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a b s t r a c t

Cancer progression is linked to gene-environment interactions that alter cellular homeostasis. The use of 
biomarkers as early indicators of disease manifestation and progression can substantially improve di-
agnosis and treatment. Large omics datasets generated by high-throughput profiling technologies, such 
as microarrays, RNA sequencing, whole-genome shotgun sequencing, nuclear magnetic resonance, and 
mass spectrometry, have enabled data-driven biomarker discoveries. The identification of differentially 
expressed traits as molecular markers has traditionally relied on statistical techniques that are often 
limited to linear parametric modeling. The heterogeneity, epigenetic changes, and high degree of 
polymorphism observed in oncogenes demand biomarker-assisted personalized medication schemes. 
Deep learning (DL), a major subunit of machine learning (ML), has been increasingly utilized in recent 
years to investigate various diseases. The combination of ML/DL approaches for performance optimi-
zation across multi-omics datasets produces robust ensemble-learning prediction models, which are 
becoming useful in precision medicine. This review focuses on the recent development of ML/DL 
methods to provide integrative solutions in discovering cancer-related biomarkers, and their utilization 
in precision medicine.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 

Structural Biotechnology. This is an open access article under the CC BY license (http://creative-
commons.org/licenses/by/4.0/).
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1. Introduction

Molecular biomarkers are physiological indicators that can in-
dicate illness-associated alterations at the molecular level, assist in 
the prognosis of disease manifestation, and identify disease-related 
molecular targets [1–3]. In cancer pathology, the use of appropriate 
biomarkers for early diagnosis and prognosis is crucial to reducing 
mortality. Early diagnosis and prognosis of cancer are complicated 
by genetic polymorphisms, the presence of oncogenes, and epige-
netic variables [4,5]. Data integration strategies have aided patient 
clinical management in recent years by improving diagnostic accu-
racy and therapeutic efficacy [5]. In contrast to the intelligence of 
animals and people, artificial intelligence (AI) is the intelligence of 
machines that can perceive, synthesize, and infer knowledge. Ma-
chine learning (ML) is a kind of AI that can accurately predict out-
comes based on training data without being specifically pre- 
configured to do so (Fig. 1a). The invention of the artificial neural 
network (ANN) allowed the modeling of complex non-linear systems 
by depicting the mechanisms of biological neurons. The ANN is 
made up of a network of connected units or nodes known as arti-
ficial neurons (Fig. 1b), which are modeled after neurons in the 
human brain. Each connection, similar to synapses in the human 
brain has the ability to transmit a signal to other nodes. An artificial 
neuron receives, analyzes, and communicates with other connected 
neurons. The output of each neuron is determined by some non- 
linear function of the sum of its inputs, and the "signal" is sent as a 
real number output. In particular, deep learning (DL) is a subset of 
ML approaches (Fig. 1a) that combine ANNs and representation 
learning. The learning can allow for highly dense and fully connected 
multi-layered networks that can be trained in supervised, semi- 

supervised, or unsupervised settings (Fig. 1c). These ANNs can also 
be used to construct autoencoders that use unsupervised learning 
techniques for data encoding.

Conventional polygenic risk scoring through the utilization of AI 
and ML is also becoming a promising tool for the early detection and 
prognosis of cancer [6,7]. In this context, deep learning may provide 
a suitable alternative for modeling complex traits and incorporating 
previously restricted multidimensional medical imaging datasets 
[8–11]. Although the conventional ML approach is the most efficient 
analysis technique in multiple medical discovery and clinical deci-
sion support systems (CDSS), the utility of DL is gaining attention in 
multi-data-type analysis involving ensemble-based disease study 
models [5,12,13]. Furthermore, DL-assisted identification of suscep-
tible genes and associated proteomics and metabolomics profiles 
could be a useful strategy to detect cancers at early stages [5,14–18]. 
Such an integrative strategy may also provide targets for precision 
medicine, which may help to enhance the prognosis for total re-
covery. Recent studies suggest that a DL-based approach that in-
tegrates a broad range of datasets, including histology, magnetic 
resonance imaging (MRI), X-rays, and chromatograms, along with 
multi-omics data can significantly improve the accuracy of diag-
nostic models for cancer [8,19,20]. Precision oncology requires the 
ability to predict outcomes for specific cancer patients, such as 
survival or metastasis [21]. DL approaches, such as graph neural 
networks (GNN), applied to gene regulation and metabolic path-
ways, are emerging as useful tools in the study of tumor metastasis 
[21–23]. GNN is a form of neural network that acts directly on the 
graph structure consisting of multiple nodes, each representing an 
entity. Node categorization is a common utility of GNN. Moreover, 
the development of generative DL models is currently being utilized 

