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A B S T R A C T   

This study delves into the application of deep reinforcement learning (DRL) frameworks for optimizing setpoints 
in district heating systems, which experience hourly fluctuations in air temperature, customer demand, and fuel 
prices. The potential for energy conservation and cost reduction through setpoint optimization, involving ad-
justments to supply temperature and thermal energy storage utilization, is significant. However, the inherent 
nonlinear complexities of the system render conventional manual methods ineffective. To address these chal-
lenges, we introduce a novel learning framework with an expert knowledge module tailored for DRL techniques. 
The framework leverages system status information to facilitate learning. The training is performed by 
employing model-free DRL methods and a refined digital twin of the Espoo district heating system. The expert 
module, accounting for power plant capacities, ensures actionable directives aligned with operational feasibility. 
Empirical validation through comprehensive simulations demonstrates the efficacy of the proposed approach. 
Comparative analyses against manual methods and evolutionary techniques highlight the approach’s superior 
ability to curtail fuel costs. This study advances the understanding of DRL in district heating optimization, of-
fering a promising avenue for enhanced energy efficiency and cost savings.   

1. Introduction 

A district heating system (DHS) consists of prefabricated pipelines, 
substations, and thermal power plants to provide customers with heat 
(Werner, 2017). To control a heating network, the heat demand and 
flow control systems are located in each customer heating system and 
substation, while the heat supplier is responsible for the centralized 
differential pressure and supply temperature control systems (Freder-
iksen & Werner, 2013). In a DHS, water is chosen to be the heat carrier, 
and considering the energy consumption and heat distribution losses, a 
wide variation of supply temperature levels is used (Abdurafikov et al., 
2017). Fuel costs can be minimized by adjusting the setpoints of supply 
temperature and the usage of thermal energy storage (Eklund et al., 
2023). Since air temperature, customer demands, and fuel prices vary by 
the hour, timely control decisions are significant for energy saving and 
cost reduction. 

A heuristic-based method is commonly adopted in DHS control, 
which means operators manually set and adjust the setpoints of the DHS 

(Eklund et al., 2023). This method requires full knowledge of the 
working principles of the DHS and rich working experience. Due to the 
complexity of the DHS, including slow thermohydraulic phenomenon 
and heat propagation, human-made decisions cannot guarantee the ef-
ficiency of energy saving and cost reduction. To address this limitation, 
optimization-based methods were studied by formulating the calcula-
tion of setpoints as an optimization problem (Bucking & Dermardiros, 
2018; Żymełka & Szega, 2021). Optimization-based methods find out 
the optimal solutions by searching the solution space using smart opti-
mization algorithms, such as genetic algorithm (Su et al., 2022), 
evolutionary algorithm (Fazlollahi et al., 2012), and mixed integer 
linear programming (Gonzalez-Salazar et al., 2023). In Eklund et al. 
(2023), the fitness function was designed by considering fuel cost and 
setpoints, and covariance matrix adaptation evolution strategy 
(CMA-ES) was adopted to optimize the setpoints in a digital twin (DT) of 
a DHS. Through iterations, fitness values are minimized, and the best 
solution is the one that can make the fitness value approach the desired 
value. However, to implement these methods, huge computational 
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resources are essential, lowering computational efficiency. 
To address the above limitations, an intelligent optimization method 

that can understand the process dynamics of DHS and adaptively make 
decisions is significant. Owing to the digitalization construction, process 
data is recorded, and first principle models and DT are available. By 
learning from data, data-driven methods can provide insights and pat-
terns that might not be apparent through traditional methods. In 
(Lumbreras et al., 2022), a data-driven prediction model was proposed 
for the characterization and prediction of heating demand in buildings. 
In (Wang et al., 2021), a data-driven adjustable robust unit commitment 
model was proposed for integrated electric-heat systems. Motivated by 
deep reinforcement learning (DRL), which is a machine learning method 
but able to learn a control policy from the data, DRL-based data-driven 
methods were studied to address control problems in district heating. In 
(Ren et al., 2022), a novel forecasting based reinforcement learning 
energy scheduling method is proposed to manage household energy 
using a dueling-double deep Q-learning neural network. 

Motivated by data-driven methods and DRL control, this paper 
studies a DRL-based framework for setpoints optimization in a DHS. The 
DHS of Espoo in Finland is chosen as a case study. Apros simulation 
environment (Silvennoinen et al., 1989) was used to build the DT based 
on the first principles, and its effectiveness has been demonstrated in 
(Eklund et al., 2023). To make a fair comparison, state-of-the-art DRL 
methods are incorporated into the proposed framework to optimize the 
setpoints. 

The rest of this paper is organized as follows. The applications of 
existing methods and state-of-the-art DRL methods in DHS are reviewed 
in Section 2. A case study, including the details of the simulation model 
and problem formulation, is presented in Section 3. Section 4 discusses 
the basic principles of DRL and the proposed method. Section 5 analyzes 
the results of the proposed method. Section 6 concludes the paper and 
describes future work. 

