

Depolymerization of lignin – an opportunity for further valorization?

Depoly2ols

Prof. Patrik Eklund Lignin seminar 2024

12.2.2024

Prof. Patrik Eklund (Prof. Reko Leino)

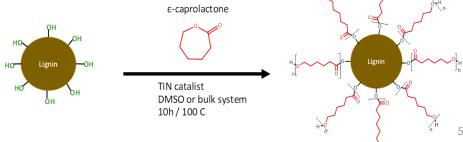
- Excellence in research and education
- Expertize in organic chemistry at molecular level (structure, reactivity & chemical and biological properties)
- New functional molecules and materials by sustainable chemistry

Research areas & activities

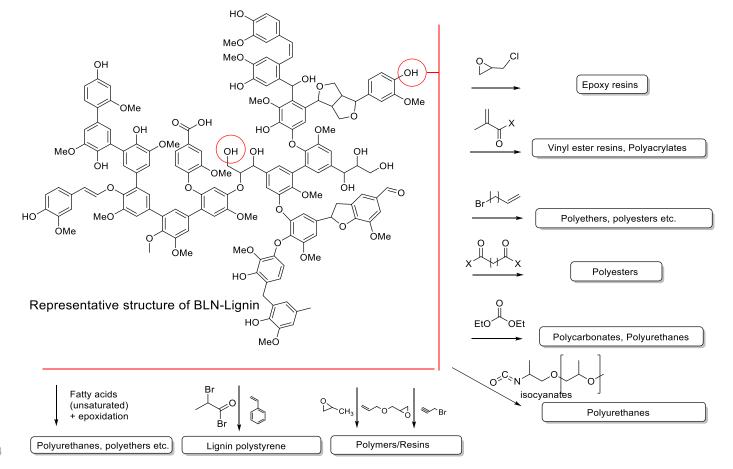
Biomass & Biopolymers	Natural products & carbohydrates	Environmental Chemistry
Lignin, cellulose, hemicelluloses	Polyphenols, mono and oligosaccharides	Pharmaceuticals in the environment, waste water treatment
Valorization - application driven research	 Fundamental chemistry (structure and reactivity) Organic synthesis & toolboxes for chemical modification Bioactive molecules 	Advanced analytical tools: NMR and MS

Lignin – How do we want to use ligning?

- As a macromonomer?
- As an antioxidant?
- As antimicrobial agent?



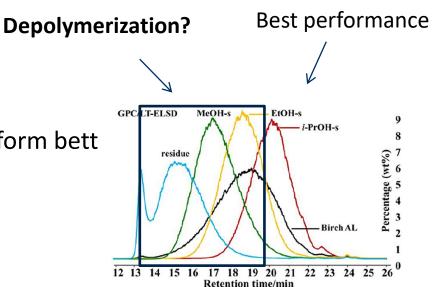
As a macromonomer i resin and polymer chemistry



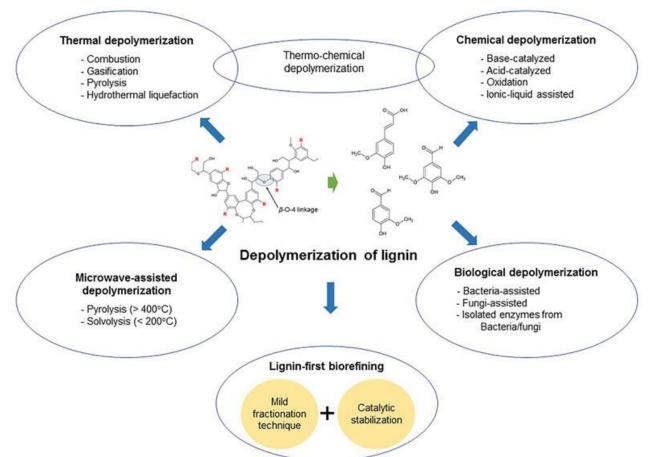
- Lignin can be used as a macromonomer in co-polymers, where lignin is covalently bound.
- In most cases the phenolic as well as the aliphatic OH-groups are used as a polyol structure to replace other (synthetic) polyols.
- **Thermosets and resins**: Phenol-formaldehyde resins, epoxy resins, polyurethanes, acrylates.
- Thermoplastic co-polymers: Lignin grafted copolymers where lignin is a macromonomer/macroinitiator
 often as polyesters or acrylate.

Lignin a polyol macroinitiator

Lignin co-polymers – Lessons learned from LigninReSurf!