Fig. 1. Basics of deep learning models. (a) Deep learning is a subset of the machine learning approach, which itself is a subdomain of artificial intelligence. The amount of dots in 
boundary line schematically represents amount of datasets available for model training (b) A basic unit of artificial neural network is a neuron, which can take input and undergo 
calculations involving weight and biases. The resulting values are subjected to an activation function to decide whether or not the neuron's input to the network is significant in 
the prediction process utilizing simpler mathematical procedures. (c) Deep learning models consist of multiple layers of such indivisual neurons with the ability to process high- 
dimension data. The dataset is fed into the network in the input layer, which is subsequently followed by multiple inner hidden layers, and final outcomes are computed on the 
outer layer with the utility of different activation functions.
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for drug target discovery and de novo synthesis of investigational 
new drugs to facilitate cancer research [24,25]. This review briefly 
explores the current trends in DL, which facilitate multi-data type 
analyses, biomarker discoveries, and precision medicine.

2. Deep learning-assisted medical imaging and multi-omics data 
analysis in cancer research for early cancer diagnosis

Medical image categorization is essential in clinical diagnosis, 
prognosis, and educational activities [26,27]. Imaging biomarkers are 
based on the anatomical, histological, or radiographic characteristics 
of samples. Histology slides are a valuable source in clinical practice 
for screening cancer biomarkers such as angiogenesis, tumor 
growth, and metastasis [28,29]. Manual evaluation of histological 
slides (Fig. 2), X-ray, computed tomography (CT), and MRI are la-
borious and often subject to human error, leading to misdiagnosis. In 
recent years, DL has demonstrated exceptional accuracy in proces-
sing medical imaging data for disease diagnosis, including chest 
radiography, breast cancer screenings (or mammograms), and CT 
scans [8,18,30,31]. The success of DL in medical imaging is driven 
mainly by the development of convolutional neural networks 
(CNNs), a class of deep neural networks (DNNs) that perform 

excellent visual imagery feature detection with high sensitivity and 
specificity [32]. 3D versions of CNN also assist in solving problems 
related to 3D image segmentation, which is necessary for categor-
izing brain tissues, heart structures, and abdominal organs [8,33]. 
The transfer learning (TL) is a DL-based strategy that focuses on 
retaining information learned while addressing one issue and 
transferring it to resolve a similar but distinct problem. Well-es-
tablished CNNs such as VGG16 [34] which have been trained to re-
cognize a variety of objects, can be leveraged through TL and applied 
to relatively small datasets to yield highly accurate diagnosis models 
[35,36]. Similarly, one-shot and few-shot learning models are also 
being used for semantic feature learning tasks to help diagnose lung 
cancer recurrences [37] and lymph node metastasis [38,39]. How-
ever, the datasets used for training these models have a significant 
impact on their accuracy. Therefore, the quality of training datasets 
can highly influence the performance of models [40]. CNN can also 
detect features in non-image data such as gene expression via 
transforming non-image datasets into feature-rich image vectors. 
This can be subjected to a trained CNN classifier for cancer-type 
prediction based on gene expression data [41,42]. Recent develop-
ments in DL include the swarm learning (SL) technique, which in-
volves parties working together to build AI models, while avoiding 

