data to the spatial cell type pattern analysis. The more advanced
analysis steps commonly used with many ST dataset types are cov-
ered in Section 5.

3.2.1. Preprocessing and location matrix generation
The preprocessing steps of the spatial barcoding raw sequence

data are relatively straightforward and similar to scRNA-seq data.
In spatial transcriptomics, instead of a gene to droplet barcode
matrix, a gene to spot matrix is generated. The information to build
the gene expression (transcript sequences) to spot position (spatial
barcodes) matrix is in the paired-end sequencing reads. To identify
the expressed genes, the sequences are aligned against an anno-
tated reference genome using, for instance, STAR aligner [78] or
Kallisto pseudo-aligner [79]. A second alignment step against a
decoy genome can be used to filter out unwanted contaminating
sequences [80]. Each sequence pair also contains the spatial bar-
code sequence and a unique molecular identifier (UMI), which is
used to remove the PCR copies of the captured transcripts arising
during sequencing library preparation. The expression levels of
the genes are counted from the deduplicated, aligned, and
barcode-associated reads, and a spatial barcode-by-gene matrix
is generated (analogous to Fig. 2D). STARsolo [81], bustools [79],
ST Pipeline [80], Spaceranger count, and Slide-seq/drop-seq tools
[69,82] are commonly used solutions to produce the spatial
barcode-by-gene matrix.

The spatial barcode-by-location data connects each transcript
to a location coordinate in the sample. The coordinates are used
to construct spatial relationship graphs and grids for the spot or
cell interconnection analyses, assign transcripts to cells after seg-
mentation with subcellular resolution data, and for visualizations
and joint analyses of the spots and different features on the asso-
ciated tissue images. For instance, in the Visium platform, the bar-
code sequences and their positions in the spatial grid are fixed and
the Spaceranger count creates a barcode-by-location matrix for
spatial analyses. In spatial barcode methods with stochastic bar-
code spot locations, the spot barcode-by-location matrix is con-
structed in method-specific array sequencing and indexing step
[7–9,24,25]. To visualize or jointly analyze transcripts with tissue
images, the barcode coordinate system needs to be aligned with
the one used with the tissue images. The Spaceranger count detects
the spot positions (fiducial detection) from the bright-field image
and creates data for the spot-image alignment. The spatial
barcode-spot alignment with the images can also be done interac-
tively [7,9] or by using custom scripts [8].

3.2.2. Estimation of the spot-wise cell type compositions
The spatial barcoding will locate the transcripts at multi- or

subcellular spatial resolution. In multicellular resolution spatial
barcoding, each spot can contain transcripts from multiple cells.
The cell compositions and regional enrichment of different cell
types and cell stages in the spots can be resolved with computa-
tional deconvolution, mapping, enrichment, and data-integration-
based methods [83,84]. For instance, SPOTlight [85] uses
non-negative matrix factorization (NNMF) and SpatialDecon [86]
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log-normal regression for deconvolution of the transcriptomics
data, whereas Cell2Location is based on a Bayesian model [87]
and Tangram is a deep learning framework to resolve cell types.
The ST-framework Giotto (discussed in section 5.1.) uses
enrichment-based options for cell type composition analysis [88]
and Seurat anchor-based integration [89]. The spot compositions
are reported as cell type proportions or probabilities of occurrence
in the spot. The latest deconvolution methods can also report the
estimated transcriptomes of the identified cell types. Most decon-
volution methods use annotated reference transcriptome profiles
derived from scRNA-seq or bulk RNA-seq datasets, making the
accuracy and resolution of the cell type identification highly
dependent on the compatibility of the used reference profiles with
the cells in the target sample. However, the recently published
conditional autoregressive-based deconvolution (CARD) [90] and
the latent Dirichlet allocation based STdeconvolve [91] offer
reference-free deconvolution methods, which is useful when opti-
mal reference scRNA-seq profiles are not available.

