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Abstract
Motivation: Single-cell RNA-sequencing enables cell-level investigation of cell differentiation, which can be modelled using trajectory inference
methods. While tremendous effort has been put into designing these methods, inferring accurate trajectories automatically remains difficult.
Therefore, the standard approach involves testing different trajectory inference methods and picking the trajectory giving the most biologically
sensible model. As the default parameters are often suboptimal, their tuning requires methodological expertise.

Results: We introduce Totem, an open-source, easy-to-use R package designed to facilitate inference of tree-shaped trajectories from single-cell
data. Totem generates a large number of clustering results, estimates their topologies as minimum spanning trees, and uses them to measure
the connectivity of the cells. Besides automatic selection of an appropriate trajectory, cell connectivity enables to visually pinpoint branching
points and milestones relevant to the trajectory. Furthermore, testing different trajectories with Totem is fast, easy, and does not require in-
depth methodological knowledge.

Availability and implementation: Totem is available as an R package at https://github.com/elolab/Totem.

1 Introduction

Single-cell RNA-sequencing (scRNA-seq) enables researchers
to quantify the transcriptome of thousands or even millions of
cells simultaneously at the single-cell level. The cells in a tissue
undergo transcriptomic changes that are part of biological
processes. If the changes happen gradually, the tissue contains
cells derived from different stages of the process. If a correct
trajectory that accurately models these different stages can be
generated from the scRNA-seq data, this enables researchers
to unravel the transcriptomic mechanisms of the processes.
The modelling of trajectories from scRNA-seq data has
formed a new branch in computational biology, known as
trajectory inference.

A vast number of trajectory inference methods has been de-
veloped (Saelens et al. 2019, Deconinck et al. 2021). While
these methods have proven to be valuable in many situations,
their use is still difficult for several reasons. The main reason
is that a single method used with default settings often fails to
generate a trajectory that can capture all relevant parts (mile-
stones) of the trajectory and also accurately model the correct
milestone network. Therefore, a popular approach is to test
different methods and tune their parameters until a biologi-
cally sensible or otherwise satisfactory trajectory is obtained.

Slingshot (Street et al. 2018) has become one of the most
popular trajectory inference methods after a comparison
study (Saelens et al. 2019) showed it was one of the best-
performing methods for inferring tree-shaped trajectories. A
tree can be any trajectory in which the parts are not

disconnected and the trajectory has no cycles. Slingshot
requires as input a clustering of cells that is used to construct
a Minimum Spanning Tree (MST), which is subsequently
smoothed using the simultaneous principal curves algorithm
to obtain a directed trajectory, which also includes pseudo-
time, a measure of the differentiation stage of the cells. While
methods such as the Average Silhouette Width (ASW)
(Rousseeuw 1987) and the Variance Ratio Criterion (VRC)
(Cali�nski and Harabasz 1974) can be used to select the clus-
tering automatically, their weakness is in their tendency to se-
lect a clustering with an overly small number of clusters. The
resulting trajectories are often over-simplistic and lack espe-
cially small milestones. Therefore, a more reliable approach
can be to manually generate a clustering that includes all the
relevant milestones, but this requires careful parameter testing
and validation using markers to ensure that the clustering is
optimal. However, even then the resulting MST may not cor-
relate well with the true milestone network because the MST
is generated using a distance matrix that is sensitive to the pre-
processing steps (e.g. dimensionality reduction), the clustering
structure, and the choice of the distance metric.

To provide a system with better user experience for research-
ers who perform trajectory inference, we developed a new tool,
Totem, for the inference of tree-shaped trajectories from single-
cell data (Fig. 1). Totem generates a large number of dissimilar
clustering results for the cells (by default, 10 000) using a k-
medoids algorithm. The number of clusters (k) and the struc-
ture of the clustering results vary, generating vastly different
trajectories when used as the basis for constructing the MST.
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To select a clustering from the large set of clustering results,
Totem uses a new measure called cell connectivity, which is
based on counting the number of edges (connections) between
the clusters in an MST. The ratio of the number of edges and
clusters (connectivity) is calculated for each cell and clustering,
and the connectivity vectors are averaged to obtain the cell con-
nectivity of the cells. The cell connectivity acts as a useful base-
line for selecting an appropriate trajectory and deciding which
milestones to include in the trajectory, while also helping to
give a visual overview of the milestone network, i.e. how the
milestones are connected and where the branching points and
leaf nodes are located. Importantly, a key feature of Totem for
its usability is that it allows to quickly and easily browse differ-
ent MSTs, from which the user can select one or several MSTs
for further analysis.