Fig. 2. Integration of histological slides and genetic susceptibility data in deep learning techniques for malignancy prediction. Histological slides provide strong evidence related 
to clinical manifestations of cancer such as neoplasms, malignant tumors, and metastasis. Deep learning techniques can combine these traditional image-based datasets with 
well-known genomic tests to make a strong model for early cancer diagnosis that is much more accurate than individual tests.
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data transfer and monopolistic data governance for large multi- 
centric datasets. Swarm learning was implemented on multi-centric 
datasets of histopathological images from over 5000 cases. It as-
sisted in the prediction of BRAF protein mutation status and mi-
crosatellite instability directly from colorectal cancer histological 
slides [43]. Together, these studies suggest that DL is paving the way 
to improve early cancer diagnosis using medical images. In-
dependent dataset validation is a commonly used technique in AL 
and DL for evaluating the performance of a trained model. This 
technique involves using a separate dataset for evaluation, which is 
isolated from the training and testing dataset, to ensure the gen-
eralization of model to unseen data. Independent dataset validation 
have been utilized to evaluate the performance of several DL models 
ranging from imaging biomarkers in neurodegenerative such as 
Alzheimer [44,45], breast cancer [18], histopathological analysis for 
malaria [46] to time series-labelled tumor markers [47]. DL is an 
emerging filed, thus, it is important to note that due to the lack of 
standardized protocols for data collection and the limitations in 
technical capabilities, not all models or studies have the ability to 
utilize independent dataset validation. This can pose a challenge for 
ensuring the generalizability of model performance and should be 
taken into consideration when designing and evaluating deep 
learning models.

DL may assist in the in-depth study of cancer by enabling the 
integrative analysis of multi-omics datasets [48–51]. A generalized 
schema (Fig. 3) involving multi-type data input illustrates the utility 
of multi-model DL approach for data classification or inference. The 
schematics summarizes intake of hypothetical multi-dimension data 
such as: blood metabolite concentrations, histological images of 
biopsy, and CT scans to classify or inference possible outcomes of a 
cancer-related diagnosis. These input datasets can be of any type, 
such as X-ray images, blood metabolite concentrations, microarrays, 
and genomics data. Lee et al. integrated a DL-based autoencoding 
method with multi-omics datasets, including genomic, tran-
scriptomic, and epigenomic (mRNA, miRNA, DNA methylation, and 
copy number variations) datasets obtained from patients with lung 
adenocarcinoma (LUAD). The model was able to learn representative 
features of the disease to differentiate the patient subgroups, 
showing the potential of DL in LUAD prognosis [48]. Multi-omics 
data associated with breast cancer have frequently been used in DL 
studies [18]. In a separate study, Zhang et al. applied DL methods by 
integrating gene expression, gene copy number variations, miRNA 
expression, and DNA methylation data to predict muscle-invasive 
bladder cancer (MIBC) [49]. This study identified the genomic and 
immunological differences between high- and low-risk patients. It 
also recognizes the role of Keratin 7 (KRT7) as a biomarker of MIBC. 

Recently, Hira et al. showed that DL-based variational autoencoders 
could be utilized for the classification of ovarian cancer transcrip-
tional subtypes using multi-omics data from the cancer genome 
atlas (TCGA) datasets with model accuracies ranging from 87% to 
93% [52]. A DL approach was also used in the identification of fea-
tures linked to differential survival of patients with hepatocellular 
carcinoma (HCC) [53]. A DL-based survival-sensitive model was 
developed using RNA/miRNA sequencing and DNA methylation data 
obtained from patients with HCC in the TCGA database. The model 
stratified two optimal subgroups of patients with significant survival 
differences and was validated using five external datasets from 
various omics types. This study suggests that DL can be used for the 
prognosis of HCC [53]. Also, Poirion et. al. suggested a hybrid ap-
proach using a novel DL and ML framework called “DeepProg” which 
utilized multi-omics data to build a highly predictive model for 
patient survival risks among various cancer subtypes [5].

The promising outcomes of DL-based studies have accelerated 
broader interest in combining metabolomics and other omics data 
for similar applications, such as potential biomarker discovery 
[14,53,54], chemical structure identification [55,56], and disease 
comorbidity analysis [57]. Although implementing a DL approach 
with genomic, DNA methylation, and transcriptomic data for bio-
marker prediction and cancer treatment selection is relatively 
common [54,58,59], the use of metabolomics-based biomarkers is 
gaining attention because of their direct relation to the cancer 
phenotype [15,60,61]. Nonetheless, one of the potential liabilities of 
using big multi-omics dataset is that it could diminish the re-
presentation of sparsely occurring diseases as the large percentage 
of frequently observed features in training database may create 
biasness in classifier models.