2. Related work 

As presented in Section 1, to save energy for a DHS, manual opera-
tion and evolutionary method (CMA-ES) were adopted and researched 
for optimizing the setpoints (Eklund et al., 2023). In (Solinas et al., 
2021), the building’s thermal response was modeled as a multi-armed 
bandit, while the end-user networks were modeled as an agent-based 
model, and a conventional RL method was adopted to address the 
peak-shaving problem. However, the accuracy of the end-user network 
cannot be guaranteed, making the real application less practical. In (Sun 
et al., 2022), a deterministic forecasting model with energy-saving 
consideration was adopted to learn heat load variation patterns, and a 
DRL method was adopted to determine optimal fusion weights. How-
ever, using the black-box based forecasting model as the environment 
generates a reality gap between the real system and the model, which 
means the learned method is not realistic. Moreover, the problem of heat 
losses of the twin- and triple-pipes was studied in (Alsagri et al., 2019), 
which adopted a multi-objective genetic algorithm to drive reliable 
correlations for estimating the rate of heat losses. In (Wei et al., 2022), a 
model predictive control based optimization framework for the heat 
pump system of a residential district was proposed, and a particle swarm 
optimization algorithm was adopted to determine the optimal operation 
strategy. In (Alsagri et al., 2019) and (Wei et al., 2022), either genetic 
algorithm or particle swarm optimization algorithm can address opti-
mization problems, but due to the population size, these methods are 
computationally expensive. These methods are less adaptive to the 
changing environment than data-driven methods. In (Stepanovic et al., 
2022), a DRL-based method was proposed to control the pipeline energy 
storage of a DHS for profit gain, and the method was evaluated using a 
simulator. In (Zhao et al., 2022), to better cope with the uncertainty 
introduced by the high penetration of renewable generation units, a DRL 
method was integrated into the energy management problem by 
considering time delay, and evaluated by a memory-augmented 

environment. In (Qin et al., 2022), a distributed DRL-based control 
strategy was proposed for building energy optimization, compared with 
model productive control and evolutionary algorithm, the proposed 
method is the most energy-efficient. In (Fang et al., 2021), to achieve 
distributed energy scheduling and strategy-making, a multi-agent DRL 
approach was proposed, and an optimal equilibrium selection mecha-
nism was applied to improve the performance of DRL from benefit 
fairness, execution efficiency, and privacy protection. In (Stepanovic 
et al., 2022; Zhao et al., 2022; Qin et al., 2022; Fang et al., 2021), 
single-agent and multi-agent DRL were adopted to address district 
heating related problems, black-box models and simplified mathemat-
ical models were developed to train the DRL agents. Compared to 
evolutionary methods, DRL methods learn the policy from the in-
teractions between the agent and its environment, which can be more 
adaptive and efficient in computation. However, the environment in-
troduces the bias because of the simplification, approximation, and 
black-box models. To address the above limitations, high-fidelity models 
are significant, especially for safety-critical cases. 

In Espoo, the existing method (manual operation) for setpoint opti-
mization is mainly based on expert operator experiences, which vary 
between individuals. Manual operation is easy to implement, but it is not 
efficient without any mathematical evaluation. For CMA-ES, through 
minimizing fitness values using the iteration method and parallel 
computation, the near-optimal could be obtained, but it is computa-
tionally expensive. DRL-based methods are popular and have been 
studied to address various problems in DHS, including energy storage 
(Stepanovic et al., 2022), energy management (Zhao et al., 2022), en-
ergy optimization (Qin et al., 2022), energy scheduling, and 
strategy-making (Fang et al., 2021). However, there is a lack of publi-
cations about the DRL optimization of setpoints in a DHS. Moreover, 
DRL applications introduced above were conducted based on simplified 
and approximated environment models. The bias between the real sys-
tem and environment models affects the practicality of the DRL 
solutions. 

To address the above limitations, this paper studies the optimization 
of supply temperature and thermal energy storage setpoints using DRL 
methods. Given a white-box-based DT of the DHS of Espoo, the obtained 
actions can be thought of as executable solutions to the real DHS. 
Compared to population-based evolutionary methods which have high 
computational demand and are difficult to learn from high-dimensional 
data (Majid et al., 2023), DRL is more sample-efficient and adaptive to 
the dynamic and changing system. 

3. Problem formulation 

3.1. Description of DHS 

The study case is the DHS of Espoo in Finland. Power plants produce 
heat, which is distributed to urban district end users through a network 
of hot water pipelines. Within the end user buildings, heat exchangers 
extract the necessary energy for space heating and heating of service 
water. The cooled water then travels back to the power plant through 
dedicated return pipelines. 

