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SUMMARY

Previous prospective studies suggest that progression to autoimmune diseases is
preceded by metabolic dysregulation, but it is not clear which metabolic changes
are disease-specific andwhich are common across multiple immune-mediated dis-
eases. Here we investigated metabolic profiles in cord serum in a general popu-
lation cohort (All Babies In Southeast Sweden; ABIS), comprising infants who pro-
gressed to one or more immune-mediated diseases later in life: type 1 diabetes
(n = 12), celiac disease (n = 28), juvenile idiopathic arthritis (n = 9), inflammatory
bowel disease (n = 7), and hypothyroidism (n = 6); andmatched controls (n = 270).
We observed elevated levels of multiple triacylglycerols (TGs) an alteration in
several gut microbiota related metabolites in the autoimmune groups. The
most distinct differences were observed in those infants who later developed
HT. The specific similarities observed in metabolic profiles across autoimmune
diseases suggest that they share specific common metabolic phenotypes at birth
that contrast with those of healthy controls.

INTRODUCTION

Autoimmunity is a complex process contributing to widespread functional decline that affects multiple or-

gans and tissues. Overall, over 80 autoimmune diseases have been identified including, among the most

common ones, type 1 diabetes (T1D), multiple sclerosis, celiac disease (CD), inflammatory bowel disease

(IBD), and rheumatoid arthritis (RA).1 Several of the autoimmune diseases are manifested in childhood. The

prevalence and incidence of several of these autoimmune diseases have increased over the last de-

cades.2–5 The pathogenesis of most of the autoimmune diseases is, however, generally not fully character-

ized. It has been suggested that both genetic predisposition and environmental factors, and their mutual

interactions, play a significant role in the disease pathogenesis.6,7

Many autoimmune diseases share common risk factors or pathogenic mechanisms. For example, T1D and

CD share common predisposing alleles in the class II HLA-region.8,9 Approximately 6% of patients with T1D

also develop clinical CD10 whereas subjects with CD are at risk for developing T1D before age 20,10 T1D,

multiple sclerosis (MScl), and RA are also classified as T cell-mediated autoimmune diseases.11 Importantly,

it has been shown that fundamental processes underlying T cell functionality are linked to changes in the

cellular metabolic programs.12 External perturbation of key metabolic processes may impair T cell activa-

tion, differentiation, and cytokine production. We have also shown that differentiating human CD4+T-cells

have subset-specific differences in glycosphingolipid pathways.13

Abnormal metabolism is a common feature of several autoimmune diseases, which occurs before the onset

of clinical disease, including in T1D,14,15 CD,16–18 and IBD.9 Changes in specific phospholipids and amino

acids have been reported at birth in genetically disposed children who progressed to islet autoimmunity

and T1D later in life.14 In adolescents and adults, similarly as in children, metabolic dysregulation related

to altered phospholipid profiles and alteration in steroidogenesis, bile acid biosynthesis and sugar meta-

bolism have been reported.19 In future CD, altered levels of phospholipids and triacylglycerols have been

detected already before the infants had been exposed to gluten.9 In pediatric IBD, alteration in metabo-

lome, including phospholipids, has been reported,20 with similar changes being reported also in adults

including downregulation of alky lether phospholipids such as plasmalogens.21 In other autoimmune dis-

eases, dysregulated amino acid, central carbon, and phospholipid metabolism have been associated with

rheumatoid arthritis.22,23 In autoimmune thyroid disease, altered amino acid pathways, primary bile acid
iScience 26, 106268, March 17, 2023 ª 2023 The Author(s).
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Table 1. Demographic characteristics of the study cohort. Values shown as means (standard deviation), unless

noted otherwise

CD IBD JIA HT T1D Controls

N (F/M) 28 (9/19) 7 (5/2) 9 (3/6) 6 (0/6) 12 (8/4) 270 (124/152)

Gestational age (weeks) 40 (1.7) 40 (1.7) 40 (1.1) 39 (1.8) 39 (1.0) 40 (1.5)

Birth weight (g) 3705 (586)a 3540 (753) 3640 (487) 3163 (488)a 3745 (512) 3580 (503)

Maternal age (year) 30.0 (4.6) 31.0 (3.0) 27.0 (6.1) 30.5 (6.0) 30.0 (6.5) 29.0 (4.7)

Maternal BMI (kg/m2) 23.0 (4.7) 22.3 (2.4) 23.7 (1.5) 23.4 (3.5) 22.9 (4.8) 22.9 (3.8)

Delivery (vaginal/cesarean/b) 22/3/3 4/0/3 7/2/0 5/0/1 7/3/2 231/23/48

Age of diagnosis (years) 11.5 (5.7) 16 (1.6) 15 (5.3) 16 (1.6) 13.5 (3.3) NA

aSignificant difference in comparison with the control group.
bnot available for all subjects
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biosynthesis, and steroid hormone biosynthesis have been identified.24,25 In adult CD, recent meta-analysis

reported conflicting results, however, most studies were focused on a limited set of metabolites, such as

short-chain fatty acids and ketogenic metabolites26 and the adult CD is highly heterogeneous. Overall,

especially in children, current data thus suggest that there may be some commonalities betweenmetabolic

signatures preceding different autoimmune diseases. However, at present there are very few studies

comparing common and specific metabolic patters preceding multiple autoimmune diseases.

Herein, we investigate cord serum metabolomes in a general population cohort (All Babies In Southeast

Sweden; ABIS),27 comprising children who later progressed to one or more immune-mediated diseases

(T1D, CD, juvenile RA [JIA], IBD, hypothyroidism [HT]), and matched controls. We studied the metabolic

changes across all autoimmune mediated disease groups, looking at the overall metabolic changes in

those subjects later developing a specific disease. We also investigated whether maternal lifestyle factors

had an impact on the observed changes, and further investigated the association of the specific HLA-

conferred risk factors with metabolic profiles.