3.2.3. Spatial segmentation
The objective of segmentation is to construct masks to assign

the detected transcripts to individual cells, nuclei, or larger objects.
The segmentation with spatial barcoding data is essentially the
same process as with in situ based ST methods and is based on
the stained image data of the target tissue in combination with
the actual gene signals. Usually, ST data have associated image data
with hematoxylin and eosin (H&E) staining, indicating the location
of nuclei and selected structural features. In some cases, fluores-
cent staining for different cellular markers is available to guide
the segmentation. Despite intense development, the segmentation
of tissues with densely packed cells is still one of the most chal-
lenging steps in the analysis of spatial data. The decisions for seg-
mentation strategy and methods depend heavily on the sample
type, the platform used, and the available data to guide the seg-
mentation. Several methods varying from manual assignment to
statistical, supervised, semi-supervised, and unsupervised machine
learning applications have been developed for the task with other
data types (see in situ ST data segmentation). So far, the high-
resolution spatial barcoding transcriptomics has not been widely
available, and a simple grid segmentation has been used in some
of the studies [7,65]. We anticipate the development of deep learn-
ing models for feature segmentation and cell type identification
with the large spatial barcoding ST datasets.
4. Regional selection spatial transcriptomics methods

Laser capture microdissection coupled with RNA-sequencing
(LCM-seq) and digital spatial profiling (DSP) are methods that
use flexible regions of interest (ROI) binning in spatial transcrip-
tomics [14–17]. Each selection bin contains transcripts from one
ROI and they are barcoded for backtracking of the location in the
sample. After sequencing and processing, the bins are used simi-
larly to the spots in spatial barcoding arrays, except for that the
regions can vary in size, shape, and can be discontinuous
(Fig. 1D). Depending on the researchers’ choices, each bin can con-
tain transcripts from one or more cells and the ROIs can be
selected, for example, to be homogenous in size and shape, cell
type, cell marker, or consist of a functional region in the sample
[14,92].

4.1. Strengths and limitations

Recently the DSP, under the commercial name GeoMx, has
gained popularity as a nearly whole transcriptome level ST method
with flexible ROI selection that works also with FFPE samples. In
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GeoMx, the samples are hybridized with analyte probes detecting
RNA or proteins, which upon laser illumination release their
oligonucleotide tags with the identifiers of the target transcripts
or proteins. The oligonucleotide tags are collected after each round
of illumination and enzymatically barcoded for the collection bin
identification. In LCM-seq the transcripts collected to each bin
are barcoded by using barcoded DNA-oligos in reverse transcrip-
tion reaction. In both methods, a DNA library containing the pooled
bins is sequenced and the transcript count-to-bin matrix is
resolved.

In GeoMx up to four fluorescent markers can be used to guide
the sampling or ROIs can be selected based on the physical proper-
ties of the sample like distance from the feature of interest and/or
by following the shape of the biological unit of interest. In LCM-seq
the choice of selection markers depends on the used LCM-seq
instrument. The strategies for ROI selection/sampling vary and
are decided by the researcher based on prior knowledge and suit-
ability for the research setting [14,92]. The flexible sampling allows
the development of complex sampling strategies including for
example selection of cell type-specific ROIs for profiling and then
use of these in deconvolution of the mixed cell ROIs in the same
sample. The available data analysis options are limited by the sam-
pling strategy, hence the markers and the cell pooling to bins at the
sampling phase should be carefully thought out before the exper-
imental phase [92].

