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Abstract: In this paper, raw jute fabric was subjected to atmospheric pressure dielectric barrier
discharge (at 150 or 300 Hz) to enhance its wettability, i.e., capillarity and wetting time. Attenuated
Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Field Emission Scanning
Electron Microscopy (FE-SEM) were used to assess the changes in the fabrics’ surface chemistry
and morphology induced by plasma treatments. The obtained results revealed that both plasma
treatments enhanced the wettability of jute fabrics, which could be ascribed to the changes in the fibers’
surface chemistry (the removal of non-cellulosic components, exposure of the cellulose molecules,
and oxidation) and morphology (increased roughness due to etching of the surface layers and partial
fibrillation). Capillary rise heights increased by approximately 1.8 and 1.9 times, and wetting times
were 35 and 34 times shorter 24 h after the plasma treatment at 150 and 300 Hz, respectively. Special
attention was given to the aging effect of plasma treatment indicated no significant changes in the
fabrics’ capillarity and wetting time after 28 and 7 days, respectively, proving the durability of
the effects of plasma treatment. Plasma-treated raw jute fabrics could be used as water-binding
geo-prebiotic polysaccharide supports to provide the necessary water for the initial growth of
cyanobacterial biocrusts. The lack of moisture is the main constraint in biocrust development after
cyanobacterial inoculation. The combination of such water-supportive fabrics and cyanobacterial
strains could be used for the rehabilitation of various degraded lands, sediments, and substrates, as
well as for air and water pollution control.

Keywords: jute; plasma treatment; sustainable method; wettability; capillarity; wetting time; geo-
prebiotic polysaccharide supports

1. Introduction

Analysis of the global production of natural fibers shows that in recent decades,
jute has ranked as the second most important natural fiber after cotton. According to
the Food and Agricultural Organization of the United Nations [1], 2.69 million t of jute
were produced in 2020, with the most harvested areas located in India (690,000 ha) and
Bangladesh (680,000 ha). A less known but no less important fact is that 1 ha of jute plants
consumes about 15,000 kg of CO2 from the atmosphere and provides about 11,000 kg of O2
during the 100-day growing season, which is much higher than the O2 production of many
tree species [2]. This sustainable fiber is widely used for the production of conventional
textile products such as hessian, carpet backing cloth, sacking, and shopping bags [3]. It is
interesting to note that all these products are usually made of raw jute fabric that has not
been subjected to any treatments.

Morphologically, raw jute exists as a technical fiber comprised of 6–20 elementary
fibers; each elementary fiber represents a network of ultrafine cellulose fibrils protected by
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a matrix of hemicelluloses, lignin, and other minor non-cellulosic components [4]. Thanks
to such complex chemical composition and the specific location of the main constituents,
i.e., layered fiber structure (consisting of the middle lamella and primary and secondary
cell walls), jute is a convenient candidate for various modifications. Conventional wet
chemical modifications such as alkali scouring and oxidation (i.e., bleaching) [5–7] lead
to the removal of hemicelluloses and lignin, hence, obtaining cellulose-rich fibers with
improved mechanical, electrophysical, thermal, electrokinetic, and/or sorption properties.
In such a way, the application of jute fiber can be significantly broadened from conventional
textile products to high-performance products [8,9]. In particular, chemically modified
jute can be used for energy storage [10], as an insulation material [11], and as protective
clothing in environments sensitive to electrical discharges [12,13]. It has also found applica-
tions in electrical engineering, flexible electronics, fabric-based electromagnetic shielding
devices [7], etc. However, it should be kept in mind that most of the wet chemical modifica-
tions consume various hazardous agents, and the release of untreated industrial effluents
in rivers gives rise to environmental pollution [14]. In that regard, researchers from all over
the world are orienting their work towards sustainable and eco-friendly methods for jute
fiber modification.