Problems with (in some cases)

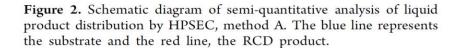

- Solubility & miscibility in different formulations
- Compatibility, phase separation
- Curing (in UV curable formulations)

Structure – performance – relationship

- => Low molar mass fractions tend to perform bett
- better solubility
- higher OH-group content
- better reactivity

Depolymerization

	Lin O. Lin (a superstally linger)		
\square	Lin & Liu (cornstalk lignin) LaCoO ₃ , NaOH, H ₂ O, 120 °C,O ₂	Ref. 115	Ho C 5.3 % Ho C 12.8 % Ho C 5.3 % Ho C 12.8 % Ho C 9.6% Ho C 15.7% 11.5% Ho C 15.7%
	Gu (beech lignin)		
	La/SBA-15, H ₂ O ₂ , microwave irradiation	Ref. 119	HO 9.6% HO 15.7%
	Bösmann & Wasserscheid (beech lignin)	D. C. 100	
	EMIM[[CF ₃ SO ₃], Mn(NO ₃) ₂ , 100 °C, O ₂	Ref. 123	
			0, 11.9%
	Liu (mixed hardwoods lignin)	Ref. 124	21%
	[mmim][Me ₂ PO ₄], CuSO ₄ , 175 °C, O _{2.}		HO 6.9% HO 14.3% HO 8.5%
	Miyafuji (cedar lignin)	Def 125	
	Bu ₄ NOH·30H ₂ O, 120 °C, 2.5 h, air	Ref. 125	HO 25.7% 1.9%
	Anastas (candlenut lignin)	Def 149	
	Cu-PMO, CH ₃ OH, 180 °C, H ₂	Ref. 148	HO TO HO THE HO THE HO THE
			он 43.3% он он он он
	Hartwig (miscanthus giganteus lignin)	Ref. 149	
	Pd/C, dioxane, 200 °C, H ₂	>	HO T HO T
			9.0%
	Zeng & Lin (bamboo lignin)	Ref. 152	have have here
	H-USY/Raney Ni, H ₂ O/ CH ₃ OH, 270 °C, N ₂ .	-	HO HO 9.8%
	Prechtl & Yan (birch lignin)	Ref. 153	AND
	Ni ₇ Au ₃ , NaOH, H ₂ O, 160 °C, H _{2.}		HO 6.05% HO 1.95%
	Lu & Xu (beech THFA lignin)	Ref. 155	
	Ni/C, THFA/1,4-Dioxane, 220 °C, H ₂ .		HO 9.3% HO 27%
	Song & Fang (birch lignin)	Ref. 156	Сорон сон 1,35% исстичение с с с с с с с с с с с с с с с с с с с
	MoOx/CNT, CH ₃ OH, 260 °C, H ₂		HO 22.2% HO 6.1%
9	Cantat (poplar lignin)	Ref. 157	Et,SIO
	B(C ₆ F ₅) ₃ /Et ₃ SiH, CH ₂ Cl ₂ , RT		
~	Luterbacher (formaldehyde pretreated poplar lignin) Ref. 105	ALL
	Ru/C, THF, 250 °C, H ₂ .		HO _ 16.5% HO _ 18.6% HO _ 15.2%
	Yang & Wang (birch lignin)	Ref. 159	$\propto \propto \sim$
	Ru/Nb ₂ O ₅ , H ₂ O, 250 °C, H ₂		2.8% 9.1% 8.5%
	Deuss & Barta (walnut lignin)	Ref. 101	
	Fe(OTf) ₃ , ethylene glycol (30 wt%), 1,4-dioxane, 140 °C.		HO 4.0% HO 17.0% 14.5%
	Barta & deVries (walnut lignin)	Ref. 102	enci ence ence
	Fe(OTf) ₃ , ethylene glycol (60 wt%), 1,4-dioxane, 140 °C.		0.6% 7.2% 13.8%
	Bruijnincx (poplar lignin)	Ref. 168	Acid catalyzed
	[Rh(cod)Cl] ₂ , dppp, (ScOTf) ₃ , 1,4-dioxane/H ₂ O, 175 °C.	-	HO 1.2% HO 9.2% depolymerization
	Stahl (aspen lignin)	Ref. 170	half all half half
	1. AcNH, TEMPO cat. HCl/HNO3, O2, 45 °C. 2. HCOOH:H2O, HCO	ONa, 110 °C.	HO 13.1% HO 6.7% HO 8.5% 7.9%
	Westwood (birch lignin)	Ref. 171	
	1. DDQ, t-BuONO, 2-methoxyethanol/DME, O2, 80 °C. 2. Zn/NH4CI		HO H
		Ref. 172	0.5% 0.5% 0.5%
	Stephenson (pine lignin)		HO H
	1. NHPI/2,6-lutidine, MeCN, 0.64V. 2. [Ir] cat., DIPEA, HCOOH, blu		1.3% 0, 1.14%
	Hu (corncob residue)	Ref. 176	🖧 💭 🕋 Two step
	1. H ₂ O-THF, 200 °C. 2. Na ₂ CO ₃ , H ₂ O-THF, 300 °C.		HO T HO HO T Processes
	Beckham (corn stover lignin)	Ref. 180	12.2% 5.6% 2.1% 4.9%
	Pseudomonas putida KT2440	>	10 44-39%
	Beckham (corn stover lignin)	Ref. 181	Biochemical transformation
	Engineered P. putida strain, KT2440-CJ103		COOH 67mol%
τ J			