The spatial resolution of the GeoMx and LCM-seq data is deter-
mined by the sampling plan. The ROIs can be as small as single
cells; however, the throughput in GeoMx and LCM-seq does not
allow single-cell analysis on a scale comparable to in situ or spatial
barcoding ST methods. GeoMx is also limited by the reliable quan-
tification of transcripts, which in DSP requires 20 to 300 cells per
ROI [14] and is thus below the current other ST methods. The tran-
script detection efficiency in LCM-seq depends on the sequencing
library generation method and can be at the highest on the level
with tube-based scRNA-seq. GeoMx does not offer untargeted
mRNA capture like LCM-seq and spatial barcoding ST. The largest
currently available pre-designed probe sets for GeoMx can detect
over 18,000 protein-coding genes with a possibility for customiza-
tion and co-detection of a number of protein targets. An advantage
of the GeoMx probing protocol is that it is minimally destructive,
and the tissue slides may be used for other applications like H&E
staining or immunohistochemistry for retrieving additional infor-
mation [14]. The GeoMx can shine in the analysis of sample cohorts
in which only a limited number of biological compartments or cell
types need to be sampled to answer the research questions. For
example, GeoMx DSP results have revealed spatial heterogeneity
in gene profiles in the host response to SARS-CoV-2 infection in
lung samples [93]. DSP has also been used to profile diabetic foot
ulcers [94], detect alterations in diabetic kidneys [95], and analyze
intra-tumor and inter-tumor heterogeneity in various tumor types
[96–99]. With the aid of deconvolution, GeoMx data was used to
estimate cell level heterogeneity of tumor-infiltrating lymphocytes
in different tumor microenvironments [86]. LCM-seq showed its
usability in a study where neurons were collected from different
regions of the brainstem and spinal cord for the identification of
genes protecting neurons from spinal muscular atrophy associated
cell death [100].

4.2. Specific data processing steps with regional selection ST

The cells or regions for analysis are usually pooled at the ROI
selection phase in GeoMx and LCM-seq either due to detection effi-
ciency or throughput limitations. Unless carefully sampled, the
ROIs will have cells in different stages or consist of heterogeneous
cell types. Hence, the analysis depends heavily on the choices
taken at ROI selection. In its simplest form, the transcriptomic pro-
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files of GeoMx and LCM-seq ROIs are compared to each other to
identify differentially expressed genes. GeoMx proprietary analysis
software offers tools for basic analysis. For custom analysis, the
GeoMx data can be converted from proprietary file formats to
the more accessible spatial data format with the GeoMx tools pack-
age in R, which offers the capability for filtering ROIs and probes
with quality control parameters associated with sequencing, align-
ment, and negative control probes included in the pre-designed
probe sets. The GeoMx tools package also includes tools for nor-
malization, dimensionality reduction, clustering, differential gene
expression analysis, and options for visualization, such as UMAP,
t-SNE, and volcano plots. Like spatial barcoding ST data, the GeoMx
and LCM-seq multicell ROIs can be analyzed for cell compositions
with deconvolution tools, such as the SpatialDecon R package for
constrained log-normal regression-based deconvolution of GeoMx
and other ST data [86]. For cell type prediction SpatialDecon uses
provided cell type signatures or custom ones that can be inferred
from RNAseq and scRNA-seq datasets. It can also form new cell
profiles ‘‘on the fly” from pure cell ROIs and use tumor cell-type-
specific ROIs to identify confusing genes in the target cell profiles
to aid deconvolution of non-tumor cell types. To enhance esti-
mates, SpatialDecon uses background counts of decoy probes and
can also use nuclei counts to estimate total cell counts. For neigh-
borhood analysis, the SpatialDecon includes tools to model the
gene expression profiles and up and downregulation of genes in
ROIs by using the estimated cell counts with a so-called reverse
deconvolution method. Additional computational analyses can be
done with custom scripts or other available ST-tools after the con-
version of data to a suitable format. However, advanced analysis
using spatial relationships (see Section 5) can be performed with
the GeoMx and LCM-seq spatial datasets only if the spatial coordi-
nates are resolved for the ROIs.
5. Advanced solutions in the analysis of spatial transcriptomics
data