To benchmark Totem, we performed a comprehensive
comparison using the dynverse benchmarking framework
(Saelens et al. 2019), which comprises over 200 tree-shaped
trajectories. We compared Totem with the popular Slingshot
tool (Street et al. 2018, Saelens et al. 2019) and the more re-
cently introduced TinGa (Todorov et al. 2020), which is
based on a growing neural gas (GNG) model (Fritzke 1994)
and can also model trajectories that are more complex than
trees. In particular, to evaluate the performance of the
connectivity-based criterion of Totem for clustering selection

in trajectory inference, we compared it with the popular ASW
and VRC clustering selection methods. Because a single clus-
tering is rarely optimal, and thus the users are often forced to
try multiple clustering results to optimize the trajectories, we
investigated the performance of the trajectories generated
based on multiple top-ranked clustering results, giving a
deeper overview of the performance. Finally, we demonstrate
the usefulness of the cell connectivity measure with a few
examples that show how the measure can aid trajectory infer-
ence by helping to pinpoint relevant branching points and
milestones.

2 Materials and methods

2.1 Totem

In the following subsections, we go through the main steps of
Totem trajectory inference workflow. Figure 1 illustrates the
basic workflow of Totem.

2.1.1 Upstream analysis
Upstream of trajectory inference, Totem assumes that the in-
put gene expression matrix has been normalized and quality
control has been performed to remove bad-quality cells (Ilicic
et al. 2016). scRNA-seq data analysis toolkits like Seurat

Figure 1. Schematic illustration of the Totem workflow. (1) A gene expression matrix is used as input, which needs to be preprocessed upstream of

Totem analysis, including normalization, quality control, and possible batch correction and feature selection. Further dimensionality reduction (feature

extraction) can also be performed using Totem. For the low-dimensional data matrix, Totem generates (2) a large set of clustering results using a k-

medoids clustering algorithm (CLARA), (3) a Minimum Spanning Tree (MST) for each clustering, which models the cluster (milestone) network, and (4)

estimates the connectivity of the clusters in each MST (ratio of the number of edges a cluster has in MST and the number of clusters). The connectivity

vectors are averaged to generate the cell connectivity measure (top right), which helps to locate branching points and milestones that are relevant to

model. (5) The clustering results are ranked based on the Variance Ratio Criterion (VRC) of the cell connectivity measure, and (6) top-ranking clustering

results and their corresponding MSTs are selected for further analysis (middle-right). (7) The selected MSTs are smoothed using the Slingshot algorithm

to obtain directed trajectories (lower right). The trajectory can be exported as objects that can be used downstream of Totem analysis, such as differential

expression analysis.
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(Butler et al. 2018) and Scanpy (Wolf et al. 2018) can perform
the normalization and quality control.

Trajectory inference methods require a low-dimensional
(from 2 to 50) embedding as input. The dimensionality reduc-
tion steps can be customized as the user sees best prior to
Totem analysis, but Totem can also be used to transform gene
counts into new features (feature extraction) with functions
that utilize the dyndimred R package. In scRNA-seq data
analysis, the most common way to perform feature extraction
is the Principal Component Analysis (PCA) in which the num-
ber of principal components typically varies from 10 to 30.
Alternatively, methods like Multi-Dimensional Scaling (MDS)
or the more scalable landscape MDS (LMDS) can be used to
generate an embedding with a smaller number of dimensions
(e.g. from 2 to 5), which is usually not a sufficient number in
PCA of scRNA-seq data. t-distributed stochastic neighbour
embedding (t-SNE) (Maaten and van der Hinton 2008) and
Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) (McInnes et al. 2018) are
commonly used only for visualization, and they should be
used with caution if used as input in trajectory inference. As
the default dimensionality reduction method in Totem, we use
the 5-dimensional LMDS. Moreover, it is generally a good
idea to reduce the number of features prior to feature extrac-
tion by selecting highly variable genes (HVGs), which can be
performed using methods like Seurat (Butler et al. 2018) and
Scanpy (Wolf et al. 2018). If the dataset has batch effects, and
the user does not want to model these differences in trajectory
inference, data integration methods (Butler et al. 2018,
Luecken et al. 2022) can be used.

2.1.2 Generation of a large set of clustering results
To generate a large set of dissimilar clustering results that can
be used as the basis for constructing the MST, we use the
CLARA k-medoids clustering algorithm (Peter and
Rousseeuw 1990) from the cluster R package, which performs
fast k-medoids clustering. We run the algorithm L times (by
default L ¼ 10 000) and filter out clustering results that have
clusters with fewer than five cells to prevent overly small clus-
ters, which are usually not interesting. The number of remain-
ing clustering results (L0) can be close to L or deviate from it
considerably depending on the dataset. The number of clus-
ters (k) varies by default from 3 to 20, but can be adjusted by
the user if more complex trajectories with more milestones are
expected. The default upper limit (20) is well above the aver-
age number of clusters (milestones) in the trajectories of the
dynverse benchmarking framework. We also activate the R
random number generation (RNG) in the clara R function so
that the program returns different results with different RNG
seeds.