With reference to several studies [4,15–18] in which the sorption properties of raw jute
fabric were enhanced by different alkali or oxidative chemical modifications, we decided to
use alternative treatment, i.e., green, clean, and sustainable atmospheric pressure plasma
treatment to achieve the same effect. Plasma treatment has been used frequently for cotton
processing [19–23], as it minimizes water, energy, and chemical consumption [24]. In a
detailed literature search, we found only two papers dealing with the effect of plasma
treatment on the wettability of jute fabric. Bozaci et al. [25] studied the influence of
atmospheric plasma treatment power and time on the capillarity of raw jute fabric and
concluded that capillarity increases proportionally to the increase in plasma treatment
power and time and is conditioned by surface etching. Furthermore, in a study conducted
by Kafi et al. [26], jute fabric was treated for different times under atmospheric plasma
glow discharge using helium, helium/nitrogen, or helium/acetylene gas. The researchers
reported that, independent of the studied gas, 10 s of plasma treatment was sufficient
to significantly improve the wetting behavior of jute fabric [26]. Neither of the papers
mentioned above included an in-depth discussion regarding the plasma treatment effects
on the jute surface chemistry and morphology; therefore, the connection between these
properties and jute fabric wettability remains unexplored. The wettability of plasma-
treated hemp [27], ramie [28], abaca, flax, hemp, and sisal [29] fibers has been studied.
Pejic et al. [30] monitored the effect of the chemical composition of hemp fibers on the
efficiency of plasma treatments to elucidate the sensitivity of the main components of hemp
fibers (cellulose, hemicelluloses, and lignin) to the plasma treatment and to identify optimal
treatment parameters for enhancing hemp sorption properties.

In this article, we focus on the effect of atmospheric pressure plasma (at 150 and
300 Hz) obtained in air on the wettability of raw jute fabric evaluated according to changes
in capillary rise height and wetting time. First, the plasma-treated fabrics were characterized
in terms of their surface chemistry and morphology using Attenuated Total Reflectance-
Fourier Transform Infrared (ATR-FTIR) spectroscopy and Field Emission Scanning Electron
Microscopy (FE-SEM), respectively. Thereafter, a connection between these properties and
fabric wettability was established and discussed in detail. Taking into account the known
fact that the effects of plasma treatment can diminish over time, special attention was given
to the aging effect of plasma treatment on the wettability of jute fabric.

It has to be emphasized that a possible novel application of raw jute fabric in biocarpet
engineering [31] stands behind the need to improve its wettability using sustainable plasma
treatment. Over 40% of terrestrial ecosystems worldwide suffer from land degradation,
a natural or human-influenced process that affects the functionality of the land. Eolian
erosion of desertified and damaged land surfaces consequently causes air pollution and
associated water pollution. For these reasons, the concept of Biological Soil Crust (BSC)
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carpet engineering has been proposed [32], and cyanobacterial crusts as primary colonizers
have been introduced as a potential solution. However, rehabilitation takes a long time [33]
(tens of years or even centuries) due to the lack of moisture during the initial development
phase of cyanobacterial crusts. In order to solve the problems and constraints of slow
crust development during the initial phase, special geo-prebiotic (promoting terrestrial
microbiota) support is needed. A combination of water-supportive plasma-treated jute
fabrics (that could provide the necessary moisture in the phase of cyanobacterial inocula-
tion) and selected autochthonous cyanobacterial strains with sticky egzopolysaccharides is
recommended for the rehabilitation of various degraded lands, sediments, and substrates,
as well as air and water pollution control. Sticky cyanobacterial polysaccharides capture
airborne particles during the wet phase. During the dry phase, the biocrusts stabilize the
degraded surface, process captured particles, and prevent wind and water erosion.

2. Materials and Methods
2.1. Material

A commercially produced raw jute fabric with a plain weave was used as the experi-
mental material; it had following chemical composition: 2.45% water-solubles, 0.68% fats
and waxes, 1.82% pectin, 13.68% lignin, 16.82% hemicelluloses, and 64.53% α-cellulose. The
thickness, weight, porosity, and density in warp and weft directions of the raw (untreated)
jute fabric were 0.762 mm, 266 g/m2, 61.0%, 46 1/dm, and 46 1/dm, respectively.