The common objectives in spatial transcriptomics data analysis
include identification, quantitation, and annotation of the spatial
patterns (domains) at multicellular, cellular, and molecular levels,
and the statistical analysis of these quantitated features at differ-
ent length scales (Fig. 3). Many processing and analysis steps with
the spatially resolved single-cell transcriptomes are identical to
common scRNA-seq analysis steps and the same tools can be used
taking into account the method-specific confounding factors and
limitations in the ST data. The following sections cover the com-
monly used data analysis steps and some advanced computational
solutions to analyze biological phenomena in spatial data. We
focus on methods specialized for ST data analysis. While a detailed
description of all the methods mentioned here is beyond the scope
of this review, more detailed descriptions of the ST data analysis
methods can be found in the original research articles or the recent
reviews [27–29,83,101,102].

5.1. Available ST data analysis frameworks

Common scripting languages, such as R and Python, and various
open-source data analysis and visualization packages can be used
to build ST data analysis and visualization pipelines. Recently,
some consolidated analysis solutions have been released which
enable efficient and reproducible ST data analysis without exten-
sive programming and scripting work. Different computational
frameworks combine variable sets of commonly used and new
scRNA-seq and ST data analysis tools chosen to work together.
For a quick reference, the general capabilities in the analysis frame-
works Giotto [88], Seurat [89,103], STUtility [104], SPATA2 [105],



Fig. 3. Overview of the information that may be extracted from spatial transcrip-
tomics data. A) Overall cell type distribution in tissue space shows specialized cell
type patterns that reflect communal functions and regulation. B) Cell type-based
spatial patterns and C) domains can be detected based on transcriptome clustering.
D) Cellular relationships are often represented with spatial graphs of cells. The gray
circles (nodes) represent the cells, while the black lines (edges) correspond to the
distances between the cells. E) Cell neighborhood analysis identifies spatially
connected cell type pairs in spatial domains. F) Cell–cell communication and
interactions happen at many length scales, illustrated by the black arrows. G) Cell–
cell communication and interactions between receptors and ligands are often
detected using curated ligand-receptor lists. The green-colored cell is releasing
ligands (blue dots), while the green cell is communicating with the yellow-colored
cell directly by receptors. H) Subcellular distribution of transcripts (orange dots)
can be used in ST analysis, to understand the cellular scope.
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Squidpy [59], scvi-tools [106], stLearn [107], and GeoMx tools
[108] are summarized in Table 2.

At the time of writing, Giotto, SPATA2, Squidpy, scvi-tools, and
stLearn can import many different in situ and spatial barcoding ST
datasets for analysis. STUtility is limited to spatial barcoding type
of data and Seurat can import Vizgen MERFISH, GeoMx, and spatial
barcoding types of data at the moment. GeoMx tools is specialized
for GeoMx DSP type of data analysis and covered in the previous
section. There is some overlap in the frameworks as Squidpy and
scvi-tools encompass the Scanpy package, whereas STUtility is
built on Seurat extending Seurat’s ST data analysis capabilities.

While Giotto’s main functions are run in R, it interacts with
Python modules through the reticulate interface and has a wide
set of tools available to statistically detect and analyze different
spatial patterns. Seurat, in addition to being a versatile scRNA-
seq data analysis framework, has a variety of functions for ST anal-
ysis and visualization and connectivity with other ST analysis
packages in R. In addition to general ST analysis, STUtility special-
izes in analysis and visualization of sequential spatial sample lay-
ers in 3D. As modular Python frameworks2, Squidpy and scvi-tools,
in addition to statistical analysis, can leverage the powerful Python
deep learning environments by offering a standardized interface to
higher-level machine learning packages. stLearn is another ST anal-
ysis framework using Python with a focus on integrative deep
learning-based analysis and spatial trajectory and pseudotime anal-
2 Recently a scverse consortium started maintaining the Python ST-frameworks
Scanpy, Squidpy, and scvi-tools scverse.org/.
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yses. SPATA2 is focused on trajectory and pseudotime analyses and
integrates tools for gene set enrichment and variance analysis (GSEA
and GSVA) and to estimate genomic copy number variation (CNV)
based on transcriptome profiling along the genomic locations [109].