2.1.3 Generation of minimum spanning trees for clustering
results
For each clustering, we generate an MST by representing the
clusters of cells as vertices in a graph and using the
covariance-based approach of Slingshot (Street et al. 2018) to
measure distances between the clusters. The Mahalanobis-like
distances are calculated from the covariance matrix for cells
in each cluster, while also considering the shape and spread of
the clusters. We use the ape R package to perform the MST
estimation (Paradis and Schliep 2019).

2.1.4 Estimate cell connectivity
For each MSTj (j ¼ 1; . . . ;L0Þ, we measure the connectivity cij

¼ dij/kj of the ith vertex (cluster) in the graph by dividing the
degree of the vertex dij, i.e. the number of edges that are con-
nected to the vertex, by the number of vertices kj in the graph.
We then create a connectivity vector cj that contains the con-
nectivity values for all N cells corresponding to MST j, scale
the connectivity values so that the maximum connectivity of
each graph is always one, and calculate the cell connectivity
of all the cells cð Þ by averaging over the L0 connectivity vec-
tors using the arithmetic mean:

c ¼ 1
L0
XL0

j¼1

cj

maxðcjÞ
(1)

The cell connectivity is higher for cell populations that are
farther from the leaf parts of the trajectory (Fig. 1). We used
the arithmetic mean because it ensures that the connectivity
gradient is continuous, as opposed to the median approach
(Supplementary Fig. S1).

2.1.5 Clustering selection using the variance ratio criterion
To find a clustering that captures the tree structure of the data
and gives clusters that are well defined, we use VRC, also known
as the Calinski–Harabasz score (Cali�nski and Harabasz 1974),
which measures the ratio of the between-cluster dispersion and
the within-cluster dispersion. Instead of using the whole dimen-
sionally reduced data as input, we use the one-dimensional cell
connectivity vector cð Þ to find clusters that have cells with simi-
lar connectivity within the clusters but different compared to the
other clusters. VRC is a more memory-efficient method for clus-
tering selection than the commonly used ASW because it does
not require a distance matrix of cells as input, making it more
suitable for datasets with many cells. We use the fpc R package
to perform the VRC analysis.

2.1.6 Lineage smoothing
For an MST corresponding to a selected clustering, Totem
performs lineage smoothing using Slingshot (Street et al.
2018), which generates a directed trajectory along with pseu-
dotime that quantifies cell differentiation continuously at the
single-cell level. Slingshot fits principal curves (Hastie and
Stuetzle 1989) for each lineage of the MST starting from a
user-specified root node, which is initially selected randomly.
The root node can be adjusted later by the user.

2.1.7 Trajectory visualization and interpretation
Totem includes visualization functions that aid trajectory infer-
ence, utilizing the dynplot R package (Saelens et al. 2019).
The functions enable to visualize multiple MSTs and smoothed
trajectories side by side over a two-dimensional embedding.
The two-dimensional embedding can be provided by the user or
generated using one of the methods included in the dyndimred R
package, such as t-SNE, UMAP, or MDS. To assist in biological
interpretation, the user can also visualize expression levels of
genes over the embedding.

The cell connectivity can be visualized over the two-
dimensional embedding to pinpoint milestones and branching
points that could be otherwise missed or inaccurately modelled
(Fig. 1). Local changes in the connectivity indicate milestone
transitions that are relevant to include in the trajectory. The con-
nectivity levels can be used to locate branching points, where a

Cell-connectivity-guided trajectory inference 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/9/btad515/7251030 by guest on 09 February 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad515#supplementary-data


cell population is encircled by other cell populations whose con-
nectivity is relatively lower (Fig. 4).

Although the clustering selection is performed based on the
VRC of the cell connectivity, the resulting MST can still be
suboptimal in terms of the connections that the milestone net-
work comprises. In addition, small milestones can be missing
or the trajectory can seem over-complicated. Therefore, the
user should not rely upon a single, automatically generated
trajectory. Instead, the trajectory should be validated using
gene markers to ensure that the model is biologically sensible,
and compared with the cell connectivity by visualization to
ensure that the milestone network is in line with the connec-
tivity profile. If the trajectory requires adjustments, Totem
allows to easily test different clustering results until a trajec-
tory is obtained that meets both requirements.

2.2 Benchmarking

To benchmark Totem, we repeated the comprehensive bench-
marking of scRNA-seq trajectory inference methods using the
dynverse framework (Saelens et al. 2019). We included trajec-
tories that have a tree-like structure, which were labelled as
linear, bifurcation, multifurcation, or tree in the original com-
parison. These comprise 69, 44, 16, and 87 linear, bifurca-
tion, multifurcation, and tree trajectories, respectively. The
datasets are of synthetic and real origin. The real datasets in-
clude 26 gold standard datasets of which ground-truth
includes cell types and their differentiation order at the cluster
level (discrete pseudotime). The 54 real, silver standard data-
sets have a ground-truth that includes a continuous or discrete
pseudotime. The synthetic, simulated datasets provide the
most accurate ground-truth, and they were simulated using
four different simulators: dyntoy (Saelens et al. 2019), dyngen
(Cannoodt et al. 2021), PROSSTT (Papadopoulos et al.
2019), and Splatter (Zappia et al. 2017).