The raw jute fabric used in this study is characterized by a maximum force of 537.3 N,
elongation at a maximum force of 5.66%, a volume electrical resistivity of 12.21 GΩcm
measured under 40% air humidity (all determined in the weft direction) [34], and an AC-
specific electrical conductivity of 0.095 µSm−1 at a frequency of 130 kHz under 30% air
humidity [15]. Moisture sorption and water retention power of the examined raw jute
fabric accounted for 7.41 and 57.23%, respectively. Concerning the fabric electrokinetic
properties, the pH value at which the lowest zeta potential was detected was 3.82, with a
minimum zeta potential value of −11.17 mV and a fabric isoelectric point of 2.52 [35].

2.2. Plasma Treatment

Raw jute fabric was treated with plasma obtained by dielectric barrier discharge (DBD)
in open air at atmospheric pressure (Figure 1) [30]. The discharge was generated between
two plane-parallel electrodes (8 cm × 20 cm) covered by a 0.7 mm thick alumina sheet
(10 cm × 22 cm). An upper electrode was set at AC high voltage, while the lower electrode
was connected to the ground through a 14 kOhm capacitor. The voltage applied to the
electrodes was measured using a high-voltage Tektronix P6015A (Tektronix, China). The
low-frequency AC power supply used in this study consists of a high-voltage transformer
and a frequency inverter (Emerson Commander SKA 1200075AC variable-speed drive),
which allows for variation of the sinusoidal voltage amplitude and frequency. The distance
between the electrodes was fixed by glass space holders to ensure a fixed discharge gap
of 3 mm. Granules of zeolite were used during the plasma treatment of fabrics in order
to avoid the problem of humidity and to maintain a homogeneous discharge [36]. Raw
jute fabric (labeled as J) with dimensions of 20 cm × 8 cm (in the warp direction) was
treated under two different regimes of discharge. The first regime involves the use of the
following parameters: 150 Hz, 15.2 kV, 120 s (fabric marked as J150); in the case of the second
regime, the parameters were set as follows: 300 Hz, 12.6 kV, 120 s (fabric denoted as J300).
The plasma treatment conditions were chosen with the intention of determining which
parameter has a decisive influence on fabric treatment: the applied energy (35% higher for
300 Hz frequency) or the applied voltage (20% higher for 150 Hz frequency).
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2.3. Characterization of the Plasma-Treated Fabrics

ATR-FTIR spectra of the fabrics were recorded in absorbance mode using a Nicolet™
iS™ 10 FT-IR spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with Smart iTR™
attenuated total reflectance sampling accessories within a range of 4000–400 cm−1, at a
resolution of 4 cm−1, and in 20 scan mode.

FE-SEM MIRA 3 XMU (Tescan, Brno, Czech Republic) was used to investigate the sur-
face morphology of raw and plasma-treated jute fibers. Before the analysis, the fibers were
sputter-coated with Au/Pd alloy using a Polaron SC502 Sputter Coater (Fison Instruments,
Glasgow, UK).

2.4. Wettability Measurements

The wettability of jute fabric was assessed according to changes in capillary rise height
and wetting time. The method used to determine capillary rise height is similar to that
used in the literature [4]. In particular, the jute fabrics (20 cm × 2 cm in the warp direction)
were placed in a vertical position. One end was fixed with a clip on a horizontal bar, while
the other end was preloaded with a tag and immersed to a dept of approximately 1 cm in
a 1% aqueous solution of eosin (red-colored solution). When the fabrics were immersed
in eosin, photos were taken at time intervals of 15 s for the first minute, every 30 s up to
5 min, and every 1 min up to 10 min. Capillary measurements were carried out on the raw
fabric as well as 1, 14, and 28 days after the plasma treatment (fabrics marked as J150/1day,
J150/14days, J150/28days, J300/1day, J300/14days, and J300/28days) to investigate the effect
of aging on fabric capillarity. The results are presented as mean values of three readings
per sample. Based on the experimental data obtained by capillarity measurements and the
methodology outlined by Pejić et al. [30], the capillary diffusion coefficient (D, mm2/s) was
determined using Equation (1).