5.2. Preprocessing and quality control steps

The data imported into the ST data analysis frameworks (Giotto,
Squidpy, Seurat, STUtility, SPATA2, scvi-tools, stLearn, and GeoMx)
at a minimum consists of cell/spot-by-gene matrix and cell/spot-
by-location matrix, and optional associated image data of the sam-
ple tissue (Table 2). All the ST frameworks include the common
preprocessing tools for normalization, filtering, and dimensional
reduction used to ensure the quality and consistency of the ST data
[83,110]. There is no single solution for all datasets as the data may
contain different levels of variation from the confounding sources.
The usual standard preprocessing steps are the same as used for
scRNA-seq data, including normalization across data points, scal-
ing, filtering of bad quality cells or spots, and low abundance genes
based on the total number of detected molecules [59,104,106,111].
The scRNA-seq specific methods like SCtransformation [112],
SCnorm [113], or SCRAN [114] can also be used to remove
unwanted variations. A recent preview of the stLearn package
showcased a deep learning-aided normalization method special-
ized for spatial data, which takes into account image data and
the neighboring spatial data to adjust the gene expression values
[107]. Usually, data is treated also with different dimensionality
reducing algorithms for easing computationally heavy analysis
tasks like clustering and for visualization of the variation of the
data in low dimensional space.

5.3. Finding patterns in spatial transcriptomics data

Cells and molecules are spatially organized to optimize the
structure and function of the biological units they are part of
(Fig. 3A). The main goal of ST analysis is to identify spatial patterns
and domains at different scales in the ST data. In many tissues and
tumors, the specific cell types or cell stages form distinct spatial
homo- or heterotypic cell and gene expression patterns, which
can be used to identify the functional units or cell niches. Strategies
starting from cell types or from gene expression patterns are used
to detect spatial patterns and identify spatially distinct domains
and niches.

5.3.1. Finding cell type patterns from ST data
A simple strategy to get an overview of the cellular patterns is

to cluster and annotate the cells or spots based on their transcrip-
tomes and then visualize the spatial variation on tissue overlay
plots (spatial plots). For transcriptome-based cell type profiling,
the available ST data analysis frameworks offer dimensionality
reduction and clustering methods and options for visualizations
as dimensionally reduced data plots and spatial plots (Fig. 3B). In
addition to the widely used clustering alternatives for scRNA-seq
data, such as K-means, hierarchical, Louvain, and Seurat has a
specific sample clustering algorithm for ST data based on modular-
ity tuning in the KNN (k-nearest neighbor) distance graph and
STUtility has implemented NNMF dimensionality reduction that
is based on the recent NNMF implementation [115]. Additionally,
standalone methods tuned for scRNA-seq data clustering can be
used, including BayesSpace [116], SC3 [117], IloReg [118], and
SIMLR [119]. Of these, BayesSpace offers capabilities to infer higher
resolution delineation of the spatial domains by leveraging spatial
information in clustering and IloReg optimizes genes used for clus-
tering with a probabilistic feature extraction step before clustering.
Intuitive and clear descriptions of many clustering algorithms use-
ful in ST data analysis can be found in [83]. With multicell resolu-
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I. Kleino, P. Frolovaitė, T. Suomi et al. Computational and Structural Biotechnology Journal 20 (2022) 4870–4884
tion spatial barcoding data, the deconvolution tools discussed in
Section 3.2.3. provide probabilistic cell type compositions of the
spots that can be used to divide the sample into cellular regions
and determine cell neighborhood composition. (Fig. 3B).