In the network, heat producers are used to heat pressurized water, 
which is then pumped to the customers. The temperature of the water 
leaving the producer (supply temperature) is given as a time-varying 
boundary condition to the producer component which forcibly sets 
this as the temperature of the relevant discretization nodes of the un-
derlying equations. Mass flow and pressure out of the producer 
component are calculated with the pressure-flow solver. 

The producer’s pump and control valve components set suitable 
source terms for the solver to achieve the desired outlet pressure and 
thermal power. The thermal power comes from an external data source 
or is given by the user. The mass flow through an individual consumer is 
determined with a PID controller whose setpoint is calculated: 
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ṁsp =
Q̇demand

Cp(Ts − Tr)
(1)  

where Q̇demand is the consumer’s heat demand, kW. Cp is water heat ca-
pacity, kJ/kgK. Ts is the supply temperature, ℃. Tr is the return water 
temperature, ℃. 

Accumulator’s capacity refers to the percentage of the accumulator’s 
effective volume that is filled with hot water. The effective volume takes 
into account the fact that the hot water phase typically is not allowed to 
fill the entire volume of that accumulator but rather is allowed to vary 
between a low and high limit which are configurable parameters for the 
model. The accumulator model gets a power setpoint value, PSP as its 
input, with PSP > 0 when discharging and PSP < 0 when charging. The 
net power, Pnet, is the same as PSP, but with the following limitations 
taken into account: a fully charged accumulator cannot be charged 
further, a fully empty accumulator cannot be discharged further when 
pushing hot or cold water out of the accumulator into the network a too 
large network pressure will prevent this. In a heat accumulator, the 
bottom of the tank is filled with relatively cold water and the top with 
hot water. The interface of the two phases moves upwards or downwards 
when the accumulator is discharged or charged, respectively. The 
interface height is the vertical location, from the top of the accumulator, 
of this interface: 

hIF = h −

[

hc(0) −
∫

ṁHdt
rcA

]

(2)  

where h is the accumulator height, hc(0) is the height of the cold phase at 
the start of time, m. ṁH is hot water flow into the accumulator, kg/s. rc is 
cold phase density, kg/m3. A is the accumulator’s cross-sectional area, 
m2. Three factors affect the hot and cold phase temperatures of the heat 
accumulator: incoming flow to the tank, heat mixed between the two 
phases, and heat loss to the environment. The energy that can be dis-
charged from the accumulator is calculated as: 

E = (TH − TC)CpmH (3)  

where TH and TC are the temperatures of hot and cold phases, ℃. Cp is 
the heat capacity of water, 4.19 kJ kg K. ṁH is the hot phase mass, kg. 

The pressure-flow solver calculates the pressures, flows, and tem-
peratures in all parts of the model and it connects the producers to the 
consumers via pipelines and pumping stations. All the components 
described above manipulate the underlying pressure-flow solver’s 
equations via boundary conditions or source terms. Temperatures are 
fed to the equations as boundary conditions whereas the effect of pumps 
and valves come in via source terms. The actual equations employed by 
the pressure-flow solver are partial differential equations for the con-
servation of mass, momentum, and energy. These equations are dis-
cretized w.r.t the spatial coordinate and then time-integrated as the 
simulation progresses (Patankar, 2018; Silvennoinen et al., 1989). 
Considering the ground temperature, pipe spacing, conductance, and 
heat loss from the pipe to the ground calculated according to formulas 
from Huovilainen and Koskelainen (1982). 

The network in Fig. 1, which has over 800 km of piping, provides 
heating which is then used at the consumer sites to provide heating of 
the buildings as well as to produce domestic hot water. The idea of the 
network size and complexity can be found in this video: https://youtu. 
be/rNxlsSvoF70?t=57. There are a total of 9 pumping stations. Pipes are 
around 0.5 m under ground. Pipe diameters vary from DN1000 for the 
largest transfer pipes down to a few tens of millimeters for connections 
to individual buildings. The pipes are insulated and this is included in 
the simulation model. Insulation type can vary depending on each pipe 
type and age. A typical insulation material is polyurethane. Tradition-
ally, in real life, the temperature of water leaving the producers follows 
the outdoor temperature according to the curve shown in Fig. 2. As the 
curve is conservative, the optimization is expected to strive for better 

performance. 
The network contains thousands of individual consumers. In the 

modeling, these are lumped according to their geographical locations 
into N ones. The network provided more than 800MW of heat during 
cold winter days, whereas during summer less than 100MW is provided. 
Both heating and hot water are supplied. The climate at the studied city 
can be classified as sub-arctic/humid continental climate according to 
the Köppen climate classification (Köppen, 2011). In the observation 
station, the air temperature is measured every hour, as shown in Fig. 3, 
8761 data points were collected from the year 2022, and the air tem-
perature varies between − 20 ◦C and 30 ◦C. 