The dynverse benchmarking framework includes four main
metrics. The accuracy of the cell differentiation order is measured
using the correlation of pairwise geodesic distances between the
ground-truth and predicted trajectories. The accuracy of the dif-
ferentially expressed genes is measured using the weighted correla-
tion of the random forest regression-derived feature importance
lists. The features that are ranked higher in the ground-truth are
given a relatively higher weight. The F1 branches value maps the
cells to the closest branching points in the ground-truth and in-
ferred trajectories and measures the clustering similarity between
the two clustering results. Hamming-Ipsen-Mikhailov (HIM)
(Jurman et al. 2015) measures the similarity of two topologies.
For example, two linear trajectories would yield a perfect HIM
value of 1, even if the two trajectories would be otherwise
completely dissimilar. All four metrics range from 0 to 1 and the
geometric mean of the metrics is used to assess the overall
performance by penalizing small values in the metrics.

To benchmark Totem, we compared it with the dynverse
implementation of the Slingshot method, which uses PAM
(k-medoids) clustering algorithm and ASW to select the optimal
number of clusters, as well as TinGa, which is based on a GNG
model (Fritzke 1994). However, the preprocessing was stan-
dardized so that each method uses the 5-dimensional LMDS,
which is the default feature extraction method of TinGa. All
three methods also allow to choose how to perform the normali-
zation, feature selection, and feature extraction steps.

The vanilla version of Slingshot available at Bioconductor
takes as input a low-dimensional embedding, such as princi-
pal components or UMAP dimensions, and a clustering.

There are no requirements for using a certain type of cluster-
ing or embedding. Slingshot models the trajectory topology as
an MST and fits one or multiple principal curves, depending
on how many lineages there are, using one of the clusters as
the starting point. The distances between the clusters are cal-
culated using a Mahalanobis-like distance metric, which can
also be changed to a mutual nearest neighbour (MNN) based
metric or the Euclidean distance metric. If no starting cluster
is specified by the user, Slingshot selects one so that the
number of shared clusters between the lineages is maximized
before the first branching point.

In total, the GNG algorithm of TinGa has eight parameters
in addition to the input embedding for which the trajectory is
inferred. Of the eight GNG-related parameters, the maximum
number of nodes (by default, 30) can be decreased if the tra-
jectory has too many milestones (cell types, clusters) in the
network. The maximum number of iterations (by default,
10 000) should not be tuned as the high iteration count
ensures that the GNG algorithm converges. The six remaining
parameters control how sensitively the graph nodes are linked
and changed during the iteration, and their adjustment should
be considered if tuning the maximum number of nodes does
not improve the result. The original article of TinGa mentions
that especially adjustment of the two epsilon parameters (eb

and en) affects the performance.

2.3 Comparing clustering selection methods

Trajectory inference methods such as Slingshot require a clus-
tering that is used as the basis for constructing the MST,
which is subsequently smoothed using the simultaneous prin-
cipal curves algorithm to obtain a directed trajectory and
pseudotime. In addition to the cell connectivity criterion of
Totem for clustering selection, we tested three other methods:
ASW, which is used by the dynverse implementation of
Slingshot; VRC; and the random criterion that ranks the clus-
tering results into a random order.

To compare the clustering selection methods, we ran the k-
medoids clustering algorithm (CLARA) 10 000 times for each
dataset, selected the top 100 clustering results with each
method, performed the trajectory inference using Slingshot
for each clustering, and ran the dynverse performance evalua-
tion for the trajectories. For each benchmark dataset, we var-
ied the number of evaluated trajectories from 1 to 100 and
calculated the maximum and mean of the overall performance
score. Finally, we calculated the mean of the overall scores
across the datasets.

2.4 Robustness of Totem

We investigated how robust the performance of Totem is with
respect to its parameters: the number of clustering results (by
default, 10 000) and the range of the k values (by default,
from 2 to 20) from which the number of clusters is sampled
with replacement. We randomly selected 10 datasets from the
top 50 datasets with the highest overall score in the bench-
mark (names listed in Supplementary Fig. S2). For each of the
10 datasets, we ran Totem with different combinations of the
number of clusterings (100, 500, 1000, 2500, 5000, 7500)
and the upper limit of the k range (5, 10, 15, 20, 30, 40). For
each parameter configuration and dataset, we ran Totem 10
times using different random seeds. We calculated the dyn-
verse overall score between the inferred and ground-truth tra-
jectories (Saelens et al. 2019).
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3 Results

3.1 Benchmarking Totem for trajectory inference

To benchmark Totem, we used the dynverse benchmarking
framework (Saelens et al. 2019) that includes 216 tree-shaped
trajectories. In our comparison, we included the dynverse im-
plementation of Slingshot (Street et al. 2018, Saelens et al.
2019), which uses ASW for clustering selection, and TinGa,
which is a GNG-based method (Fritzke 1994) that can also
predict more complex trajectories than tree-shaped, such as
acyclic and disconnected trajectories (Todorov et al. 2020).