For cell type annotation of single-cell resolution ST data, the
same strategies and tools can be used as with the scRNA-seq data.
Typically, the available ST data analysis frameworks have one or
more differential gene expression analysis tools for marker gene
profiling and manual marker-based cell type annotation. For
instance, scvi-tools has two automated cell type annotation meth-
ods, and the option to use the scArches [120] transfer learning
models, in addition to dataset integration, to annotate new data-
sets even with different modality reference data. Standalone
reference-based annotation tools like SingleR [121], CHETAH
[122], and scGate [123] in R, and CellO [124] in Python can be
included in the ST analysis solutions for cell type annotation. Addi-
tionally, methods are available that use both the tissue image and
ST data for the annotation. For example, the deep learning-based
solution SpaCell [125] uses tissue image and ST data jointly for cell
type and disease stage annotation. The identified cell types or un-
annotated cell clusters can be visually and statistically analyzed for
their spatial organization by plotting on the sample image and
then comparing to, for example, available tissue atlases or a
pathologist’s tissue annotation of the corresponding H&E stained
tissues image.

Regulon-based analysis could provide further cell stage cluster-
ing by identifying coregulated genes and transcription factor net-
works (regulons) underlying the functional cell states. Currently,
none of the ST data analysis frameworks incorporate such gene
regulatory network analysis by default. For scRNA-seq data, for
instance, SCENIC (Single-Cell rEgulatory Network Inference and
Clustering) and pySCENIC are tools to detect regulons [126,127].
SCENIC uses the cellular regulon activity patterns to cluster the
cells.

5.3.2. Detecting spatial gene expression patterns
At the molecular level, genes may show spatial expression pat-

terns which reflect their cell type-specific intrinsic programs and
extrinsic effects on the local cell community or tissue microdomain
(Fig. 3C). Cell molecular and organellar subcellular distribution
data can be used jointly with spatial transcriptomics data to pro-
vide more detailed information about gene-phenotype associations
in cells (Fig. 3H) [28,29]. RNA velocity analysis based on exon–in-
tron ratios in transcripts [128] or inferred from nuclear to cytoplas-
mic gene expression ratios can be used to order cells to pseudotime
trajectories for cell fate analysis [33].

Many ST data analysis frameworks implement methods devel-
oped for the identification of genes showing spatial expression pat-
terns with the aid of the spatial representations of the ST data
(Table 2) [29,88]. A simple form is a spatial grid in which the aver-
age expression of genes in each grid box area is measured or calcu-
lated. Many spatial barcode methods naturally produce data in
such a form as the spots are spatially organized in a grid with a
fixed size, relative locations, and the number of neighboring spots,
and each spot integrates gene expressions from the covered areas.
For high-resolution ST data, the grid box dimensions can be tuned
to computationally integrate expressions from subcellular to
multicellular-sized regions. A common approach is to construct a
spatial network with nodes/vertices representing the cells and
links/edges representing the connections between the cells, where
the edges can have associated weights derived from their physical
distance or other connection metrics (Fig. 3D).

For detecting genes with spatial trends in their expression,
Giotto implements their Binary Spatial Extraction (BinSpect)
method, which finds genes with spatially coherent expression pat-
terns [88], as well as the previously published tools SpatialDE
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[129], SPARK [130], and trendsceek [131]. SpatialDE3 uses Gaussian
process regression to identify genes with spatial expression patterns,
SPARK identifies trending expressions using generalized spatial lin-
ear models, whereas trendsceek uses nonparametric marked point
processes to detect spatial trends in gene expression. Seurat has its
own implementation similar to trendsceek, SPATA2 implements
SPARK, Squidpy and STUtility use autocorrelation-based detection
of genes showing patterned expression, whereas stLearn uses factor
analysis based on tissue microenvironment detection to detect genes
correlated with the identified factors. Additionally, standalone solu-
tions exist, such as MERINGUE [133], which uses an autocorrelation-
based analysis method, and Hotspot [134], which uses a graph-based
approach to identify the most informative genes.