3.2. Consumption optimization 

In Table 1, 271 state variables are listed, such as the average demand, 
average consumption, and so on. Since the studied DHS covers the whole 
city, the values of different positions are considered separately. For 
example, each of the 29 positions has a separate average demand in the 
state. Setpoints include supply temperature (Ts) and the usage of thermal 
energy storage (Q_accum). As shown in Fig. 4, the optimization is to 
adjust the setpoints of the outgoing water and the usage of thermal 
energy storage for the network which is modeled as an Apros-based DT. 
Fuel cost, air temperature, and heat demand are provided as input to the 

Fig. 1. The map of the district heating network in Espoo.  

Fig. 2. The curve of air temperature and supply water temperature.  
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DT. As shown in Fig. 5, historical data spanning 2 days (from 12:00 on 
Nov 2, 2022 to 12:00 on Nov 4, 2022) drives the DT for scientific 
exploration. In real-world applications, real-time optimization in-
tegrates forecasting models to supply inputs. Given climate-driven 
fluctuations in fuel cost, air temperature, and heat demand, an adapt-
able strategy is paramount. As depicted in Fig. 4, for example, if the DT 
receives forecasts for subsequent days (Tuesday/Wednesday) on the 
prior day (Monday) and performs optimization. Considering the fuel 
price, air temperature, and demand vary by the hour, an hourly setpoint 
optimization is adopted to minimize the fuel costs, yielding 48 pairs of 
setpoints for 2 days. When forecasts for Wednesday/Thursday arrive on 
Tuesday, further optimization can be performed again. This adaptive 
approach mitigates uncertainties arising from fuel cost, air temperature, 
and heat demand effectively, guaranteeing its reliability. This optimi-
zation problem can be formalized as: 

minC(Ts,Q accum),

subject to : Ts ∈ [Ts L, Ts U], |Ts C| ≤ Ts limit (4)  

Q accum ∈ [Q accum L,Q accum U]

where C(Ts, Q accum) = F(Ts, Q accum, Q̇demand, Tair, FP), C is the total 
cost, F is the DT which considers all the factors presented in Section 3.1, 
Tair and FP are the air temperature and fuel price which vary hourly. Ts_L 
and Ts_U are the lower and upper limits of Ts. Ts_C and Ts_limit are the 
actual change and the allowed maximum change between the steps. 
Q_accum_L and Q_accum_U are the lower limit and upper limit of 
Q_accum. 

RL optimizes Ts and Q_accum with restriction to the limits. In this 
case, the modeled automation system in DT guarantees the fulfillment of 
consumer demands. Essentially, there exists no predetermined lower- 
cost limit. Because consumer requirements are assured by the DT, the 
optimization methods concentrate on minimizing fuel expenses to the 
greatest extent possible. At present, a manual operation method is 
adopted in the power plants in Espoo, which relies on the engineers’ 
experience. However, as introduced in the above sections, the network is 
complicated, which means the DT of the DHS has characteristics of 
nonlinearity and high dimensionality. The manual operation method 
makes it difficult to lower the cost by addressing this optimization 
problem. Therefore, evolutionary methods such as CMA-ES have been 
studied, and compared to the manual operation method the superiority 
was demonstrated in (Eklund et al., 2023). In this paper, DRL methods 
are studied for optimization. The states of the DT and fuel price are sent 
to the DRL agent to calculate the setpoints (also called actions) for DT. 

Fig. 3. Air temperature of Espoo in 2022.  

Table 1 
Details of states.  

Name Number Category Calculation details 

avg_demand 29 Consumer 1-hour time- 
averaged heat 
demand for each 
consumer 

avg_consumption 29 Consumer 1-hour time- 
averaged heat 
consumption for 
each consumer 

avg_supply_temperature 29 Consumer 1-hour time- 
averaged supply 
temperature for 
each consumer 

avg_pressure_difference 29 Consumer 1-hour time- 
averaged pressure 
difference over each 
consumer’s control 
valve 

avg_heat_offset 29 Consumer Consumer’s heat 
demand – 
consumption, 1- 
hour average 

max_valve_position 29 Consumer Consumer’s control 
valve’s position’s 
max value over 1- 
hour window 

heating 24 Producer, 
boiler-wise 

Produced power for 
each boiler. Note 
that some 
geographical sites 
have multiple 
boilers producing 
heat. That is the 
reason this is of 
length 24, and not 
10 (as in supply 
temperature). 

Pump_speed 10 Pumping 
station 

Supply line pump 
speed for each 
pumping station, 
point measurement 
at the end of each 1- 
hour period 

pump_mass_flow 10 Pumping 
station 

Supply line pump 
mass flow for each 
pumping station, 
point measurement 
at the end of each 1- 
hour period 

head_pump_actual 10 Pumping 
station 

Maximum of supply 
line and return line 
pump heads for each 
pumping station, 
point measurement 
at the end of each 1- 
hour period 

pressure_difference_discharge 10 Pumping 
station 

Difference of 
pumping station 
supply pump’s 
outlet and return 
pump’s suction 
pressures, point 
measurement at the 
end of each 1-hour 
period 

pressure_difference_charge 10 Pumping 
station 

Difference of 
pumping station 
supply pump’s 
suction and return 
pump’s outlet 
pressures, point 
measurement at the 
end of each 1-hour 
period. 

