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Compatibility of composite blends: microscopy images showing lignin particles
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functional relation between  
material formulation and functional property


global and local minima

Active (Machine) Learning: “Taking the human out-of-the-loop”

surrogate model for material property
mechanical property landscape



BOSS code

10



BOSS code

10

Active machine learning tool for global phase space exploration 
Fast inference of extrema for black-box functions.



BOSS code

10

Active machine learning tool for global phase space exploration 
Fast inference of extrema for black-box functions.

Active learning code: www.utu.fi/boss
M. Todorović, M.U. Gutmann, J. Corander and P. Rinke, 

npj Comput. Mater. 5, 35 (2019)

http://www.utu.fi/boss
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Torsional strength

clear optimum found - only 7 experiments
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Torsional strength Change in storage modulus

optimal materials formulation:  
25-30% Lignin/PLA ratio + 15-20% TEC
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