In addition to detecting genes showing spatially distinct expres-
sion patterns, another typical goal of ST data analysis is to detect
spatial domains with coherent gene expression. These may differ
from the patterns detected based on the cell type analysis [135].
In the available ST data analysis frameworks, various computa-
tional solutions are used to specify the spatial domains by summa-
rizing the detected genes with distinct coherent gene expression
patterns into metagenes. For instance, SPARK and SpatialDE use
clustering to form metagenes from the detected spatial genes.
Additionally, Giotto implements a hidden Markov random field
(HMRF) method [135] to detect spatial domains, which uses the
relationship information in the spatial graphs to compare the gene
expression of each cell to its neighborhood (domain) to search for
coherent gene expression patterns and to assign cells into a prede-
fined number of spatial domains. The standalone solution MERIN-
GUE uses cross-correlations for grouping the identified expression
patterns into spatial domains and for spatially informed cell clus-
tering [133].

The statistically detected spatial domains of coherent gene
expression can then be corroborated by comparing them to
domains identified from the corresponding image data, for
instance, by manual annotation or deep learning-based feature
detection [136]. The joint analysis of molecular and image data is
leveraged in recently developed methods, including stLearn
[107], SpaGCN [137], and SpaCell [125]. stLearn uses a two-step
clustering method in which the clustered expression data is further
clustered with the spatial information to find finer spatial domains
[107]. SpaGCN integrates the image RGB pixel data along with the
spatial coordinates to tune spatial expression graph weights and
then uses graph convolution and iterative clustering to find spatial
domains and spatial genes and metagenes with differential expres-
sion [137]. SpaCell uses deep learning-based analysis of the images
of H&E stained samples jointly with the matched measured spatial
molecular data to classify the cell types and disease stages on the
ST samples.
5.3.3. Cellular neighborhoods, interactions, and communication
Understanding the compositions of cell neighborhoods and

molecular level cell–cell interactions (CCI) and cell–cell communi-
cation (CCC) in tissues and organs will open the path for building
comprehensive models of biological systems. Also, detection of
critical molecular components of cellular connectedness would
allow identification of crucial molecular pathways causing
pathologies and potential ways to treat these [138]. The molecule
level cell connectedness analysis has progressed with giant steps
recently with the availability of dissociated scRNA-seq datasets
and a number of computational data analysis tools [138,139].
Now, with spatially aware transcriptome data, modeling and infer-
ence of molecular interconnectedness of cells at different length
scales is becoming reality.
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Spatial cell neighborhood analysis detects preferred cell–cell
adjacencies and cell community compositions that can suggest
homo- and heterotypic attractive or repulsive connections
between different cell types (Fig. 3E). The analysis is based on sta-
tistical enrichment of cell–cell interactions. Of the available ST data
analysis frameworks, only Giotto and Squidpy offer cell neighbor-
hood analysis by default. Statistical analysis in both is based on
the enrichment method introduced in HistoCat [140], where the
the occurrences of cell–cell interactions are compared to the ran-
domized baseline in the data.

Spatial information also allows the prediction of cell adhesion
and cell signaling ligand-receptor pairs mediating cell connections
in tissues at auto-, juxta-, para-, and endocrine length scales
(Fig. 3F-G). The basis for statistical analysis is a cell–cell relation-
ship representation and a list of known ligand-receptor and
cell-adhesion ligand-receptor pairs, including also molecular
compositions, as the receptors and ligands may be homo- or
hetero-multimeric in nature. The ligand-receptor list can be con-
structed from protein interaction datasets. However, standalone
tools like CellphoneDB [141,142], NicheNet [143], and CellChat
[144] usually provide manually curated ligand-receptor lists for
the analysis, and collections like FANTOM5 [145] and Omnipath
[146] have larger ligand-receptor datasets available. Typically,
the cell-communication scores are calculated for each ligand-
receptor pair in all relevant pairs of cell types. The highest-
scoring pairs are the most likely ones mediating connections
between the particular cell types.