(continued on next page) 
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Through interaction, state-action-reward pairs are collected to train the 
DRL agent. Repeating this process, DRL explores the state space to 
calculate the optimal actions that generate lower fuel costs. 

4. Methodology 

4.1. Preliminaries 

DRL is a subfield of machine learning, which is based on the idea of 
learning from trial-and-error. The goal of a DRL agent is to maximize the 
total reward it receives over a trajectory of interaction with the envi-
ronment (Sutton & Barto, 2018). The interaction is modeled as a Markov 
Decision Process (MDP), which is defined by a tuple (S,A,R,P,γ), where S 
denotes state space, A is action space, R is reward function, P is transi-
tion dynamics, and γ is a discount rate. Given values of the preceding 
state s and action a at the current timestep, the probability of state 
occurring at the next timestep is P(s′|s, a ). The accumulation of the re-
wards R(s, a) starting from time t until the end of the interaction is 
referred to as the return, which is defined as Gt =

∑∞
k=0(γkRt+k+1s, a). 

The discount rate determines the present value of future rewards: a 
reward received k time steps in the future is worth only γk− 1 times what 
it would be worth if it were received immediately. For policy π, the 
state-action value function is defined as: Qπ(s, a) := Eπ [

∑∞
t=0γtR(st ,

at)|s0 = s, a0 = a], and the corresponding value function is Vπ(s) :=
Ea∼π(⋅|s)[Qπ(s, a)]. In DRL, an approximation to the Q-function is con-
ducted based on the actor-critic paradigms. Q-function can be learned 
via temporal difference learning based on the Bellman equation BπQπ(s,
a), where Bπ denotes the Bellman evaluation operator BπQπ(s,a) := R(s,
a)+ γEs′,a′[Q(s′,a′)], where s′ ∼ P(|s,a),a′ ∼ π(|s). 

4.2. DRL framework for setpoint optimization in DHS 

As analyzed in Section 2, given an environment, model-free DRL 
methods, such as proximal policy optimization (PPO) (Schulman et al., 
2017), twin delayed deep deterministic policy gradient (TD3) (Fujimoto 
et al., 2018), soft actor-critic (SAC) (Haarnoja et al., 2018) are promising 
tools to address real-world problems (Stepanovic et al., 2022; Zhao 
et al., 2022; Qin et al., 2022; Fang et al., 2021). However, these appli-
cations were conducted in simple and black-box environments rather 
than white-box and high-fidelity models. In this paper, given a DT of the 
DHS, the gap between the model and the real system has been narrowed, 
ensuring model-free DRL methods are promising for setpoint 

Table 1 (continued ) 

Name Number Category Calculation details 

Supply_temperature 10 Producer, 
site-wise 

Producer site supply 
temperature, point 
measurement at the 
end of each 1-hour 
period 

network_accum_MWh 1 Network Energy in supply 
lines + energy in 
return lines, 
summed over all 
pipes, point 
measurement at the 
end of each 1-hour 
period 

accum_cold_phase_temperature 1 Heat 
accumulator 

Temperature of the 
accumulator’s cold 
phase, point 
measurement at the 
end of each 1-hour 
period 

accum_energy 1 Heat 
accumulator 

Energy that can be 
discharged from the 
hot phase of the 
accumulator, point 
measurement at the 
end of each 1-hour 
period 

accum_capacity 1 Heat 
accumulator 

Percentage of 
accumulator’s 
effective volume 
that is filled with hot 
water, point 
measurement at the 
end of each 1-hour 
period 

accum_hot_phase_temperature 1 Heat 
accumulator 

Temperature of the 
accumulator’s hot 
phase, point 
measurement at the 
end of each 1-hour 
period 

accum_interface_height 1 Heat 
accumulator 

Vertical location of 
the hot-cold phase 
interface from the 
top of the 
accumulator, point 
measurement at the 
end of each 1-hour 
period 

accum_net_power_me 1 Heat 
accumulator 

Pnet, 1-hour time- 
averaged 

tla_total_mw 1  Total power 
produced by the 
producers 
(excluding the 
accumulator), point 
measurement at the 
end of each 1-hour 
period 

tla_forecast 1  Forecasted 
production, if 
forecast available. In 
this case forecast =
sum of all boiler 
productions 
(excluding the 
accumulator), point 
measurement at the 
end of each 1-hour 
period. 