Furthermore, the benefits of such findings show that including 
multi-omics data in a DL model improves its accuracy when com-
pared to using only a single omic dataset [48,62]. Given the growing 
trend of applying DL in cancer research, modeling patient outcomes 
and biomarker discovery may facilitate timely diagnosis and im-
prove the clinical management of patients with cancer.

3. De novo synthesis and prediction of compound properties and 
activities using deep learning approach

Drugs designed using synthesis-based predictions have a long 
history, dating back to the early 1960 s. It is exceedingly difficult to 
design novel compounds using conventional tools [25]. ML/DL ap-
proaches have shown significant potential in implementing the 
simplified molecular-input line-entry system (SMILES) as the basis 
for describing molecular structures [63,64]. AI and generative 

Fig. 3. Schematics illustrating utility of simple multi-modal deep learning approach in cancer research. The multi-type data input can include blood metabolite concentrations 
(1D data), histological or X-ray images (2D data), and MRI or CT scan images (3D data). The data undergo feature mapping followed by multiple pooling operations within DNN. 
The layers are subsequently flattened, and a score is computed using a scoring function (e.g. softmax) for each model. These scores from multiple models are further processed to 
compute the final outcome as disease class prediction or inference.
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models have recently been used in de novo drug design (DNDD) and 
compound optimization [25,56]. The DNDD approach is a compu-
tational growth-based method that generates new chemical struc-
tures without prior knowledge of their structural and chemical 
properties. The synthesis is based on the creation of new chemical 
entities that meet a set of requirements by employing computational 
growth methods. Traditional methods require ligand- or structure- 
based designs that are based on the active site and binder of the 
target molecule [65]. Other molecular generation or de novo design 
techniques include inverse QSAR10 [25,66], particle swarm optimi-
zation, and genetic algorithms [25,67]. These methods generate new 
molecules with specific chemical properties based on the properties 
of training datasets. In recent years, generative models have been 
increasingly used in molecular de novo design owing to their ability 
to learn the characteristics of real-world training examples and to 
create entirely new synthetic entities with similar characteristics 
[68,69]. A recent study utilized a generative adversarial network 
(GAN) model that integrated information from systems biology, 
molecular design, and transcriptome data to train a DL generative 
model that could autonomously design compounds with a high 
likelihood of imparting the desired transcriptome profile [70]. Fig. 4
shows a schematic of the recent developments in de novo compound 
design using generative models and autoencoders. Despite the lack 
of theoretical evidence from other ML approaches, the results sug-
gest that a DL approach may hold potential comparable to well-es-
tablished conventional ML and statistical methods in cancer studies 
[71,72]. Recently, promising results were reported for a de novo 
molecular generation method using a latent-vector-based GAN that 
did not require SMILES for compound synthesis [24]. Similarly, DL 
approaches have been explored to assess the feasibility of drug re-
purposing in oncological studies encompassing genetic profiles and 
drug-phenotype associations [73–75]. In association with the con-
ventional ML approach, a range of artificial networks such as GANs, 
recurrent neural networks (RNNs), and autoencoders have been ef-
fectively used to generate innovative de novo drug creation meth-
odologies [56,69]. Thus, DL-based generative models have the 

advantage of utilizing multi-type biological training dataset and are 
not limited to simple molecular descriptors like SMILES. These de-
velopments highlight the potential of DL for de novo synthesis and 
compound characteristics prediction for the development of cancer 
drugs.