Bright Side of Lignin Depolymerization: Toward New Platform Chemicals

Zhuohua Sun,[†] Bálint Fridrich,^{†,‡} Alessandra de Santi,^{†,‡} Saravanakumar Elangovan,[†] and Katalin Barta*,†©

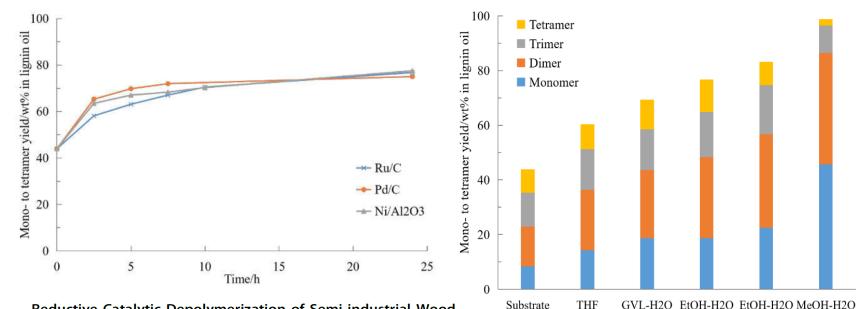
- Monomeric platform chemicals are ۰ often the target
- Yields are typically 1-20%
- Depolymerization to lower the Mw ۰ production of oligomers is less explored

Depolymerization of BLN-Lignin Åbo Akademi University Hemicellulose extract Reductive catalytic depolymerization of Monomer 20%-30% industrial lignin and hemicellulose -Dimer process development and intensification Trimer Tetramer Oligomer Fiber fraction 70%-80% Pure cellulose 40% Sulfur free lignin 25%-35% Aho Akademi University and Institut National des Sciences Appliquées de Rouen Cat. & H₂ 15%-25% mono-dimers

20

25

2-syringylethanol


Homosyringaldehyde

2-guaiacylethanol

min

Depolymerization of lignin

Influence of catalyst and solvent on kinetics and product distribution

Reductive Catalytic Depolymerization of Semi-industrial Wood-Based Lignin

Xiaojia Lu, Lucas Lagerquist, Kari Eränen, Jarl Hemming, Patrik Eklund, Lionel Estel, Sébastien Leveneur, and Henrik Grénman*

(50/50, v/v) (50/50, v/v) (30/70, v/v) (30/70, v/v)

Tailored polyphenols and polyols from fractionation and depolymerization of biorefinery lignins (Depoly2ols)