Tla_main_dp_deviation 1  Control deviation 
(setpoint – 
measurement) of the 
main DP controller, 
point measurement 
at the end of each 1- 
hour period  

Table 1 (continued ) 

Name Number Category Calculation details 

tla_main_dp_calc 1  Largest of the DP 
deviations of the 
critical consumers, 
point measurement 
at the end of each 1- 
hour period 

tla_forecast_correction 1  Output of the main 
DP controller. This is 
used to multiply the 
forecasted 
production in order 
to calculate how 
much heat will be 
produced, point 
measurement at the 
end of each 1-hour 
period 

total_pipeline_heat_loss 1  Sum of all pipes’ 
heat losses, point 
measurement at the 
end of each 1-hour 
period  
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optimization. 
However, for industrial applications of DRL, although the action 

space is preset in the training process, the complexity of the real-world 
case could cause the generated actions to be inexecutable. To address 
this limitation, various settings have been studied. In (Ruelens et al., 
2017) and (Ruelens et al., 2019), DRL methods were combined with an 
over-rule mechanism for the thermostatically controlled load to guar-
antee comfort and safety constraints. In (Patyn et al., 2018), to ensure 
adherence to constraints, a backup controller was designed for DRL to 
address the problem of residential demand response. Similarly, in (De 
Somer et al., 2017) and (Leurs et al., 2016), specific units were designed 
to avoid the failure of actions. 

In this paper, to obtain an executable solution for the DHS, as shown 
in Fig. 6, an expert knowledge (EK) module is designed for DRL training 
to ensure the practicality of the learning procedure and actions. In the 
standard learning process, DRL can freely explore the action space, 
which means DRL will send any actions within the boundary to the 
environment. However, this is problematic in DHS, because, for 
example, although the Ts is within the boundary, it could also be inex-
ecutable for its huge changes compared to the previous value. Moreover, 
considering the storage of the thermal energy tank, the penalty of 
Q_accum is sent to the EK module from DT. Since the tank cannot 
unlimitedly provide energy, the penalty of Q_accum is an indicator of 
thermal energy storage in the tank. 

Fig. 7 shows the implementation of the abovementioned EK module. 
Ts and Ts_p are the supply temperature at the current timestep and the 
previous timestep. Ts_limit is the allowed maximum change between the 
timesteps. If the actual change is higher than the limit, the current Ts is 
inexecutable, because the huge changes in Ts could damage the power 
plants. If the current Ts is lower than Ts_p, the new Ts is obtained using 

Ts_p-Ts_limit. On the contrary, if the current Ts is higher, the new Ts is 
calculated using Ts_p+Ts_limit. Q_accum_penalty is the penalty of 
Q_accum, Q_accum_penalty_limit is the upper limit of Q_accum_penalty. In 
practice, this penalty should be lower than its limit, otherwise, the 
training of the current episode will be ended. For the DHS, a high 
Q_accum_penalty means the DRL agent discharges too much heat but 
there is a lack of thermal energy in the storage tank. These actions 
provided by DRL are inexecutable. In this paper, the reward for DRL 
agents is designed as the inverse of fuel cost, which is formulated as R =

− C. 
In other words, the EK module guarantees an executable action for 

the DT. In the standard DRL learning process, without the EK module, 
the DRL agent will provide actions within the boundaries, but unrealistic 
and inexecutable for the DHS. Because it is impossible to make a DRL 
agent study these practical factors by itself without any additional 
settings. 

4.3. Experiment configuration 

In this paper, using the DT of DHS, three DRL methods (PPO, TD3, 
SAC) are incorporated into the DRL learning framework. The goal is to 
learn a policy that maps states to actions in a way that maximizes the 
long-term costs. Since the DT was built using Apros, “HTTP” connection 
technology was adopted to create a channel between Python and Apros 
for data exchange (Eklund et al., 2023). OpenAI Gym framework was 
adopted to build an environment in Python, including step, reward, and 
reset functions (Brockman et al., 2016). Since the adopted DRL methods 
have a similar framework, to guarantee a fair comparison, the same 

Fig. 4. Setpoint optimization for DHS.  

Fig. 5. Historical data from 12:00 on Nov 2, 2022 to 12:00 on Nov 4.  

Fig. 6. Setpoint optimization using DRL with an EK module.  
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hyperparameters will be fixed. 
For DRL, each method was run for 30 episodes, each episode had 70 

timesteps. To perform a fair comparison, each episode was run using the 
same initial condition (IC) and the same data source (air temperature, 
hourly heat demand, fuel price). In the simulation, the DRL agent em-
ploys a set of 16-hour setpoints generated through DRL. Following this, a 
subsequent 12-hour period is allocated to account for thermohydraulic 
delays inherent in the system, during which the agent operates without 
optimizing its actions. The 16+12 hour simulation run captures the fuel 
consumption data for all heat producers within the network, recorded on 
an hourly basis. By analyzing the fuel consumption throughout the 28- 
hour period, the total operating cost for this duration is derived. This 
paper studied 48 data points, and each data point means one hour be-
tween 12.00 2nd Nov. 2022 and 12.00 4th Nov. A CMA-ES method and a 
reference method (manual operation method) are adopted for compar-
ison. The details of experiment settings and results of CMA-ES are pre-
sented in (Eklund et al., 2023). 