4. Potentials of deep learning in tumor-associated metabolic 
pathways prediction and graph-based convolution neural 
networks in cancer studies

A recent study by Petrovsky et al. used 1D and 3D CNNs to dif-
ferentiate patients with kidney, ovarian, and prostate cancers from 
healthy controls by analyzing metabolomics datasets [51]. The well- 
trained DL model was able to recognize several oncopathologies 
with an area under the receiver operating characteristic curve 
(AUROC) ≥ 0.95. Recently, Inglese et al. applied a DL approach to 
mass spectrometry (MS)-based 3D desorption electrospray ioniza-
tion (DESI) imaging data to predict the heterogeneity of the meta-
bolic phenotypes of cancer. This allowed unsupervised clustering of 
tumor tissue to identify subregions distinguished by the abundance 
of certain metabolites, revealing biological heterogeneity within the 
tumor [9]. In another study, DL was applied to metabolomics data to 
identify the metabolic features of complex traits, which accurately 
predicted the status of an estrogen receptor in breast cancer samples 
[15]. This study compared a feed-forward DL network with six ML 
techniques, namely random forest, support vector machine, re-
cursive partitioning and regression trees (RPART), linear dis-
criminant analysis, and generalized boosted models, in terms of their 
ability to classify negative and positive estrogen receptor breast 
cancer tissue samples. The DL approach achieved the highest accu-
racy (AUC = 0.93), outperforming well-established ML methods. 
Furthermore, the DL model uniquely identified eight novel metabolic 
pathways associated with breast cancer, paving the way for future 
investigation [15]. Recently, Kopylov et al. utilized a 1D CNN to re-
cognize metabolic signatures that could distinguish between dif-
ferent cancer phenotypes and schizophrenia at the comorbidity level 

Fig. 4. Schematics of de novo simulation of novel compound structure based on generative deep learning models. Unlike the use of SMILES to discover potential drug structures, 
the deep learning-based generative models can learn molecular features of drugs in a training dataset and simulate entirely new compounds within a similar distribution. This is 
achieved by combining GAN with a suitable autoencoder to provide optimum results. The autoencoder is first trained using a standard molecular database as network input. The 
trained encoder produces latent vectors that are used as the training input for GAN using feedback obtained from the discriminator network. The new compounds are simulated 
by the trained generator network of GAN using random Z-noise and then utilizing the decoder to transform the sampled latent vector into a chemical structure. The solid arrow 
represents the flow of training data in the network. The dotted arrow represents the flow of data in the optimized GAN and autoencoder network. GAN, generative adversarial 
network. SMILES is a simplified molecular-input line-entry system.
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with a model accuracy of ≥ 90% [57]. They deployed a neural network 
to analyze complete mass spectra and were able to efficiently dis-
tinguish unrelated pathologies and a control (healthy donors) group 
with a model accuracy of 90%, and different subtypes of oncophe-
notypes with an accuracy of 94% [57]. Zhou et al. used an auto-
encoder-based DL to learn the latent representative features of MS 
data and thereby detected paragangliomas and ovarian cancer with 
accuracies >  95% [76]. Shaffie et al. implemented a DL autoencoder 
classifier framework using CT scan images and breath-based volatile 
metabolic marker data as inputs to achieve over 97.8% accuracy in 
lung cancer diagnosis [77]. Furthermore, DL models can facilitate 
network inference, including metabolite–metabolite interactions 

within a biochemical pathway. Fang et al. developed a DL algorithm 
Lilikoi v2.0 [78] (an upgrade of Lilikoi v1.0 [79]), which uses a multi- 
layer neural network trained with a stochastic gradient descent 
search. The Lilikoi algorithm can transform and incorporate meta-
bolomics data from samples to generate personalized pathway 
profiles, which can aid downstream classification or development of 
a prognosis model based on the metabolites linked with the corre-
sponding pathway [78]. The tool demonstrated marked alterations in 
the metabolic pathways associated with breast cancer in estrogen 
receptor-positive and -negative samples [15,78].

Indeed, the application of DL in metabolomics and lipidomics has 
been relatively slow, mainly because of the scarcity of reference 