h2 = D·t, (1)

where h (mm) is the increase in capillary rise height, and t (s) is time.
The fabric wetting time was determined according to standard AATCC 79-2018. A

drop of distilled water (30 µL volume) was placed on the fabric surface from a distance of
9.5 ± 1.0 mm. The time required for the droplet to be absorbed by the sample was recorded
on a stopwatch and taken as the wetting time. Measurements were performed on raw jute
fabric, as well as 1 and 7 days after plasma treatment (fabrics codes: J150/1day, J150/7days,
J300/1day, and J300/7days). For each fabric, five measurements were recorded, and the
mean value was expressed as wetting time.
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3. Results and Discussion
3.1. Characterization of the Raw and Plasma-Treated Jute Fabrics

Before studying the effect of plasma treatments on the wettability of raw jute fabric,
the changes in its surface chemistry and morphology were elucidated by using ATR-FTIR
spectroscopy and FE-SEM, respectively.

Considering the ATR-FTIR spectra of raw and plasma-treated fabrics in parallel
(Figure 2), it is evident that the intensity and/or the position of some bands corresponding
to different functional groups originating from the jute fiber constituents were changed
after the plasma treatments.
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Figure 2. ATR-FTIR spectra of raw and plasma-treated jute fabrics.

As previously mentioned, raw jute consists of cellulose, hemicelluloses, lignin, and
some minor components distributed in the complex layered fiber structure covered by
surface impurities. After the plasma treatments, the intensities and positions of the bands
at 2917 and 2849 cm−1 (assigned to C–H stretching vibration of CH2 and CH groups in
cellulose and hemicelluloses [37]) changed, indicating that some jute surface impurities
(such as waxes, and bit-shaped pectin [38]) were removed. This statement is additionally
supported by the FE-SEM microphotographs (Figure 3); due to surface ablation, only a
small amount of impurities can be observed on the J300 fiber surface.
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Furthermore, the intensity of the broad band within the range 3600 and 3000 cm−1

(comprised of band shoulders centered at 3336 and 3288 cm−1) assigned to O–H stretching
vibrations in the cellulose [39] increased with increasing the plasma frequency. This
behavior is, on one hand, attributed to the formation of new oxygen-containing groups
when free radicals reacted with surrounding oxygen [38], inducing changes in intra- and
intermolecular cellulose bonds [40] and, on the other hand, to the more exposed cellulose
on the fiber surface. The latter was also confirmed by the increased intensity of the band at
1235 cm−1 originating from the C–O–C asymmetric stretching vibration of cellulose [41]
after the plasma treatments.

Based on previous investigations focused on plasma-treated hemp fibers [30], i.e., the
susceptibility to plasma etching of the hemicelluloses and cellulose amorphous regions on
the fiber surface, hemicelluloses’ removal and increased fiber crystallinity were expected
upon plasma treatment. Contrary to expectations, the intensities of the bands at 1735 cm−1

and 1638 cm−1 assigned to the absorptions of carbonyl (C=O) linkage and carboxyl stretch-
ing of carboxylic acid or ester group present in hemicelluloses [42] but also in oxidized
cellulose increased with increased plasma frequency. Considering that carboxyl groups are
not present in native cellulose, given the calculated hemicellulose/cellulose ratios [43] of
1.05 and 0.89 for fabrics J and J300, respectively, it is clear that partial hemicelluloses’ removal
occurred but was masked by cellulose oxidation. The findings reported in the present study
are consistent with the previous observations by various research groups. Kafi et al. [26]
concluded that oxygen-based reactive species (derived from atmospheric oxygen) most
likely developed due to the removal of an outermost layer from jute. Huner et al. [44]
reported that a reaction with oxygen is possible when dry air plasma breaks the C–C bonds
within cellulose so that new C–OH bonds can be formed, resulting in an increased intensity
of the band at 1030 cm−1 (C–OH vibration in cellulose), as also observed in Figure 2. In
addition to the removal of hemicelluloses and cellulose oxidation, an increase in the total
crystallinity index (TCI, i.e., ratio of the intensities of the bands at 1372 and 2900 cm−1