RESULTS

Metabolic profiles in cord blood

A total of 545 lipids and 3,417 polar/semipolar metabolites were detected in cord serum, of which 201 lipids

and 120 metabolites were identified at the level 1 and 2 and quantified, and additional 20 metabolites were

identified at the level 3 (Metabolomics Standard Initiative28 as marked in Tables S1 and S2). To investigate

global changes of metabolomes across the study groups (Table 1), including also the unidentified com-

pounds, we first performed model-based clustering for the two datasets separately, with the clustering re-

sulting in 8 lipid clusters (LC) and 12 polar metabolite clusters (PC) (Table 2).

We first investigated whether the gestational age, sex, birth weight or maternal factors (including BMI,

maternal age, maternal diagnosis, dietary patterns) had an impact on the metabolome. Out of these pa-

rameters, gestational age and birth weight showed the most significant association with metabolite clus-

ters (Figure 1) and several individual metabolites (Table S1). Also, maternal age showed associations with

the lipid and metabolite clusters. Maternal BMI and diet had modest impact on cord blood metabolome,

the former via positive associations with TGs containing saturated fatty acyls. The latter had weak impact

on the cord bloodmetabolome (R belowG0.25), except for three knownmetabolites of coffee that showed

significant association between maternal coffee consumption and cord blood levels of these metabolites

(R= 0.38–0.81, p<0.0001). Among maternal diagnoses, other food allergies than lactose intolerance or nut

allergy showed significant associations with clusters LC7, LC8 and PC3, smoking with four polar metabolite

clusters (PC4, PC7, PC8 and PC11), use of antibiotics with LC5, LC6, PC7 and PC12 and educational level

with PC7 and PC12. The latter may be attributed to the negative association between the educational level

and smoking, and associations between educational level and diet (negative association between educa-

tional level and vegetables in the diet, positive association with eating French fries).

For further data analyses, we investigated the impact of adjustment with maternal age, maternal BMI,

gestational age, and birth weight. Among these factors, maternal age, gestational age and birth weight

had an impact on the results, and for further data analysis, the data were adjusted with these three factors.
2 iScience 26, 106268, March 17, 2023



Table 2. Description of lipid (LC) and polar metabolite (PC) clusters

Cluster Main classes of compounds Specific examples

LC1 LPC, SM, Cer SM(42:3), LPC(22:5), Cer(d18:½4:0)

LC2 PC, PC_O PC(40:8), PC(40:6), PC(O-40:4)

LC3 CE, Lac/HexCer, PC, PI, SM CE(18:0), CE(18:1), Hexcer(d18:½4:0)

LC4 PC_PUFA, LPC_PUFA LPC(18:2), LPC(20:4), PC(38:4)

LC5 TG_SFA TG(14:0/16:0/18:1),TG(16:0/16:0/16:0), TG(50:0)

LC6 TG_MUFA, TG_PUFA TG(58:9), TG(18:1/18:½2:6), TG(58:6)

LC7 Unknowns Putative identifications: TGs

LC8 Unknowns Putative identifications: various phospholipids

PC1 Bile acids, microbial metabolites CA, CDCA, GCA, 3-indoleacetic acid

PC2 Amino acids Valine, Phenylalanine, lysine, serine

PC3 Free fatty acids, lipids Arachidonic acid, 16-Hydroxypalmitate, LPC(17:0)

PC4 Unknowns, highly polar compounds

PC5 Free fatty acids, lipids C16:1, C18:2, linoleic acid

PC6 Unknowns

PC7 Unknowns

PC8 Unknowns

PC9 Unknowns

PC10 Unknowns

PC11 Unknowns, highly polar compounds Putative identifications: exogeneous compounds

PC12 Unknowns
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Autoimmune diseases share similar metabolic profiles already at birth

We observed significant differences between the control group and the different diagnostic groups, both

at the level of lipid and metabolite clusters as well as at the level of individual metabolites (Figure 2,

Tables S2 and S3), after adjustment for gestational age, birth weight and maternal age. We investigated
Figure 1. Associations of various demographic and lifestyle factors, and food intake with metabolome

Spearman correlations shown between lipid and polar metabolite clusters and the metadata. *p<0.05. Abbreviations:

BW, birth weight; Del, delivery mode (cesarean versus vaginal); GA, gestational age; Sex (female versus male); T1D, type 1

diabetes; T2D, type 2 diabetes.

iScience 26, 106268, March 17, 2023 3



Figure 2. Comparison of different autoimmune disease groups and controls at the metabolite cluster level

(A) Lipid clusters and (B) metabolite clusters. Logfold change (FC) with *p.adjusted<0.05. Cluster descriptions are

provided in Table 2.
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the differences both at the level of individual disease diagnosis as well as by pooling all autoimmune cases

together, excluding the HT group as it appeared to be an outlier among the disease groups.

Among the individual diagnostic groups, the subjects who later developed HT differed most significantly

from the control group. Five of the eight lipid clusters showed significantly upregulated levels in HT

compared to controls. Overall, all disease groups showed a trend of upregulation of lipid clusters LC5,

LC6 and LC8, although the difference between the groups compared with controls was only significant

for HT. These three lipid clusters are composed of mainly triacyclglycerols (TGs). Overall, T1D and IBD clus-

tered together with similar trend over multiple lipid clusters. Similarly, CD and JIA clustered together. On

metabolic cluster level, T1D showed significant differences in comparison with control group in PC2, PC4,

PC7 and PC11. The CD group showed significant differences in PC4 and PC5, whereas the IBD group

showed significant differences in PC6. PC2 includes mainly amino acids, PC5 includes mainly on free fatty

acids, and other polar lipids, PC4 and PC11 consist of mainly unidentified metabolites, which based on

their chromatographic behavior are highly polar small metabolites, whereas PC7 includes semipolar com-

pounds putatively identified as free fatty acids and polar lipid derivatives.