Fig. 5. Schematics of a graph convolution neural network (GCNN) for cancer diagnosis. (a) The clinical data and gene expression or proteomics PPI datasets of cancer and control 
groups can be parsed to (b) a specialized GCNN deep learning model, which combines this information to create a graph network-based prediction model. The GCNN uses 
information from training sets to customize individual patient medication regimens and (c) generate patient-specific subnetworks to (d) assist in precision medicine therapy. The 
blue and black oval-cornered boxes in ‘d’ represent metastasis and non-metastasis gene-subnetwork identified by GCNN, respectively. Each circle in ‘a’ represents gene expression 
prior to normalization or differential analysis. Multi-colored circles ‘b-d’ schematically represent differentially expressed genes as nodes with varying intensities. Solid and dotted 
arrows represent information flow in GCNN for metastatic and non-metastatic groups, respectively. GCNN, Graph convolution neural network; Metast., metastasis; PPI, protein- 
protein interaction network.
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standards, accurate analytical methods, computational resources, 
expertise, and interpretability. Because DL models require large da-
tasets for training, low sample sizes are likely to decrease the sen-
sitivity and accuracy of DL models to predict metabolic phenotypes 
[14,55,80]. The limited number of labeled patient samples is a 
common issue for training any type of ML or DL model [81]. This, 
together with the significantly greater number of features describing 
each sample, negatively impacts unsupervised learning. An im-
proved performance in the ML models while predicting individual 
patient responses to therapeutic drugs has been achieved by itera-
tively combining supervised models and feature selection [82,83]. In 
the context of DL models applied to image datasets, few-shot clas-
sification models are gaining attention owing to their architectural 
characteristics to learn from smaller dataset sizes [33,38]. None-
theless, rapid advancements in high-throughput metabolomics, to-
gether with an efficient DL approach, might ameliorate these 
shortcomings.

A graph convolutional neural network (GCNN) is a type of deep 
neural network that works directly with a graph structure. A GCNN 
can be a DNN with fully connected convolutional layers. Node ca-
tegorization is commonly used in the GCNN [23]. In essence, each 
node in the network has a label, and the task is to predict the labels 
of unknown nodes based on other node information. The GCNN 
model was developed as a more flexible way of propagating in-
formation through many tiers of neighboring nodes in a graph net-
work. Traditional CNNs are inefficient in capturing complex 
neighborhood information because they assess small regions based 
on a fixed convolutional kernel, resulting in limited performance and 
interpretability of functional and structural feature analyses [22,23]. 
ML models that employ a graph network have an advantage in that 
they can accurately describe complex physical entities and pro-
cesses, as well as irregular interactions. A GCNN was used to conduct 
pan-cancer analysis to detect the likelihood of tumor metastasis. 
Gene regulatory networks and gene expression features were ex-
tracted using a GCNN. The high-dimensional features of each sample 
were represented as image pixels and utilized to predict the like-
lihood of tumor metastasis in each patient [84].

Metastasis is the most common cause of cancer-related death. 
Monitoring variations in cancer gene expression is crucial for un-
derstanding metastatic pathways for tumors and cellular activities. A 
GCNN was recently used to combine the image features of metas-
tasis to local lymph nodes for cancer trajectory prediction and 
clinical decision-making [21]. A GCNN can utilize the gene expres-
sion data of a metastatic and non-metastatic cohort as a graph signal 
molecular network and compute an individual subnetwork for a test 
patient cohort (Fig. 5). In summary, clinical metadata from the dis-
eased and control groups (Fig. 5a) along with corresponding gene 
expression and/or other multi-omics data (Fig. 5b) as nodes, could be 
utilized to train a customized GCNN prediction model. This enabled 
the identification of patient-specific genes or feature subnetworks to 
deploy precision medicine (Fig. 5c-d). The differential expression of 
genes between training cohorts using cross-validation can optimize 
a GCNN model and identify the labels of network nodes, which 
correspond to potent biomarkers for metastasis (Fig. 5). Graph-CNN- 
based modeling presents an effective DL-based approach for se-
lecting features, which take advantage of past information and 
generate patient-specific subnetworks, thereby influencing the 
outcome of individual categorization. For instance, a GCNN was 
employed to integrate patients’ clinical-genomic data for pan-cancer 
analysis and investigate the stratification of lung tumors for im-
munotherapy [85]. The GCNN has the advantage of flexibility in 
clinical metadata integration, which may include clinical subtypes as 
well as patient-specific genes that might be associated with malig-
nant or benign phenotypes. A variation of GCNN was utilized to 
predict the effect of pharmacotherapy on in vitro cancer cell growth 
[22]. Correspondingly, by using a GCNN, researchers have been able 

to combine different features and extract cancer-related traits from 
gene expression data with significantly improved prediction accu-
racy [84]. Together, these results raise the possibility of using the 
GCNN as an effective DL method to examine the clinical effective-
ness of cancer diagnostics and treatments.