For instance, Giotto implements a spatially-aware method that
calculates cell-communication scores associated with the cell type
neighborhoods, whereas stLearn and Squidpy have their own
implementations of the enrichment test of CellphoneDB
[141,142], which is a method commonly used to identify important
ligand-receptor pairs in scRNA-seq data analysis. Two recent stan-
dalone methods, tensor composition-based Tensor-cell2cell [147],
and random forest-based MISTy [148], aim to identify significant
ligand-receptor pairs simultaneously at multiple length scales
(Fig. 3F). Also, spatially-aware versions of the CellphoneDB [149]
and NicheNet [143], and several additional standalone spatially
aware ligand-receptor analysis tools based on different statistical
and machine learning methods have been released and are
described in recent reviews [138,139].
5.3.4. Interactive visualization
All the ST data analysis frameworks provide multiple options

for production of graphs and spatial feature visualizations of the
performed data analysis. Most of the frameworks offer also some
level of interactive visualization for exploratory data browsing
and visual inspection of the results along with the analysis. Giotto
enables exploratory viewing and selection of subsets of data for
reanalysis and SPATA2 has interactive tool for manual spatial tra-
jectory drawing and annotation. Squidpy has its own image data
container type and connects to Napari, a Python-based GPU accel-
erated image analysis software, for advanced data visualizations
and image-based analysis. Squidpy allows the use of machine
learning packages for feature extraction from the image data
(H&E and fluorescent staining), including cell and nuclei segmenta-
tion used in subcellular spatial domain computations. Seurat and
stLearn have interactive viewing options with ‘‘click and select”
types of gene selection and visualization adjustments. STUtility
provides tools for image trimming and for automatic and manual
image alignment of consecutive sample sections of spatial barcod-
ing data for the construction of a rotating 3D stack of the spot
images. At the moment scvi-tools does not offer interactive spatial
visualization integrated into the framework, however the use of
anndata data container offers workaround to import of analysis
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results to other software for interactive visualization. Various spa-
tial transcriptomics visualization options are reviewed in [83].

5.4. Summary and Outlook

Both the methodological and computational solutions for spa-
tial transcriptomics are evolving at a fast pace, providing coverage
to larger sample areas at higher resolution thus producing spatial
datasets with increasing complexity and size. New advanced com-
mercial spatial transcriptomics platforms allowing wide adoption
of spatial transcriptomics in biological and medical research fields
have been promised to be launched by the end of the year 2022.
The newest ST methodologies allow the collection of nearly com-
plete transcriptomic datasets with subcellular resolution at the
organ and systems level. The collected datasets will contain a
wealth of biological information about the spatial relationships of
the cells that can be used to supplement, interpret, and find causal
relationships for connecting the genetic programs in multicellular
systems.

Methods to mine these vast datasets by combining statistical
modeling, supervised and unsupervised machine learning meth-
ods, and data integration techniques with the current knowledge
of signaling, metabolic and biochemical pathways, and gene regu-
lation networks holds promise to identify complete sets of compo-
nents taking part in biological processes and to modeling dynamic
cellular functions in interconnected multicellular systems.

Computationally, already the size of tens of terabytes of raw
data per sample holding spatial information of hundreds of mil-
lions individual transcripts in the forthcoming in situ datasets
[22] will pose a challenge for use of many current computational
analysis methods with current computational resources. On the
other hand, these new datasets open an unprecedented opportu-
nity for the development of new computational methods for min-
ing and interpreting the vast amounts of biological and biomedical
data.

The exploratory visualization and sharing of the data and anal-
ysis results in interactive formats with collaborators and in the
public domain are also becoming an important part of the compu-
tational analysis of complex biological datasets. The option to
share the spatial data as standalone datasets with the possibility
for interactive visualization with dedicated viewers is currently
not easily attainable with the available ST data analysis platforms.
To provide maximum benefit for all communities, scientific and
other, the vast information in spatial datasets could be provided
also in interactive visualization formats.
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