which is directly proportional to the fiber crystallinity degree [45]) of plasma-treated fibers
was observed. In particular, samples J, J150, and J300 had TCIs of 0.65, 0.72, and 0.84, respec-
tively (Figure 2), confirming that amorphous regions on the fiber surface were affected by
plasma treatments.

It has to be noted that the mentioned pronounced surface etching and partial fibrilla-
tion (Figure 4) are also the reasons behind the exposure of the internal lignin-containing
structure of the middle lamella and primary wall on the fiber surface. The latter was
proven by the increased intensities of the bands in the region of 1595−1240 cm−1 assigned
to the aromatic structures of lignin [30,43] and a shoulder at 996 cm−1 (aromatic C–H
in-plane deformation and C–O deformation of a primary alcohol in lignin [25]) after the
plasma treatments.
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The discussed ATR-FTIR spectra and FE-SEM images are strong evidence that plasma
treatments at atmospheric pressure can alter the surface chemistry and morphology of
jute fabric.

3.2. Wettability of the Investigated Jute Fabrics

In this section, the impact of plasma treatments on fabric wettability was studied, and
changes in capillary rise height and wetting time were selected as important wettability
parameters. The measurements of fabric capillarity implicate simultaneous wetting of the
fabric surface, liquid uptake in the pore structures/capillary penetration, adsorption on
the fabric surface, and liquid absorption within the fabric [30]. This wettability parameter
also represents an indicator of the treatment homogeneity [25]; if the treatment caused
homogenous changes in the fabric’s chemistry and morphology, the increase in capillarity
height would be similar for every yarn of the tested fabric. On the other hand, knowing
that plasma treatment induced a fabric surface modification, the determination of wetting
time represents a very quick method for assessment of the changes in wettability induced
by the plasma treatment.