5. Deep learning-based ensemble modeling for precision cancer 
medicine

One of the major aims of cancer precision medicine is to identify 
the molecular traits responsible for certain clinical outcomes. At 
present, a strategy involving molecular traits through drug-specific 
informative genes remains a popular means to investigate sensitivity 
or resistance to cancer drugs [81]. DL approaches have a myriad of 
modeling architectures, making it difficult to determine the best 
approach. Occasionally, it might be feasible to undertake a sys-
tematic study of all possible gene candidates using microarray gene 
expression data to identify new potential biomarkers. However, 
feature selection based only on statistical processing and single data 
types often does not account for personalized molecular information 
and clinical metadata, resulting in the selection of genes or traits 
with limited biological relevance [86]. Recurrent neural network and 
long-short-term memory (LTMS) models are good at analyzing re-
petitive patterns in sequences and time-series forecasting, whereas 
CNNs are better at detecting image features [87–89]. When omics 
data must be computed together with histological data and other 
clinical metadata, it is reasonable to adopt a DL-based multi-model 
ensemble network for biomarker discovery. A previous study sug-
gested that ensemble-based modeling performs well in breast 
cancer diagnosis, in terms of both stability and prediction accuracy 
because of the collective representation of multi-model prediction 
schemes [4]. A recent study in breast cancer patients implementing 
bimodal DNN with heterogeneous gene expression data and clinical 
information outperformed all prognosis prediction models, as in-
dicated by survival analysis and model performance, with the po-
tential for the development of precision medicine [86]. Rather than 
depending on single-model feature prediction, an unsupervised 
network-based selector combined with DL models may enhance 
robustness. This is especially important in precision medicine, where 
a patient’s clinical information might have a significant impact on 
one model, while having little or no effect on others. Fig. 6 sum-
marizes how multi-omics data, along with clinical metadata, can be 
integrated into an ensemble-based multimodal network to identify 
potential biomarkers and facilitate precision medicine. Biomarker 
discovery involves an ensemble-based multi-omics feature selection 
strategy, and the efficacy of the predictor is evaluated on the basis of 
clinical survival analysis. This strategy is highly beneficial for pre-
cision medicine, as patients’ clinical metadata can be directly cor-
related to the outcome of survival analysis; thus, the best performing 
models within the ensemble will have more influence on biomarker 
discovery and disease prediction. Taken together, these studies 
suggest that DL-based ensemble modeling can be advantageous 
when single data-type modeling is unable to achieve high perfor-
mance. A limitation of multi-omics ensemble-based models is that 
they are computationally intensive and, therefore, difficult to deploy 
in clinics. Additionally, the generation of multi-omics data requires 
sophisticated instruments, and the acquisition of erroneous data 
may occur owing to a lack of expertise, ultimately reducing the 
performance of ensemble models.

6. Combination of deep learning and deep reinforcement 
learning

DL models learn from a training dataset and then apply that 
knowledge to infer classes in an entirely new dataset, whereas re-
inforcement learning (RL) models learn dynamically using 
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continuous feedback to optimize a predesignated reward [90–92]. 
Deep reinforcement learning (DRL) combines the features of both RL 
and DL models to achieve optimum results in solving computa-
tionally intensive tasks, such as real-world object recognition, mo-
lecular structure simulation, and gaming. DRL has been used for 
applications ranging from computer gaming to medical technologies 
by incorporating DL models into reinforcement learning algorithms 
[93–95]. NVIDIA, a well-known gaming technology company, is ac-
tively involved in the development of AI systems for medical re-
search, which illustrates the growing interest in DL and DRL in this 
field [96–98]. In terms of innate immunity, Petersen et al. used DRL 
to develop an adaptive precision medicine policy that defines ef-
fective multi-cytokine therapy for sepsis patients [99]. Cancer-re-
lated omics datasets using DRL have been able to address a wide 
range of sequential decision-making problems, suggesting their 
potential in cancer research [92,96]. DRL was utilized on existing 
therapeutic methods to build automated radiation adaptation pro-
cedures for patients with non-small cell lung cancer (NSCLC). It aims 
to maximize localized tumor growth control while reducing radia-
tion dose and inhibiting radiation-induced pneumonitis [94]. Fur-
thermore, researchers have explored DRL’s potential for correlating 
distinct forms of cancer associated with tumor protein 53 (TP53) 
mutation patterns, and their unique impacts on tumors [100]. Recent 
developments in advanced quantum DRL have provided a frame-
work for clinical decision-making that can estimate personalized 
radiotherapy and propose the best dosage adjustment strategy [101]. 
The implementation of DRL and DL enables the design of sophisti-
cated disease models that takes input from real-world complex data 
and are not limited to certain pre-described protocols. These trends 
indicate a rapid adoption of DRL and DL to enhance the potential of 
AI in cancer research.