As shown in the rightmost panel of Fig. 2, Totem achieved
superior overall scores (Friedman test; Bonferroni-adjusted
P-value � 0.001; Wilcoxon signed-rank test; Bonferroni-
adjusted P-value � 0.01) for datasets with a nonlinear trajec-
tory (bifurcating, multifurcating, or other nonlinear tree),
whereas TinGa was the second-best method for the nonlinear
datasets. The violin plots also show that Totem’s distribution
of the overall scores with the nonlinear trajectories was more
concentrated to higher performance levels compared to
TinGa and Slingshot. For linear trajectories, Slingshot
achieved superior performance among the tested methods
(Friedman test; Bonferroni-adjusted P-value � 0.001;
Wilcoxon signed-rank test; Bonferroni-adjusted P-value �
0.05), while the overall scores of the linear datasets were, on
average, similar for TinGa and Totem. The difference in the
overall performance was mainly attributable to the differences
in the topology accuracy (HIM) and the accuracy of the cell
assignment onto the branches (F1 branches). The HIM score
of Slingshot was close to perfect for most of the linear datasets
but worse compared to TinGa and Totem for the nonlinear
datasets.

3.2 Benchmarking Totem for clustering selection

Selection of an appropriate clustering for constructing the
MST is an important step in the trajectory inference process.
Therefore, we took a closer look at the clustering selection
step to investigate which clustering selection approach gives

the best results when we consider multiple top-ranking trajec-
tories simultaneously. We included two popular clustering se-
lection methods, ASW and VRC, as well as the Totem
method that uses cell connectivity and VRC, and also a
method that ranks the clustering results into a random order
(Random).

When we tested multiple top-ranking clustering results and
always selected the trajectory that gave the best performance
in the evaluation, the result suggested that the random crite-
rion gave the best performance (Fig. 3A). This is an expected
result considering that the random criterion generates more
dissimilar trajectories than the other methods. However,
when we averaged the performance values of the multiple top
trajectories (Fig. 3B), the random criterion was the worst-
performing method, as expected. ASW achieved the worst
performance among the methods in the analysis in which we
selected the best-performing trajectory, and it was the second-
worst method when the performance values of the trajectories
were averaged. VRC achieved slightly better performance
than ASW when selecting the best-performing trajectory, and
it was tied with the Totem method as the best method by the
average performance. In addition to good average perfor-
mance, Totem had a relatively high-performance curve in the
analysis that considers the performance of the best-
performing trajectories, similar with the random criterion. In
other words, the selection method of Totem enables to find
better performing trajectories than the ASW and VRC with-
out sacrificing as much on the average performance as the
random criterion.

3.3 Examples of trajectory inference with Totem

To demonstrate the utility of Totem in practice, we consid-
ered two datasets from the dynbenchmark database. The
datasets meet the prerequisites of Totem: they have a tree-
shaped topology with a single starting point and no discon-
nected parts. Importantly, the cell types of the two datasets
are connected in the correct way in their low-dimensional

Figure 2. Results of the benchmarking for trajectory inference from scRNA-seq data. The overall score is the geometric mean of four performance

metrics: the correlation of geodesic distances (correlation), which measures accuracy of cellular ordering, the Hamming-Ipsen-Mikhailov (HIM), which

measures topological accuracy, the weighted correlation of feature importance lists, which measures accuracy of differentially expressed genes inferred

from the trajectory, and the F1 branches, which measures accuracy of cell assignment onto branches. The results were grouped by the performance

metric (columns) and whether the ground-truth topology is linear or nonlinear, i.e. bifurcating, multifurcating, or some other nonlinear tree (rows).
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embeddings, in this case 5-dimensional LMDS, a property
that generally hinders trajectory inference of many of the dyn-
verse benchmark datasets irrespective of the trajectory
method used.

In the first example, we compared the trajectories (Fig. 4A)
produced by Totem, Slingshot and TinGa for a simulated
dataset that has a multifurcating trajectory (named multifur-
cating_4 in the dynverse benchmark data repository). With
Slingshot, we used the ground-truth clustering of the simu-
lated dataset as input. The MST produced by Slingshot was
linear and did not correlate well with the true milestone net-
work. The example shows how Slingshot can still produce in-
accurate trajectories even if the ground-truth clustering is

available because the cluster distances generate an MST with
a wrong network. Similarly, TinGa’s trajectory for the dataset
was inaccurate because the multifurcation was not symmetri-
cal. In contrast, Totem predicted trajectories that correlated
well with the true milestone network. In addition, the cell con-
nectivity measure of Totem provided, in general, accurate in-
formation about the location of the end points and the middle
branching point.