5. Results 

5.1. Comparison analysis 

In this paper, since the actual costs cannot be disclosed due to 
confidentiality, the scaled cost is used as the indicator when comparing 
the DRL methods with CMA-ES and reference plan. The formula is 
shown as follows: 

Cscaled = Cactual / μ (5)  

where Cscaled and Cactual are the scaled and actual costs, μ is the scaling 
factor which is confidential and determined by the operators. The 

hyperparameters of the DRL methods are shown in Table 2, including 
the shared parameters and unique ones. 

Fig. 8 shows the solutions generated by PPO, TD3, and SAC in terms 
of costs. As illustrated in the last paragraph of Section 4, each line in 
Fig. 8 represents a solution. For each solution, the same initial condition, 
hourly heat demand, and fuel price were guaranteed to obtain fair 
comparison results. Considering the Q_accum_penalty, the number of 
potential solutions obtained by PPO is 10, while the TD3 obtains 4 po-
tential solutions. Similarly, the SAC yields 7 potential solutions. Here, 
the term "potential solutions" refers to setpoints that are executable and 
can be deployed to the real DHS. Due to the trade-off between heating 
the water and charging/discharging the heat storage tank, all the solu-
tions depicted in Fig. 8 exhibit a similar changing trend. However, it is 
important to note that the fuel price and demand vary on an hourly 
basis, leading to different cost outcomes for each solution. 

Fig. 9 illustrates the optimal solution obtained by each DRL method 
in comparison to the reference plan and CMA-ES. The term "optimal 
solutions" refers to setpoints selected from potential solutions of each 
DRL method that result in the lowest cost for the DHS. Both the reference 
plan and CMA-ES exhibit a similar changing trend. Specifically, there is 
an increase in cost from the 1st to the 17th hour, followed by a decrease 
from the 18th to the 26th hour. After that, the cost begins to increase 
again. In contrast to the reference and CMA-ES methods, the DRL 
methods exhibit a distinct strategy. During the first 17 h, the DRL 
methods experienced an increase in cost; however, this increase is lower 
compared to the reference and CMA-ES methods. While the cost of the 
reference and CMA-ES methods begins to decrease at the 18th hour, the 
DRL methods maintain a stable cost without significant fluctuations. 
This difference in cost behavior highlights the unique strategy employed 
by DRL methods in optimizing setpoints for the DHS. Finally, the costs 
increase again. 

Table 3 provides a summary of the scaled costs for all the methods, 
including the sum, mean, and standard deviation (STD). The sum rep-
resents the total cost accumulated over the 49-hour period, and the 
objective of our work is to minimize this total cost. The lowest total cost 
of 35.26 is achieved by the SAC, indicating its superior performance in 
cost reduction. In contrast, the reference has the highest total cost of 
37.29. The CMA-ES yields a total cost of 36.27, which is lower than that 
of the reference and PPO methods but higher than the TD3 and SAC. 
Furthermore, the lowest mean value of 0.72 is achieved by the SAC, 
while the reference and CMA-ES methods have mean values of 0.76 and 
0.74, respectively. The STD reflects the smoothness of the cost profile. 
SAC and TD3 exhibit STD values of 0.08 and 0.07, respectively, indi-
cating smoother changes in cost compared to the reference and CMA-ES 

Fig. 7. EK module for DRL training.  

Table 2 
Hyperparameters of DRL methods.  

Hyperparameters Values Hyperparameters Values 

Total steps 2100 PPO–Clip range (ε) 0.2 
Optimizer Adam PPO-Lambda 0.98 
Actor learning rate 1e-3 (SAC, TD3)-Start step 4 
Critic learning rate 1e-3 (SAC, TD3)-Update after 4 
Activation function ReLU (SAC, TD3)-Polyak 0.95 
Update every 4 TD3-Act noise 0.1 
Batch size 4 TD3-Target noise 0.2 
gamma 0.99 TD3-Noise clip 0.5 
Hidden nodes of nets 256 TD3-Policy delay 2   

SAC-Entropy coefficient 0.2  
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methods, which have STD values of 0.08 and 0.09, respectively. This 
implies that SAC and TD3 methods generate costs with more consistent 
and stable patterns of change over time. 

As indicated in Table 3, SAC obtained the lowest total cost, the total 
cost reductions achieved by SAC over the reference, CMA-ES, PPO, and 
TD3 are 5.44 %, 3.32 %, 5.79 %, and 1.97 %, respectively. Fig. 10 de-
picts the cost reduction of the SAC method compared to the reference 
(blue), CMA-ES (green), PPO (orange), and TD3 (black) at each hour. 
However, it should be noted that the SAC method does not consistently 
yield lower costs at every hour, as indicated by negative cost reductions 
observed in each figure of Fig. 10. Compared to reference, it can be 
observed that from the 19th hour to the 27th hour, the costs generated 
by the SAC are higher, because the cost reductions are negative, ranging 
from 0 % to − 5 %. Similarly, the same phenomenon is observed when 
comparing SAC with CMA-ES, PPO, and TD3, although SAC obtained the 
lowest total cost, it did not obtain the lowest cost at every hour. 