Among the individual metabolites, 17 lipids and seven polar metabolites were different between the con-

trol and case groups at the level of nominal p values; however, none reached statistical significance after

FDR correction. These lipids were mainly TGs comprising saturated fatty acyls, whereas the polar metab-

olites included mainly secondary bile acids, one short-chain fatty acid, and two amino acids. In specific dis-

eases, we observed changes particularly in HT in lipids, with upregulated levels of large number of lipids

(TGs, SMs, and several other phospholipids) and downregulation of dehydroepiandrosterone sulfate. In

CD, we observed a trend of decreased levels of phospholipids (PC, SM), secondary bile acid UDCA and

serine and increased TGs, isovaleric acid and C20:5. In IBD, trend of decreased levels of ether PCs and

some other phospholipids were observed as well as increased levels of isovaleric and isocapric acid. In

JIA, the main difference was in TGs, with increased levels compared to controls, and also differences in

several gut microbiota-related metabolites. In T1D, we observed decreased levels of phospholipids,

including PCs and SMs, and downregulation of CDCA and fructose.

The autoimmune cases showed difference in metabolic co-regulation

Next, we investigated the interplay of the lipid and metabolite clusters and clinical features in autoimmune

cases and control groups separately (Figure 3A) as well as those lipids and polar metabolites that showed sig-

nificant differences (Figure 3B). In autoimmune group, the gestational age showed negative association with

PC9 whereas this association wasmuch weaker in control group. The birth weight showed negative association

with LC6 in the autoimmune groupwhereas this association was absent in the control group.We also observed

clear differences between the case and control groups in metabolite and lipid cluster mutual associations.

Pathway analysis reveals alteration in lipid metabolism

Pathway analyses were performed by comparing controls against autoimmunemediated diseases grouped

together (CD, T1D, JIA, IBD) using both Mummichog and GeneSet Enrichment Analysis (GSEA) algorithms
4 iScience 26, 106268, March 17, 2023



Figure 3. Relative levels of selected metabolites across the study groups

*p.adjusted<0.05. Linear models adjusted for for maternal age, birth weight and gestational age.
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for the pathway analyses to increase their robustness.We further filtered the results based on the number of

metabolites detected in each pathway and the number of significant hits. The results indicated that the

autoimmunity was associated with multiple pathways including arachidonic acid metabolism, steroid

and tryptophan metabolism (Figure 4).

Next, we selected those lipids that contain either arachidonic acid (AA) or docosahexaenoic acid (DHA), as

these lipids have shown to be a crucial role in the development of the infant immune system.29 We then

examined the difference between the controls and autoimmune groups, by applying a partial correlation

analysis (Figures 5A and 5B). The intra-lipid correlations were clearly weaker in the autoimmune group

when compared with the control group (Figure 5A), although there was no significant difference in the par-

tial correlation between lipid classes on the two groups (Figure 5B).

HLA risk is associated with changes in amino acid and PUFA

Next, we investigated the association between HLA risk genotype andmetabolite profiles, both at the clus-

ter and individual metabolite level by using a linear regression model. For T1D, the risk genotypes were

classified as decreased, neutral, increased, and high risk while in CD, the groups were very low, low, and

moderate. The T1D risk type was associated with LC2, PC2 and PC4, the latter two showing reduced levels

in comparison with the decreased genotype versus neutral, increased, and high-risk genotypes (Figure 6).

At the level of individual lipids and polar metabolites, large number of phospholipids, both PCs and SMs,

particularly those PCs with PUFA showed similar trends, as well as AA and DHA, i.e., with reduced levels

with increasing risk HLA risk genotype (Table S4). For CD, the metabolic profiles did not show associations

with the risk genotype.

DISCUSSION

We performed untargeted metabolomics analyses to obtain a comprehensive picture of metabolic profiles

in cord blood samples in infants who later developed autoimmune diseases. The similarities in metabolic

profiles, particularly across T1D, JIA, IBD, CD, suggests that the diseases share common metabolic alter-

ation already at birth, i.e., years before the onset of the disease. As a common feature, we observed

elevated levels of multiple classes of TGs, including both saturated and polyunsaturated fatty acid contain-

ing TGs. In addition, multiple gut microbiota related metabolites, such as secondary bile acids UDCA and
iScience 26, 106268, March 17, 2023 5



Figure 4. Pathway analysis comparing cases (without HT group) versus controls

The upper panels show pvalues using the MFN (left) and KEGG (right) pathway maps, using Mummichog (yaxis) and GSEA (xaxis) pathway analysis methods.

Size of the circle corresponds to the pathway impact value. The corresponding tables with number of metabolites in the pathways (total number/hits/

significant hits) and pvalues shown under these panels. Abbreviations: Meta pvalue calculated by combined GSEA and Mummichog score; Sig, significant.
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ketolithocholic acid, were altered in the autoimmune groups. Themost significant pathways impacted were

related to arachidonic acid derived fatty acid metabolism (prostaglandin and leukotriene metabolism) and

steroid hormone metabolism. Of individual diseases, most distinct differences were observed in those in-

fants who later developed HT, showing significantly increased levels of large number of lipids.