3.2.1. Capillarity Rise Height of Raw and Plasma Treated Jute Fabrics

It is apparent from Figure 5 that compared to raw samples, plasma-treated jute fabrics
have a significantly faster capillary rise height (in further text: h) within the studied time
interval. The differences between the fabrics’ h values are the highest at the beginning of
the measurement; after 30 s, fabrics J150/1day and J300/1day have 5.9 and 8.7 times higher
h values than raw jute fabric. Strong evidence of the abovementioned phenomenon are the
diffusion coefficients (Figure 6), which are about four times higher for plasma-treated jute
fabric than for raw jute fabric. The high h values of plasma-treated fabrics can be ascribed to
the previously discussed changes in the fiber surface chemistry. More precisely, the removal
of surface impurities and partial hemicelluloses’ removal, cellulose and lignin-enrichment
of the fiber surface, and cellulose oxidation resulted in improved capillarity. All these
contributors acting in parallel enabled better water penetration into the capillary system
of the fiber cell wall [46] with simultaneous interaction between water and newly formed
oxygen-containing groups (Figure 2). Consequently, fiber and yarn swelling occurred,
which reduced the capillary spaces within the fibers and between the yarns, resulting in
higher capillary pressure in smaller pores, i.e., improved capillarity was obtained [4]. As a
result of fiber etching and ablation, increased fiber roughness, the formation of micro pits,
and partial fibrillation occurred (Figure 4), which should not be neglected. Pronounced
pitting and fibrillation are the main reasons why fabric J300/1day has slightly higher h
values compared to fiber J150/1day. In particular, between completely or partially separated
elementary fibers (within technical jute fiber), new capillary spaces capable of transferring
fluid were created and acted as a void system [47]. The same observations were reported
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by Pejic et al. [30], i.e., that capillary equilibrium height of raw hemp fibers (accounting
for 8.8 mm) increased to 36.0 and 46.0 mm after the plasma treatment at 150 and 300 Hz,
respectively. Similarly, Bozaci et al. [25] found that the improvement in jute capillarity,
mainly as a consequence of the surface roughening and the formation of micro pits, is
highly dependent on the applied plasma power and exposure time. A comparison of the
results presented in Figure 5 with the results obtained for the alkali- and oxidatively treated
jute fabrics [4] clearly shows that plasma treatment can compete and is more effective than
the applied chemical treatments in terms of the h values of the fabrics. For example, after
the alkali or oxidative treatment under severe conditions, h values measured after 600 s
were 71.2–81.0 mm and 45.2–75.0 mm, respectively, while for the same duration, h values
of fabrics J150/1day and J300/1day were 86.3 and 91.3 mm (Figure 5), respectively. This
comparison clearly indicates that the plasma treatment not only enhanced fabric h values
but is also within the window of sustainability, enabling a step towards energy-saving
treatment and a clearer and healthier environment by avoiding the use of chemicals. In
this example, both alkali and oxidative treatments produce large amounts of wastewater
because of the high alkali concentration (17.5% NaOH) and strong oxidative agent (NaClO2)
with a high fiber-to-liquid ratio (1:50), including additional chemicals used for fiber rinsing
after the modifications.
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An aging effect often occurs after plasma treatments, as manifested by changes in
the activated fiber surface over time or by reversal of achieved effects through the re-
combination of functional groups on the fiber surface [23]. Therefore, special attention
was paid to the h of plasma-treated fabrics aged for 1, 14, and 28 days. Interestingly, the
results presented in Figure 7a indicate that the aging of plasma-treated fabrics led to an
improvement in their h values. In particular fabrics aged for 14 and 28 days (J150/14 days
and J150/28 days, respectively) had about 16% higher h values than the fabric aged for
1 day (J150/1 day). The situation is somewhat different in the case of fabric treated at a
frequency of 300 Hz (Figure 7b). It is evident that after 14 days of aging, the h of fabric
J300/14 days slightly improved (about 8%), and after 28 days of aging, returned to the initial
value. Kramar et al. [48] identified the same phenomenon with respect to the capillarity
of plasma-treated viscose fabric, which increased up to 14 days of aging. As illustrated in
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Figure 6, both J150/14 days and J150/28 days fabrics showed higher diffusion coefficients
than J150/1 day, while in the case of fabrics treated at a frequency of 300 Hz, the highest
diffusion coefficient was registered after 14 days of aging, followed by a significant decrease,
i.e., after 28 days of aging, the diffusion coefficient decreased and was lower than that of
J300/1 day.
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3.2.2. Wetting Time

The wettability of the studied jute fabrics was further evaluated by determining
wetting time (Figure 8). Surprisingly, immediately after the plasma treatment, about 31
and 26 times lower wetting times were recorded for fabrics J150 and J300, respectively. Such
changes are undoubtedly related to the surface polarity (i.e., formation of new surface
functional groups) and morphology (i.e., etching and roughness), which, together, promote
quick and easy penetration and adsorption of water drop within the fabric. According to
Dimic Misic et al. [49], the surface roughness increases the effective wetting area; water
fills the roughened surface, making contact with the entire surface. On the other hand, the
authors of [26] proposed that the removal of the waxy and pectin layer from the outermost
jute fiber surface through atmospheric plasma in air improves the wetting properties of
the fabric.
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After one day of aging, the wetting time additionally decreased (for 12.5 and 22.7% in
the case of J150/1day and J300/1day, respectively), suggesting that aging positively affects
the wettability of the fabrics (Figure 8). Further investigation of the aging effect of plasma
treatment revealed that there were no significant changes in the wetting time of the jute
fabrics after 7 days, clearly indicating that the surface of the treated jute is still active and
the achieved hydrophilization effect is stable over time. This is in correlation with polymer
chain mobilities, i.e., very stable plasma treatment effects can be observed in the case of a
semirigid, crystalline, and polar polymer such as cellulose [48]. It is worth mentioning that
plasma treatment at a lower frequency (150 Hz) was more efficient in terms of wetting time.