The second example (Fig. 4B) shows similar results but for
a bifurcating trajectory that includes T cells from a mouse thy-
mus (Han et al. 2018, Saelens et al. 2019). Based on the tra-
jectory inferred by Slingshot, the topology of this network
could be linear, i.e. the starting point would be one of the end

Figure 3. Comparing clustering selection methods in the dynverse benchmarking. We selected the top 100 clusterings from 10 000 k-medoids

clusterings for each of the 216 dynverse benchmark datasets using four different methods: the average silhouette width (ASW), the variance ratio

criterion (VRC), random selection, and the Totem method. For each clustering, the rest of the trajectory inference (Minimum Spanning Tree generation,

smoothing) was performed using Slingshot. In (A), we varied the number of top-ranking trajectory models and selected the model for each dataset that

gave the best overall score from all the models. In (B), we calculated the mean performance of all the models.

Figure 4. Example analyses with Slingshot, Totem, and TinGa. (A) A multifurcating trajectory simulated with dyntoy. (B) T cells from a mouse thymus with

a bifurcating trajectory. The two-dimensional embeddings for visualization were generated with the Multi-Dimensional Scaling (MDS) method from the

dyndimred R package.
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nodes, or bifurcating, i.e. the starting point would be one of
the middle nodes, if we have no knowledge about the starting
point of the trajectory. By selecting a trajectory with Totem
that is in line with the cell connectivity profile of the data, we
obtain a trajectory with the correct topology (bifurcating),
where the bifurcation point is at the node in the middle, from
which the bifurcation starts in the ground-truth trajectory.
Both of these examples demonstrate, how the cell connectivity
helped us to choose trajectories that exhibit the correct topol-
ogy. TinGa’s trajectory for this dataset was inaccurate be-
cause the two end points of the bifurcation were connected.

3.4 Robustness of Totem

We investigated the robustness of Totem to its parameters
(Supplementary Figs S2 and S3). The results show that the ro-
bustness of Totem improved when the number of clusterings
increased (Supplementary Fig. S2), and the variation was
small when the number of clusterings was over 2500 (5000 or
7500). However, the upper limit of the cluster number range
did not have a clear impact on the robustness, but it did affect
the average performance (Supplementary Fig. S3). The lowest
average performance was achieved when the upper limit of
the cluster number range was only five (by default, 20), but
otherwise the average performance was robust regardless of
the upper limit of the number of clusters.

4 Discussion

While a large number of trajectory inference methods has
been developed (Saelens et al. 2019) for constructing trajecto-
ries from single-cell data through mathematical modelling,
the usability of these methods remains rather poor. One main
reason is that the methods do not work optimally with every
dataset, requiring the users to try different methods, tune the
parameters, and adjust the preprocessing steps prior to trajec-
tory inference. Oftentimes, the parameter tuning requires de-
tailed knowledge of the underlying statistical and machine
learning models, which many users are not familiar with, and
the manuals of trajectory inference tools often do not provide
clear instructions on how the parameters should be adjusted.

In this article, we introduced Totem, a tool designed to fa-
cilitate the inference of tree-shaped trajectories from single-
cell data. Totem generates a large number of clustering results
(by default, 10 000) with the k-medoids algorithm and calcu-
lates the cell connectivity measure, which acts as a useful base-
line for finding the optimal trajectory. In our examples, we
showed how the cell connectivity enabled us to select cluster-
ing results that generated accurate trajectories. Other trajec-
tory inference methods, such as Slingshot (Street et al. 2018)
and TinGa (Todorov et al. 2020), do not provide a metric like
the cell connectivity that can be used as a reference to guide
trajectory inference. With these methods the user needs to in-
stead use the visualization to get a sense of the topology, use
biological markers to ensure the model is biologically sensible,
and change the parameters if the trajectory is not satisfactory,
which can be arduous for users without advanced back-
ground in mathematics and machine learning.

In Slingshot, the between-cluster distances determine the
MST and the milestone network. Our examples showed how
even when the correct cell types were available, the MSTs pre-
dicted by Slingshot could still be inaccurate. One solution is
to change the distance method, e.g. to a mutual neighbour-
based method, but this will still not necessarily generate the

correct network. Totem addresses this issue by providing a
user-friendly interface to analyse MSTs generated based on
different clustering results. With this interface the user can se-
lect an MST that best fits to the biological hypothesis and the
cell connectivity profile without time-consuming and arbi-
trary parameter tuning. Totem then smoothens the MSTs of
the selected clustering results using the simultaneous principal
curves algorithm of Slingshot to obtain directed trajectories
that include pseudotime. The trajectories can be exported as
Slingshot or dynwrap objects to be used in downstream analy-
sis, e.g. to perform differential expression analysis using
tradeSeq (Van den Berge et al. 2020) or dyno (Saelens et al.
2019).