We also observed that phospholipids, particularly PUFA containing lipids, as well as free fatty acids AA and

DHA were associated with HLA-conferred disease risk, with decreased levels of this type of lipids with

increasing genotype risk profile. The AA pathway has been shown to play a key role in inflammatory pro-

cesses.30,31 Indeed, chronic inflammation is known to be an underlying cause of multiple diseases, such

as metabolic syndrome, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular dis-

ease, and autoimmune diseases.32 The role of arachidonic acid in inflammation is related to the production

of oxylipins, which are oxygenated lipid mediators that promote or resolve inflammation.30 The AA-related

oxylipins are usually considered to be inflammatory, proliferative and vasoconstrictive.30 Elevated plasma

arachidonic acid to docosahexaenoic acid ratios have also been associated with increased risk of IA in the

Finnish Type 1 Diabetes Prediction and Prevention Study (DIPP) birth cohort.33,34 The AA-related oxylipins

have also been shown to be associated with increased risk of type 1 diabetes risk in Diabetes Autoimmunity

Study in the Young (DAISY) cohort.31 Also in adult subjects with IBD, PUFA dysregulation has been

suggested to be associated in the bowel inflammation process through eicosanoids, derived from AA

corresponding to increased colonic inflammatory cytokines and increased serum fatty acids.35 Similarly,

in rheumatoid arthritis, AA metabolism has been suggested to play an important role in the disease

manifestation.22
6 iScience 26, 106268, March 17, 2023



Figure 5. Partial correlation network analysis, done separately for controls and cases (excluding HT)

Here, each node represents a metabolite, metabolite cluster, or a clinical parameter (gray color). Each edge represents

the strength of partial correlation between two compounds/parameters after conditioning on all other compounds in the

datasets. Edge weights represent the partial correlation coefficients, with Edge colors: blue color for negative

correlations and red for positive correlations, the thickness of the line shows the strength of the correlation. Edge ranges

adjusted between G0.22 to 1.

(A) Arachidonic acid and DHA containing lipids in yellow color, with partial correlations p<0.1.

(B) Network on the level of lipid (yellow color) and polar metabolite clusters (blue color).
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Currently, there are no previous studies that compared the metabolic patterns in cord-blood of children

who later developed different autoimmune diseases in a general population-based set-up, or studies

that would have linked the HLA risk type with metabolic profiles in infants. There are multiple studies,

including our earlier studies on predictive metabolic patterns of T1D14,36 and CD,9 however, these have

been done in a genetically high-risk cohorts. We did observe some similarities with the current study

and our earlier results, particularly related to changes in CD. However, it should be noted that the current

cohort has distinct differences related to previous studies, particularly as in the current cohort the median

age of diagnosis was 15 years, whereas in the high risk T1D and CD cohorts we have investigated earlier the

median age of diagnosis was much lower (<10 years). Our results were also in agreement of published

results on metabolomic changes reported in patients with rheumatoid arthritis which have reported that

children with active JIA had higher plasma triglyceride concentrations compared to healthy control sub-

jects.37,38 Adult subjects with rheumatoid arthritis, on the other hand, have shown to have lower levels of

multiple LPCs, which were further correlated with interleukin-6 and disease activity indices.23

Overall, our study suggests that there are shared metabolic characteristics across multiple autoimmune

diseases, plausibly because of shared physiopathologic mechanisms, genetic and environmental factors
iScience 26, 106268, March 17, 2023 7



Figure 6. Impact of HLA-conferred risk for T1D on metabolic profiles

LIMMA model, adjusted with maternal age, birth weight and gestational age, logarithmic fold changes between cases

with neutral versus decreased risk (green), increased versus decreased risk (yellow) and high versus decreased risk (red) for

lipid cluster 2 (p = 0.018) and polar metabolite clusters 2 (p= 0.041) and 4 (p = 0.015).
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because of autoimmune tautology. However, more mechanistic studies are required to elucidate the path-

ways responsible for the disease development, and the factors contributing to the process.

This study in a general-population prospective birth cohort indicates that future autoimmune diseases

share several common features in metabolic profiles at birth. The causes of these common features

and their relevance for disease pathogenesis are yet to be elucidated. Given these metabolic profiles

are detected already at birth, likely causes are attributed to maternal diet and other environmental

exposures.
Limitations of the study

We acknowledge limitations of the study. The number of subjects within each disease group was low.

This is an inherent limitation of general population study setting when studying the diseases with low

incidence. As a strength of such setting, the study is not limited to populations with HLA-conferred

risk of specific diseases, thus allowing for comparative studies across the different diseases. Although

the analytical coverage of the metabolites was comprehensive, we could not identify all metabolites de-

tected. However, the pathway analysis tool does include the whole data and it also includes pathway to

identify the unknown compounds, thus giving a representative view of the metabolic changes at the

pathway level.
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2-diheptadecanoyl-sn-glycero-3- phosphoethanolamine (PE(17:0/17:0)) Avanti Polar Lipids Cat#830756

N-heptadecanoyl-D-erythro- sphingosylphosphorylcholine (SM(d18:1/17:0)) Avanti Polar Lipids Cat#860585

1-stearoyl-2-hydroxy-sn-glycero-3- phosphocholine (LPC(18:0)) Avanti Polar Lipids Cat#855775

2-diheptadecanoyl-sn-glycero-3- phosphocholine (PC(17:0/17:0)) Avanti Polar Lipids Cat#850360

1-heptadecanoyl-2-hydroxy-sn-glycero-3- phosphocholine (LPC(17:0)) Avanti Polar Lipids Cat#855676

2-Dioctadecanoyl–sn-glycero-3- phosphocholine (PC(18:0/18:0)) Avanti Polar Lipids Cat#850333

1-Hexadecanoyl-2-oleoyl-sn-glycero-3- phosphocholine (PC(16:0/18:1) Avanti Polar Lipids Cat#850457

1-(9Z-octadecenoyl)-sn-glycero-3- phosphoethanolamine (LPE(18:1)) Avanti Polar Lipids Cat#850456