The discussed results are very interesting because air plasma treatment can be used
instead of wet chemical processes to enhancing the wettability of jute fabric. The findings
reported in this paper are very important for the application of plasma-treated raw jute
fabric as water-binding geo-prebiotic polysaccharide support that could provide the neces-
sary water for the growth of cyanobacterial biocrusts. The role and importance of biocrust
are recognized, especially in semiarid regions [50]. Biocrust carpet engineering has been
proposed to fight land degradation, and cyanobacteria as primary colonizers, have been
introduced as a potential solution. However, rehabilitation takes a long time due to the lack
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of moisture during the initial phase. In order to solve the problems and constraints of slow
crust development during the initial phase, a special geo-prebiotic (= promoting terrestrial
microbiota) support is needed. A combination of tailored, water-supportive jute fabric
and cyanobacterial strains could be used for the rehabilitation of various degraded lands,
sediments, and substrates, as well as for air and water pollution control. Such synergotic
product [51] based on the interaction between substrate, polysaccharides, and cyanobacte-
ria is seen as an ecologically friendly and financially feasible method for the sustainable
rehabilitation and development of damaged land surfaces affected by the mining and con-
struction industries, desertification, and expansion of other extreme environments. These
results are the first part of the project “Integrated Strategy for Rehabilitation of Disturbed
Land Surfaces and Control of Air Pollution -RECAP”, which is scheduled to continue until
2025, so we are still working on the development of a synergotic product based on the
interaction between the substrate, polysaccharides, and cyanobacteria.

4. Conclusions

In this study, we investigated the effect of air plasma treatment (at 150 or 300 Hz)
on the wettability of raw jute fabric as evaluated through the determination of capillary
rise height and wetting time. The evidence from this study suggests that both plasma
treatments improved the wettability of jute fabrics, which is ascribed to changes in surface
chemistry (i.e., removal of surface impurities, partial hemicelluloses’ removal, cellulose and
lignin enrichment of the fiber surface, and cellulose oxidation) and surface morphology
(i.e., increased fiber roughness and the formation of micro pits with partial fibrillation as
a result of the etching and ablation of the fiber surface layers). The differences between
the capillarity of the fabrics were the greatest at the beginning of the measurement; after
30 s, fabrics J150/1 day and J300/1 day had 5.9 and 8.7 times higher capillary rise height
values than raw jute fabric. Such results were further confirmed by the calculated diffusion
coefficients, which were about four times higher for plasma-treated fabrics compared to the
raw fabric. Furthermore, immediately after the plasma treatment, about 31 and 26 times
shorter wetting times were recorded for fabrics J150 and J300, respectively.

In this paper, we also highlight the importance of the aging effect on the wettability
of plasma-treated fabrics. The findings show that there were no significant changes in
the capillarity and wetting time of the fabrics’ after 28 and 7 days, respectively. Generally
speaking, the achieved effects of plasma treatments are fairly stable.

A possible application of plasma-treated jute fabric is its utilization as water-binding
geo-prebiotic polysaccharide support, which could promote a sustainable relationship be-
tween the microbiota and abiotic constituents in degraded land surfaces, i.e., cyanobacterial
inoculum survival and higher efficiency of biocrust restoration. The utilization of plasma-
treated jute fabric waste (such as damaged hessian clothes, sacking, and shopping bags)
instead of commercially produced jute fabric could reduce waste and incorporate the concept
of a circular economy while generating additional benefits for degraded land surfaces.
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Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 2013, 296, 206–215. [CrossRef]
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