To benchmark Totem for inferring trajectories from
scRNA-seq data, we used the dynverse benchmarking frame-
work, which includes 216 tree-shaped trajectories. We com-
pared Totem with the dynverse implementation of Slingshot
and TinGa. Totem outperformed the other two methods for
nonlinear trajectories (bifurcation, multifurcation, or some
other nonlinear tree) and performed comparably with TinGa
for linear trajectories. The results suggested that while
Slingshot was the best method for linear trajectories among
the tested methods, it was significantly worse than TinGa and
Totem for nonlinear trajectories. This happened because
ASW is generally known to select a small number of clusters,
which will more likely generate a linear trajectory than a non-
linear trajectory when used for MST estimation. In contrast,
TinGa is more likely to overcomplicate the trajectories with
redundant cycles and disconnected parts than Slingshot and
Totem, both of which can only infer tree-shaped trajectories.
Indeed, the performance differences between the methods
were mainly attributable to differences in the accuracy of the
topology (HIM) and branch assignment (F1 branches).

To investigate what is the most optimal way to select the
clustering that is used to generate the MST, we generated
10 000 k-medoids clustering results for each of the bench-
mark datasets and ranked them using different clustering eval-
uation methods, including ASW, VRC, and a Totem criterion
that uses cell connectivity and VRC. When we investigated
the performance scores of the top 100 clustering results, the
results suggested that the Totem criterion and VRC provided
the best average performance. However, the Totem criterion
outperformed the VRC when we considered only the best tra-
jectory from the set of trajectories. In other words, when test-
ing multiple trajectories, it is more likely that we find a
higher-performing trajectory with Totem than with the ASW
and VRC methods, and the average performance of all the
trajectories found by Totem will likely be at least as good as
for the other methods.

Totem has the same limitations as Slingshot. In particular,
it cannot be used to infer trajectories that have cycles or both
diverging (cells diverge from a single point into several line-
ages) and converging (cells converge into a single point from
several lineages) parts at the same time. In addition, unlike the
updated Slingshot, Totem cannot currently handle discon-
nected trajectories. However, we do not consider this a major
limitation because determining automatically which cell types
belong to which disconnected sub-trajectories is not an easy
task (Chen et al. 2022). A safer approach is to analyse the dis-
connected parts as separate trajectories by segregating the cell
types manually before trajectory inference. Although there ex-
ist methods that can handle almost arbitrary topologies, such
as PAGA (Wolf et al. 2019), Monocle3 (Cao et al. 2019), and
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TinGa (Todorov et al. 2020), their issue is that they are more
likely to overcomplicate the trajectory with extra cycles and
branches than methods like Slingshot and Totem that are lim-
ited to tree-shaped trajectories. Similarly, methods like
scShaper (Smolander et al. 2021), SCORPIUS (Cannoodt
2016), and Elpilinear (Albergante et al. 2020) that are limited
to linear trajectories are still useful because they are guaran-
teed to provide the correct topology if the trajectory is
expected to be linear, unlike the more complex methods.

An important consideration is how to perform the up-
stream analysis steps prior to trajectory inference, including
quality control, normalization, and dimensionality reduction.
The choice of the normalization method has been shown to
affect the cell types that can be identified from single-cell data
(Hafemeister and Satija 2019), and consequently the trajec-
tory should also change to reflect the varying level of cell het-
erogeneity. Similarly, the choice of the feature selection and
feature extraction methods can have an impact on the identifi-
able cell types. If analysing data with batch effects, the
method used for data integration can also affect the composi-
tion of identifiable cell types (Luecken et al. 2022). Therefore,
robustness to the upstream analysis steps should generally not
be an objective of trajectory inference. Trajectory inference
methods assume that the global distances between the cell
types in the low-dimensional embeddings, such as principal
components or UMAP dimensions, can be used to model the
correct topology. If the correct topology cannot be inferred
based on the cell type distances in the embeddings, alternative
upstream analysis steps such as embedding refinement should
be considered (Pandey and Zafar 2022).

In some cases, it is possible that the optimal trajectory, the
one that is in line with the cell connectivity profile, is not read-
ily obtainable from the top-ranking clustering results. This
can happen when some cell types are extremely rare and some
cell types are highly numerous. This cell number deviation
makes it more difficult for the k-medoids to find a clustering
result that creates the correct trajectory topology. To alleviate
this issue, Totem’s vignette explains that in situations such as
these, it is a good idea to increase the number of clusters so
that the rare cell types are captured in the clustering. If some
of the highly numerous cell types are overclustered, these cell
types can be merged using a function implemented in the
Totem R package. This approach requires slightly more man-
ual work but will guarantee a clustering that matches the cell
connectivity profile.

As a potential future direction in Totem’s development, the
discrete cluster-level connectivity values could be turned into
more precise, cell-level connectivity values by measuring the
distance of each cell from the central/mass point of the cluster.
However, the current implementation of Totem can also
model the cell connectivity at the single-cell level by aggregat-
ing the connectivity vectors of a large number of clustering
results (by default, 10 000) using the arithmetic mean. In our
analyses, the arithmetic mean provided a continuous connec-
tivity gradient, as opposed to the median-based approach.