1-Palmitoyl-2-Hydroxy-sn-Glycero-3- Phosphatidylcholine (LPC(16:0)) Avanti Polar Lipids Cat#846725

triheptadecanoylglycerol (TG(17:0/17:0/17:0)) Larodan Cat#33-1700

trihexadecanoalglycerol (TG(16:0/16:0/16:0)) Larodan Cat#33-1610

1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/18:2)) Avanti Polar Lipids Cat#855675

3-trioctadecanoylglycerol (TG(18:0/18:0/18:0)) Larodan Cat#33-1810

3b-Hydroxy-5-cholestene-3-linoleate (ChoE(18:2)) Larodan Cat#64-1802

1-hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine (PC(16:0e/18:1(9Z))) Avanti Polar Lipids Cat#800817

1-(1Z-octadecanyl)-2-(9Z-octadecenoyl)- sn-glycero-3-phosphocholine (PC(18:0p/18:1(9Z))) Avanti Polar Lipids Cat#878112

1-oleoyl-2-hydroxy-sn-glycero-3- phosphocholine (LPC(18:1)) Larodan Cat#38-1801

1-palmitoyl-2-oleoyl-sn-glycero-3- phosphoethanolamine (PE(16:0/18:1)) Avanti Polar Lipids Cat#852467

3b-hydroxy-5-cholestene-3-stearate (ChoE(18:0)) Larodan Cat#64-1800

1-palmitoyl-d31-2-oleoyl-sn-glycero-3- phosphocholine (PC(16:0/d31/18:1)) Avanti Polar Lipids Cat#850757

2-diheptadecanoyl-sn-glycero-3- phosphoethanolamine (PE(17:0/17:0)) Avanti Polar Lipids Cat#830756

N-heptadecanoyl-D-erythro- sphingosylphosphorylcholine (SM(d18:1/17:0)) Avanti Polar Lipids Cat#860585

1-stearoyl-2-hydroxy-sn-glycero-3- phosphocholine (LPC(18:0)) Avanti Polar Lipids Cat#855775

beta-Muricholic acid Steraloids Cat# C1895-000

Chenodeoxycholic acid Sigma-Aldrich Cat# C1050000

Cholic acid Sigma-Aldrich Cat# C2158000

Deoxycholic acid Sigma-Aldrich Cat# 700197P

Glycochenodeoxycholic acid Sigma-Aldrich Cat# 700266P

Glycocholic acid Sigma-Aldrich Cat# 700265P

Glycodehydrocholic acid Steraloids Cat# C2020-000

Glycodeoxycholic acid Glycocholic acid Sigma-Aldrich

Glycohyocholic acid Steraloids Cat#C1860-000

Glycohyodeoxycholic acid Steraloids Cat# C0867-000

Glycolitocholic acid Sigma-Aldrich Cat# 700268P

Glycoursodeoxycholic acid Sigma-Aldrich Cat# 06863

Hyocholic acid Steraloids Cat# C1850-000

Hyodeoxycholic acid Steraloids Cat# C0860-000

Litocholic acid Sigma-Aldrich Cat#700218P

alpha-Muricholic acid Steraloids Cat# C1891-000

Tauro-alpha-muricholic acid Steraloids Cat# C1893-000

Tauro-beta-muricholic acid Steraloids Cat# C1899-000

(Continued on next page)

iScience 26, 106268, March 17, 2023 11

https://www.sigmaaldrich.com/SE/en/product/sial/c1050000
https://www.sigmaaldrich.com/SE/en/product/sial/c2158000
https://www.sigmaaldrich.com/SE/en/product/avanti/700197p
https://www.sigmaaldrich.com/SE/en/product/avanti/700266p
https://www.sigmaaldrich.com/SE/en/product/avanti/700265p
https://www.sigmaaldrich.com/SE/en/product/avanti/700268p
https://www.sigmaaldrich.com/SE/en/product/sigma/06863


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Taurochenodeoxycholic acid Sigma-Aldrich Cat# 700249P