7. Summary and Outlook

Clinical research is increasingly demonstrating the broad ap-
plicability of DL methods, including in cancer diagnosis and therapy. 
Recent studies have demonstrated the potential of DL-based en-
semble models to augment personalized patient treatment strate-
gies based on medical histories and diagnostics. Advancements in 
high-throughput and large-scale omics assays have generated large 
volumes of data that can be utilized for biomarker discovery. 
Furthermore, precision medicine-based therapeutic interventions 
for cancer have shown promising efficacy when using a DL-based 
multimodal ensemble strategy that involves gene-protein-metabo-
lite interaction (Fig. 7). These approaches involve de novo drug 
synthesis, candidate gene clustering, and clinical outcome prediction 
based on a set of biomarkers discovered by processing complex 
features from multi-omics datasets.

However, DL models have several limitations, including small 
sample sizes, lack of interpretability, reliability of computational 
resources, and scarcity of professional expertise [102]. Training a DL 
model requires large numbers of well-characterized samples, and a 
small sample size has been shown to decrease the predictability and 
accuracy of DL models. Furthermore, the quality of the training data 
is critical because down- or up-sampling of an imbalanced dataset 
may introduce biases into model predictions. Complex DL models 
that are applied to large volumes of data, including imaging datasets, 
must be trained iteratively, which is computationally expensive. In 
this context, consensus neural networks can provide effective in-
terrogation of data and may aid in reducing features. In other cases, 
conventional ML methods can be trained faster than DL models 
[103]. DL-based prediction requires manual curation; thus, the se-
lection and validation of molecular features and signatures using a 

Fig. 6. Deep learning ensemble modeling for precision medication. Ensemble modeling can combine multiple data types along with clinical metadata with a variety of con-
ventional ML and DL models. It predicts the final scores based on the ‘voting’ of multiple models, which makes the results resilient to single-point model failure. Patients’ survival 
outcomes and treatment efficacy output for an investigational medication can be fed back to the ensemble model for optimization of precision medicine. GCNN, graph convolution 
neural network; RNN, recurrent neural network; ML, machine learning.
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DL model remain pertinent to biomarker discovery in cancer re-
search. In conclusion, we anticipate that DL and AI have great po-
tential for identifying biomarkers for cancer and in other medical 
areas as well.
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Glossary

AI: artificial intelligence
ANN: artificial neural network
AUROC: receiver operating characteristic curve
CDSS: clinical decision support systems
CNN: convolutional neural networks
CT: computed tomography
DESI: Desorption electrospray ionization
DL: deep learning
DNN: deep neural networks
DRL: Deep reinforcement learning
GAN: generative adversarial network
GCNN: graph convolutional neural network
GNN: graph neural networks
HCC: hepatocellular carcinoma
KRT7: Keratin 7
LTMS: long-short-term memory
LUAD: lung adenocarcinoma
MIBC: muscle-invasive bladder cancer
ML: machine learning
MRI: magnetic resonance imaging
MS: mass spectrometry
NSCLC: non-small cell lung cancer
RL: reinforcement learning
RNN: recurrent neural networks
RTART: recursive partitioning and regression trees
SL: swarm learning
SMILES: simplified molecular-input line-entry system
TCGA: the cancer genome atlas
TL: transfer learning
TP53: tumor protein 53
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