To summarize, Totem is a tool designed to facilitate the in-
ference of tree-shaped trajectories from single-cell data. It is
built upon the popular Slingshot method, which uses a clus-
tering to construct an MST and the simultaneous principal
curves algorithm to obtain a directed trajectory along with
pseudotime that quantifies cell differentiation at the single-cell
level. The benefit of Totem over the available tools is that it is
designed to provide a user-friendly interface for finding a

clustering that is used as the basis of the trajectory. Although
the clustering selection is highly critical for the success of the
trajectory inference, performing it automatically in a way that
will generate the correct milestone network in the trajectory
remains challenging. To address this challenge, the analysis of
different clustering results and their MSTs with Totem has
been designed to be fast and easy without requiring complex
parameter tuning and in-depth technical knowledge. As a no-
table difference compared to existing trajectory inference
methods, Totem provides the cell connectivity measure, which
aids the trajectory optimization by providing information
about the location of the branching points and milestone
transitions.

Acknowledgement

The authors thank the Elo lab for fruitful discussions and
comments on the manuscript.

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

L.L.E. reports grants from the European Research Council
ERC [677943]; European Union’s Horizon 2020 research
and innovation programme [955321]; Academy of Finland
[310561, 314443, 329278, 335434, 335611, 341342]; Sigrid
Juselius Foundation, during the conduct of the study. This
work was also supported by Turku Graduate School
(UTUGS); Biocenter Finland; ELIXIR Finland.

Data availability

The benchmark data are available on Zenodo (Cannoodt
et al. 2018). The Totem R package is available at https://
github.com/elolab/Totem, and it includes a vignette that
explains how Totem should be used. The codes that are rele-
vant for repeating the benchmarking are available at https://
github.com/elolab/Totem-benchmarking.

References

Albergante L, Mirkes E, Bac J et al. Robust and scalable learning of com-
plex intrinsic dataset geometry via ElPiGraph. Entropy 2020;22:
296.

Butler A, Hoffman P, Smibert P et al. Integrating single-cell transcrip-
tomic data across different conditions, technologies, and species. Nat
Biotechnol 2018;36:411–20.

Calinski T, Harabasz J. A dendrite method for cluster analysis. Comm
Stat Theory Methods 1974;3:1–27.

Cannoodt R. SCORPIUS improves trajectory inference and identifies
novel modules in dendritic cell development. bioRxiv, 2016, pre-
print: not peer reviewed.

Cannoodt R, Saelens W, Todorov H et al. Single-cell-omics datasets con-
taining a trajectory. Zenodo. 2018. https://doi.org/10.5281/zenodo.
1443566.

8 Smolander et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/9/btad515/7251030 by guest on 09 February 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad515#supplementary-data
https://github.com/elolab/Totem
https://github.com/elolab/Totem
https://github.com/elolab/Totem-benchmarking
https://github.com/elolab/Totem-benchmarking
https://doi.org/10.5281/zenodo.1443566
https://doi.org/10.5281/zenodo.1443566


Cannoodt R, Saelens W, Deconinck L et al. Spearheading future omics
analyses using dyngen, a multi-modal simulator of single cells. Nat
Commun 2021;12:3942.

Cao J, Spielmann M, Qiu X et al. The single-cell transcriptional land-
scape of mammalian organogenesis. Nature 2019;566:496–502.

Chen W, Guillaume-Gentil O, Rainer PY et al. Live-seq enables temporal
transcriptomic recording of single cells. Nature 2022;608:733–40.

Deconinck L, Cannoodt R, Saelens W et al. Recent advances in trajec-
tory inference from single-cell omics data. Curr. Opin Syst Biol
2021;27:100344.

Fritzke B. A growing neural gas network learns topologies. In: Advances
in Neural Information Processing Systems. Cambridge, MA: MIT
Press 1995.

Hafemeister C, Satija R. Normalization and variance stabilization of
single-cell RNA-seq data using regularized negative binomial regres-
sion. Genome Biol 2019;20:296.

Han X, Wang R, Zhou Y et al. Mapping the mouse cell atlas by
Microwell-Seq. Cell 2018;172:1091–107.e17.

Hastie T, Stuetzle W. Principal curves. J Am Stat Assoc 1989;84:502–16.
Ilicic T, Kim JK, Kolodziejczyk AA et al. Classification of low quality

cells from single-cell RNA-seq data. Genome Biol 2016;17:29.
Jurman G, Visintainer R, Filosi M et al. The HIM glocal metric and ker-

nel for network comparison and classification. In: 2015 IEEE
International Conference on Data Science and Advanced Analytics
(DSAA). IEEE, 2015, 1–10.

Kaufman L, Rousseeuw PJ. Clustering large applications (program
CLARA). In: Finding Groups in Data. New York: John Wiley &
Sons 1990, 126–163.
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