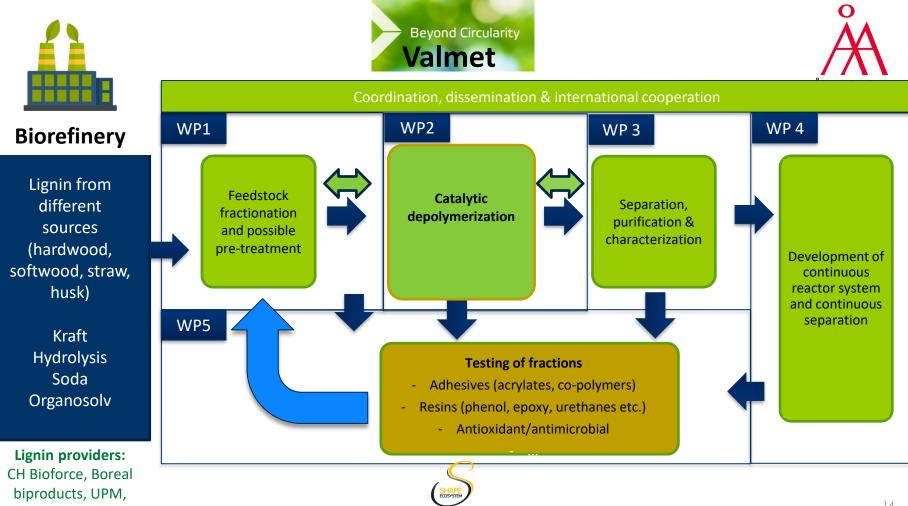
Project period: 1.1.2024 - 31.12.2026

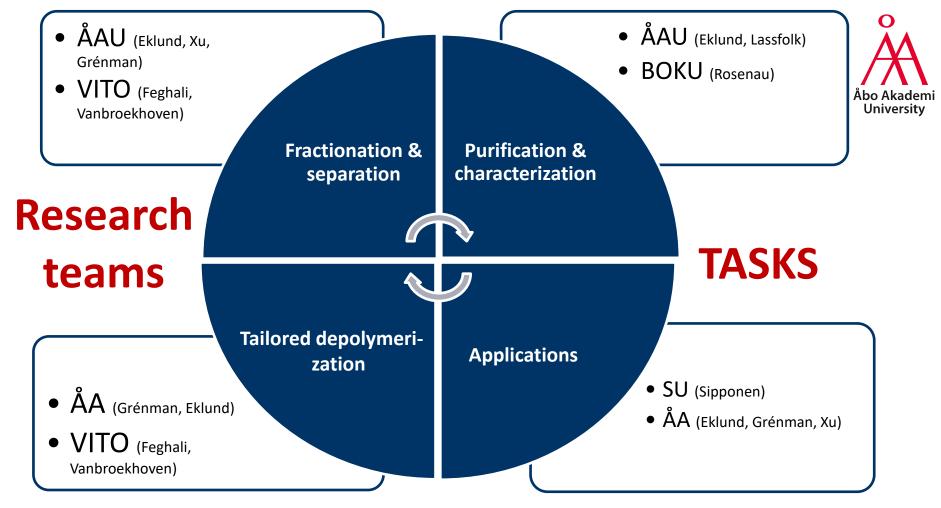
Patrik Eklund, Chunlin Xu, Henrik Grénman

BUSINESS FINLAND

12

Project overview and objectives


- This project aims to develop a tailored and optimized process for reductive depolymerization of lignin (continuous reactors) combined with separation of lignin based oligomers.
- The potential production of polyphenolic oligomers from different biorefinery lignins for applications *in polymer and resin chemistry* and as antioxidant and antimicrobial agents will be investigated
- Modelling of large-scale production

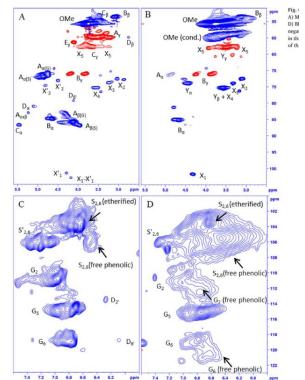


University of Natural Resources and Life Sciences, Vienna

MIRKE

Metgen

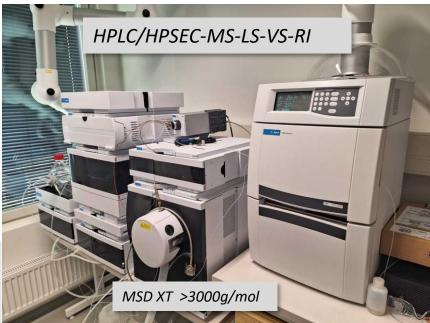
Characterization



Lucas Lagerquist,^{†,§} Jani Rahkila,^{‡,§} and Patrik Eklund*^{,†}®

[†]Johan Gadolin Process Chemistry Centre, Laboratory of Organic Chemistry, Åbo Akademi University, Biskopsgatan 8, 20500 Turku/Åbo, Finland

[‡]Instrument Centre, Åbo Akademi University, Biskopsgatan 8, 20500 Turku/Åbo, Finland



NMR:

600 MHz with Prodigy TCI (inverted CryoProbe) 3x500 MHz, 2 with Smartprobe, 1 with Prodigy BBO (CryoProbe) 400 MHz with CP-MAS (solid state), HR-MAS (semisolid state)