Taurocholic acid Sigma-Aldrich Cat# T9034

Taurodehydrocholic acid Sigma-Aldrich Cat# 700242P

Taurodeoxycholic acid Sigma-Aldrich Cat# 700250P

Taurohyodeoxycholic acid Sigma-Aldrich Cat# 700248P

Taurolitocholic acid Sigma-Aldrich Cat# 700252P

Tauro-omega-muricholic acid Steraloids Cat# C1889-000

Tauroursodeoxycholic acid Sigma-Aldrich Cat# 580549

Trihydroxycholestanoic acid Avanti Polar Lipids Cat# 700070P

Fumaric acid Sigma-Aldrich Cat#47910

Glutamic acid Sigma-Aldrich Cat# G0355000

Aspartic acid Sigma-Aldrich Cat# A1330000

Serine Sigma-Aldrich Cat# S4500

Threonine Sigma-Aldrich Cat# PHR1242

Glutamine Sigma-Aldrich Cat# G3126

Proline Sigma-Aldrich Cat#V0500

Valine Sigma-Aldrich Cat# PHR1172

Lysine Sigma-Aldrich Cat# L5501

Methionine Sigma-Aldrich Cat# M0960000

Syringic acid Sigma-Aldrich Cat# 63627

Isoleucine Sigma-Aldrich Cat# I2752

Leucine Sigma-Aldrich Cat# L8000

Malic Acid Sigma-Aldrich Cat# PHR1273

Phenylalanine Sigma-Aldrich Cat# P2126

Ferulic acid Sigma-Aldrich Cat# Y0001013

Citric acid Sigma-Aldrich Cat# C7129

Tryptophan Sigma-Aldrich Cat# 93659

3-Indoleacetic acid Sigma-Aldrich Cat#I3750

3-Hydroxybutyric acid Sigma-Aldrich Cat#52017

Isovaleric acid Sigma-Aldrich Cat# 78651

Indole-3-propionic acid Sigma-Aldrich Cat# 57400

Salicylic acid Sigma-Aldrich Cat# 247588

Isocaproic acid Sigma-Aldrich Cat# 277827

Decanoic acid Sigma-Aldrich Cat# C1875

Myristic acid Sigma-Aldrich Cat# 70079

Linolenic acid Sigma-Aldrich Cat# 62160

Palmitoleic acid Sigma-Aldrich Cat# 76169

Linoleic acid Sigma-Aldrich Cat# 62230

Eicosapentaenoic acid Sigma-Aldrich Cat# 44864

Palmitic acid Sigma-Aldrich Cat# P0500

Oleic acid Sigma-Aldrich Cat# 75090

Stearic acid Sigma-Aldrich Cat# S4751

Arachidic acid Sigma-Aldrich Cat# 39383

[D4]- Glycoursodeoxycholic acid Bionordica Cat#31309

[D4]- Glycocholic acid Bionordica Cat#21889

(Continued on next page)
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https://www.sigmaaldrich.com/SE/en/product/avanti/700249p
https://www.sigmaaldrich.com/SE/en/product/sigma/t9034
https://www.sigmaaldrich.com/SE/en/product/avanti/700242p
https://www.sigmaaldrich.com/SE/en/product/avanti/700250p
https://www.sigmaaldrich.com/SE/en/product/avanti/700248p
https://www.sigmaaldrich.com/SE/en/product/avanti/700252p
https://www.sigmaaldrich.com/SE/en/product/mm/580549
https://www.sigmaaldrich.com/SE/en/product/avanti/700070p
https://www.sigmaaldrich.com/SE/en/product/sial/a1330000
https://www.sigmaaldrich.com/SE/en/product/sial/phr1242
https://www.sigmaaldrich.com/SE/en/product/sial/phr1172
https://www.sigmaaldrich.com/SE/en/product/sial/m0960000
https://www.sigmaaldrich.com/SE/en/product/sial/63627
https://www.sigmaaldrich.com/SE/en/product/sial/phr1273
https://www.sigmaaldrich.com/SE/en/product/sial/y0001013
https://www.sigmaaldrich.com/SE/en/product/sial/52017
https://www.sigmaaldrich.com/SE/en/product/aldrich/277827
https://www.sigmaaldrich.com/SE/en/product/sial/70079
https://www.sigmaaldrich.com/SE/en/product/sial/62160
https://www.sigmaaldrich.com/SE/en/product/sial/76169
https://www.sigmaaldrich.com/SE/en/product/sial/62230
https://www.sigmaaldrich.com/SE/en/product/sial/44864
https://www.sigmaaldrich.com/SE/en/product/sial/75090
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REAGENT or RESOURCE SOURCE IDENTIFIER

[D4]- Ursodeoxycholic acid Bionordica Cat#21892

[D4]- Glycochenodeoxycholic acid Bionordica Cat#21890

[D4]- Cholic acid Bionordica Cat#20849

[D4]- Glycolitocholic acid Bionordica Cat#31308

[D4]- Chenodeoxycholic acid Bionordica Cat#20848

[D4]- Deoxycholic acid Bionordica Cat#20851

[D4]- Litocholic acid Cat#20831

Valine-d8 Sigma-Aldrich Cat#486027

Glutamic acid-d5 Sigma-Aldrich Cat# 631973

Succinic acid-d4 Sigma-Aldrich Cat# 293075

Heptadecanoic acid Sigma-Aldrich Cat# H3500

Lactic acid-d3 Sigma-Aldrich Cat# 616567

Citric acid-d4 Sigma-Aldrich Cat# 485438

Arginine-d7 Sigma-Aldrich Cat# 776408

Tryptophan-d5 Sigma-Aldrich Cat# 615862

Glutamine-d5 Sigma-Aldrich Cat# 616303

ll
OPEN ACCESS

iScience
Article
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact: Tuulia Hyötyläinen (tuulia.hyotylainen@oru.se).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d This paper does not report original code.

d The metabolomics data reported in this paper will be shared by the lead contact upon request.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request and an appropriate institutional collaboration agreement. These data are

not available to access in a repository owing to concern that the identity of patients might be revealed

inadvertently.

METHOD DETAILS

Cord serum samples from a All Babies In Southeast Swedecohort (ABIS) were extracted with two methods

for separate extraction of lipids and polar/semipolar metabolites and the extracts were then analyzed using

two methods using an ultra-high-performance liquid chromatography quadrupole time-of-flight mass

spectrometry (QTOFMS) and the data were processed using MZmine 2.5339as described below.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

ABIS is a general population prospective birth cohort designed to identify environmental and genetic fac-

tors associated with autoimmune diseases.27 A total of 1,435 ABIS infants had their HLA genotype

sequenced. We selected children who later developed specific immune-mediated diseases, i.e., those

subjects who later were diagnosed with either T1D, CD, IBD (Crohn’s disease, Colitis ulcerosa), JIA or

HT, and controls who remained healthy during the follow-up, matched for date of birth and sex (Table 1).

The clinical parameters were similar across the different groups, with only birth weight showing signifi-

cantly different values in those children who progressed to CD or HT later in life. The Swedish National
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Patient Register provided the diagnoses (https://www.socialstyrelsen.se/en/statistics-and-data/registers/

national-patient-register/). CD diagnosis was determined only if the subjects had the diagnosis confirmed

after their initial diagnosis. The gestational age, birth weight, or the type of delivery did not show statisti-

cally significant differences across the groups.

This study was performed in accordance with the Declaration of Helsinki. The ABIS study was approved by

the Research Ethics Committees of the Faculty of Health Science at Linköping University, Sweden, 1997/

96,287 and 2003/03–092 and the Medical Faculty of Lund University, Sweden.