Overall, according to Figs. 8–10, and Table 3, SAC is the best DRL 
method for lowering total fuel cost. The reduction over the reference, 
CMA-ES, PPO, and TD3 are 5.44 %, 3.32 %, 5.79 %, and 1.97 %; 
respectively. In contrast to the CMA-ES method, which consistently 
outperforms the reference method at every hour in terms of cost 
reduction, SAC adopts a different strategy. SAC does not aim to lower 
costs for every individual hour but instead focuses on achieving an 
overall lower total cost. As a result, there are specific hours where the 

SAC method may not exhibit cost reductions compared to CMA-ES. This 
distinct strategy employed by SAC highlights its approach of prioritizing 
overall cost optimization rather than hour-by-hour cost reduction. 

6. Discussion 

According to the results presented in Section 5.1, the proposed DRL 
framework outperformed the existing method and evolutionary algo-
rithm based method in lowering the fuel cost. However, limitations 
regarding the convexity and model formulation need further discussion. 

To perform optimization, a “skeleton” model combines pipes and 
consumers in such a way that the Apros model does not have to simulate 
every individual consumer and pipe in the system. The level of simpli-
fication determines the simulation speed and the accuracy of the results. 
With more detailed model, DRL will provide more accurate results but 
require more time for simulation. The studied case was formulated as a 
non-convex optimization problem, which means it is difficult for either 
DRL or evolutionary algorithms to find a global optimal solution. With 
the simplification of the model, the accuracy of the proposed method 
drops. The proposed framework can be flexibly adapted to different 
applications with different models (e.g., Modelica, Simulink, etc.). 
However, the principle of DRL requires a specific definition of the states, 
actions, and reward functions. Considering the safety, specific strategies 
are necessary to ensure that the generated results are safe and realistic. 

7. Conclusion 

In this paper, we have presented a DRL framework for setpoint 
optimization in district heating systems. The aim is to save energy and 
reduce fuel costs by effectively adjusting the supply temperature and 
utilization of thermal energy storage, considering variations in air 
temperature, customer demand, and fuel price. The limitations of 
manual operation methods, attributed to the nonlinearity and 

Fig. 8. The costs of PPO, TD3, and SAC.  

Fig. 9. The best solution of each DRL method.  

Table 3 
Comparison of costs in terms of sum, mean, and std.   

Reference CMA-ES PPO TD3 SAC 

Sum 37.29 36.47 37.42 35.97 35.26 
Mean 0.76 0.74 0.76 0.73 0.72 
STD 0.08 0.09 0.10 0.07 0.08  
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complexity of the network, have been addressed through the proposed 
learning framework. The integration of an expert knowledge module 
ensures that executable actions are generated. The main intended con-
tributions of this paper are as follows:  

1. An Apros-based DT is provided, which ensures the training strategy is 
practical, and white-box models inside improve the practicality of 
the DRL solutions.  

2. A novel learning framework for DRL with an EK module is designed 
to generate executable actions to avoid damage to the network.  

3. State-of-the-art DRL methods are incorporated into the framework to 
optimize the setpoints. Simulation results show that the proposed 
framework outperforms the existing manual operation method and 
evolutionary method. 

By incorporating state-of-the-art DRL methods into the framework, 
we have achieved significant advancements in setpoint optimization. 
The simulation results demonstrate the superiority of our proposed 
method over existing manual operation method and evolutionary 
techniques. The framework outperforms these traditional approaches, 
yielding substantial reductions in fuel costs. Furthermore, the provision 
of an Apros-based digital twin has enhanced the practicality of our 
training strategy. The inclusion of white-box models within the digital 
twin has improved the practicality of our DRL solutions, allowing for 
seamless application in real-world district heating systems. 

This paper demonstrated that DRL is a promising tool for optimizing 
setpoints. The fundamental problems of the studied case are inefficient 
operation strategy and low computational efficiency. The goal is to 
lower the fuel costs. In future research, we intend to explore additional 

enhancements to the DRL methods that can fully extract underlying 
information of the industrial data to form better operation strategies. 
Currently, due to the low computational efficiency, only short-term (2- 
day) optimization was conducted. In the future, a long-term (e.g., 7-day) 
optimization will be performed by adopting parallel computation and 
increasing the sample efficiency of DRL methods. These extensions will 
provide the control system with more effective strategies for lowering 
fuel costs in a longer time frame, which can further improve the 
competitiveness of the district heating factory. 
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