Lipidomics and metabolomics

A total of 360 cord blood samples were randomized and analyzed as described below. . Quantification was

performed using calibration curves and the identification was done with a custom database, with identifi-

cation levels 1 and 2, based on Metabolomics Standards Initiative. Quality control was performed by ana-

lysing pooled quality control samples. In addition, a reference standard (NIST 1950 reference plasma), ex-

tracted blank samples and standards were analyzed as part of the quality control procedure.

Lipidomic analysis

A total of 360 cord blood samples were randomized and analyzed as described below. 10 mL of serum

was mixed with 10 mL 0.9% NaCl and extracted with 120 mL of CHCl3: MeOH (2:1, v/v) solvent mixture

containing internal standard mixture (c = 2.5 mg/mL; 1,2-diheptadecanoyl-sn-glycero-3-phosphoe-

thanolamine (PE(17:0/17:0)), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine (SM(d18:1/17:0)),

N-heptadecanoyl-D-erythro-sphingosine (Cer(d18:1/17:0)), 1,2-diheptadecanoyl-sn-glycero-3-phospho-

choline (PC(17:0/17:0)), 1-heptadecanoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(17:0)) and 1-palmitoyl-

d31-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/d31/18:1)) and, triheptadecanoylglycerol (TG(17:0/17:0/

17:0)). The samples were vortexed and let stand on the ice for 30 min before centrifugation (9400 rcf, 3 min).

60 mL of the lower layer of was collected and diluted with 60 mL of CHCl3: MeOH. The samples were kept at

�80�C until analysis.

The samples were analyzed using an ultra-high-performance liquid chromatography quadrupole time-of-

flight mass spectrometry (UHPLC-QTOFMS from Agilent Technologies; Santa Clara, CA, USA). The analysis

was carried out on an ACQUITY UPLC BEH C18 column (2.1 mm 3 100 mm, particle size 1.7 mm) by Waters

(Milford, USA). Quality control was performed throughout the dataset by including blanks, pure standard

samples, extracted standard samples and control plasma samples. The eluent system consisted of (A)

10 mM NH4Ac in H2O and 0.1% formic acid and (B) 10 mM NH4Ac in ACN: IPA (1:1) and 0.1% formic

acid. The gradient was as follows: 0–2 min, 35% solvent B; 2–7 min, 80% solvent B; 7–14 min 100% solvent

B. The flow rate was 0.4 mL/min.

Data were processed using MZmine 2.39 Mass spectrometry data processing was performed using the

open source software package MZmine 2.53.40 The following steps were applied in this processing: (i)

Mass detection with a noise level of 100, (ii) Chromatogram builder with a minimum time span of

0.08 min, minimum height of 1000 and an m/z tolerance of 0.006 m/z or 10.0 ppm, (iii) Chromatogram de-

convolution using the local minimum search algorithm with a 70% chromatographic threshold, 0.05 min

minimum RT range, 5% minimum relative height, 1200 minimum absolute height, a minimum ration of

peak top/edge of 1.2 and a peak duration range of 0.08–5.0, (iv), Isotopic peak grouper with an m/z toler-

ance of 5.0 ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the most intense isotope set as

the representative isotope, (v) Join aligner with anm/z tolerance of 0.009 or 10.0 ppm and a weight for of 2,

an RT tolerance of 0.15 min and a weight of 1 and with no requirement of charge state or ID and no com-

parison of isotope pattern, (vi) Peak list row filter with aminimum of 10% of the samples (vii) Gap filling using

the same RT and m/z range gap filler algorithm with an m/z tolerance of 0.009 m/z or 11.0 ppm, (vii) Iden-

tification of lipids using a custom database search with anm/z tolerance of 0.008m/z or 8.0 ppm and an RT

tolerance of 0.25 min. Identification of lipids was based on in house laboratory based on LC-MS/MS data on

retention time and mass spectra. The identification was done with a custom database, with identification

levels 1 and 2, i.e. based on authentic standard compounds (level 1) and based on MS/MS identification

(level 2) based on Metabolomics Standards Initiative. Quality control was performed by analysing pooled

quality control samples (with an aliquot pooled from each individual samples) together with the samples. In
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addition, a reference standard (NIST 1950 reference plasma), extracted blank samples and standards were

analyzed as part of the quality control procedure.
Analysis of polar metabolites

40 mL of serum sample was mixed with 90 mL of cold MeOH/H2O (1:1, v/v) containing the internal standard

mixture (Valine-d8, Glutamic acid-d5, Succinic acid-d4, Heptadecanoic acid, Lactic acid-d3, Citric acid-d4.

3-Hydroxybutyric acid-d4, Arginine-d7, Tryptophan-d5, Glutamine-d5, each at at c = 1 mgmL-1 and 1D4-

CA,1D4-CDCA,1D4-CDCA,1D4-GCA,1D4-GCDCA,1D4-GLCA,1D4-GUDCA,1D4-LCA,1D4-TCA, 1D4-UDCA,

each at 0.2 1 mgmL-1) for protein precipitation. The tube was vortexed and ultrasonicated for 3 min, followed

by centrifugation (10000 rpm, 5min). After centrifuging, 90 mL of the upper layer of the solution was transferred

to the LC vial and evaporated under the nitrogen gas to the dryness. After drying, the sample was reconsti-

tuted into 60 mL of MeOH: H2O (70:30).

Analyses were performed on an Agilent 1290 Infinity LC system coupled with 6545 Q-TOF MS interfaced

with a dual jet stream electrospray (dual ESI) ion source (Agilent Technologies, Santa Clara, CA, USA)

was used for the analysis. Aliquots of 10 mL of samples were injected into the Acquity UPLC BEH C18

2.1 mm3 100mm, 1.7-mm column (Waters Corporation)), fitted with a C18 precolumn (Waters Corporation,

Wexford, Ireland. Themobile phases consisted of (A) 2 mMNH4Ac in H2O: MeOH (7:3) and (B) 2 mMNH4Ac

in MeOH. The flow rate was set at 0.4 mLmin-1 with the elution gradient as follows: 0–1.5 min, mobile phase

B was increased from 5% to 30%; 1.5–4.5 min, mobile phase B increased to 70%; 4.5–7.5 min, mobile phase

B increased to 100% and held for 5.5 min. A post-time of 5 min was used to regain the initial conditions for

the next analysis. The total run time per sample was 20 min. The dual ESI ionization source was settings

were as follows: capillary voltage was 4.5 kV, nozzle voltage 1500 V, N2 pressure in the nebulized

was 21 psi and the N2 flow rate and temperature as sheath gas was 11 Lmin-1 and 379�C, respectively.
In order to obtain accurate mass spectra in MS scan, the m/z range was set to 100–1700 in negative ion

mode. MassHunter B.06.01 software (Agilent Technologies, Santa Clara, CA, USA) was used for all data

acquisition.
QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification

Quantification of lipids was performed using a 7-point internal calibration curve (0.1–5 mg/mL)

using the following lipid-class specific authentic standards: using 1-hexadecyl-2-(9Z-octadecenoyl)-

sn-glycero-3-phosphocholine (PC(16:0e/18:1(9Z))), 1-(1Z-octadecenyl)-2-(9Z-octadecenoyl)-sn-glycero-3-

phosphocholine (PC(18:0p/18:1(9Z))), 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC(18:0)), 1-oleoyl-2-

hydroxy-sn-glycero-3-phosphocholine (LPC(18:1)), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine

(PE(16:0/18:1)), 1-(1Z-octadecenyl)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PC(18:0p/22:6)) and

1-stearoyl-2-linoleoyl-sn-glycerol (DG(18:0/18:2)), 1-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

(LPE(18:1)), N-(9Z-octadecenoyl)-sphinganine (Cer(d18:0/18:1(9Z))), 1-hexadecyl-2-(9Z-octadecenoyl)-

sn-glycero-3-phosphoethanolamine (PE(16:0/18:1)) from Avanti Polar Lipids, 1-Palmitoyl-2-Hydroxy-

sn-Glycero-3-Phosphatidylcholine (LPC(16:0)), 1,2,3 trihexadecanoalglycerol (TG(16:0/16:0/16:0)),

1,2,3-trioctadecanoylglycerol (TG(18:0/18:0/18:)) and 3b-hydroxy-5-cholestene-3-stearate (ChoE(18:0)),

3b-Hydroxy-5-cholestene-3-linoleate (ChoE(18:2)) from Larodan, were prepared to the following concen-

tration levels: 100, 500, 1000, 1500, 2000 and 2500 ng/mL (in CHCl3:MeOH, 2:1, v/v) including 1250 ng/mL

of each internal standard.

Quantification of BAs was performed using a 7-point internal calibration curve using metabolites specified

in key resources table. The identification was done with a custom data base, with identification levels 1 and

2, based on Metabolomics Standards Initiative. Quality control was performed by analysing pooled quality

control samples (with an aliquot pooled from each individual samples) together with the samples. In addi-

tion, a reference standard (NIST 1950 reference plasma), extracted blank samples and standards were an-

alysed as part of the quality control procedure.
Statistical analyses

Missing values were replaced by half of the minimum value. Metabolites with a relative standard deviation

>30% in pooled QC samples were removed from further analysis for unsatisfactory analytical robustness.
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The metabolomics data was scaled and logarithmic transformed prior the statistical analysis to ensure

normal distribution of the data.
Model-based metabolite clustering

Clustering of the ECs, lipidomic and metabolomics data obtained in this study was performed by using the

‘mclust’ R package (v.5.4.6). Mclust is a model-based clustering method, where the model performances

are evaluated by the Bayesian Information Criterion (BIC). The models with the highest BICs were chosen.
Linear regression analysis

Linear regression analysis using Limma available from MetaboAnalyst 5.0 was used to estimate mean dif-

ferences between the control and individual disease groups and to identify differentially expressedmetab-

olites.41,42 A two-sided t-test was performed to calculate p values for each metabolite and multiple testing

correction using the Benjamini-Hochbergmethod was applied to control the false discovery rate (FDR). The

log-fold change in expression (logFC) between the groups was also calculated using Limma. Metabolites

with p values less than 0.05 and adjusted P-values less than 0.05 were considered significant and further

analyzed. Heatmaps were used to show the fold changes in metabolite levels between control and individ-

ual disease groups, where the control group was used as the baseline for the heatmap.
Pathway analysis

Pathway overrepresentation analysis was performed using the MetaboAnalyst 5.0 web platform using the

Functional Analysis (MS Peaks)’’ module.41 For the input data for pathway analysis the complete high-res-

olution LC-MS spectral peak data obtained in negative ionization mode was used (mass tolerance of

10 ppm). A Welch’s t-test was performed to assess significant mean differences in the concentration of me-

tabolites between cases and controls, and the whole input peak list with p values and T score was used for

the pathway analysis. The relative significance of the overrepresented pathways against the background

human scale metabolic model MNF (from MetaboAnalyst Mummichog package) and Kyoto Enzyclopedia

of Genes and Genomes (KEGG) pathways [9] for Homo sapiens were estimated. The ‘Pathway

Impact Scores’ were calculated by the metabolomics pathway analysis (MetPA) tool43 encoded in

MetaboAnalyst 5.0.41,44
16 iScience 26, 106268, March 17, 2023
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