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Abstract: The self-association of amylogenic proteins to the fibril form is considered a pivotal factor
in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). PD causes
unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause
of PD development and thus has been the main target of numerous studies to suppress and sequester
its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways
to prevent pathological protein aggregation. Recent investigations proposed applying an external
electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain
benefit over others. We performed molecular dynamics (MD) simulations by applying an electric
field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption
mechanisms. The results revealed that the applied external electric field induces substantial changes
in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric
field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic
core of the fibril. Thus, our findings might serve as a valuable foundation to better understand
molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied
external electric field.

Keywords: Parkinson’s disease; α-synuclein; molecular dynamics; electric field; fibril disaggregation

1. Introduction

Neurodegenerative diseases, a group of late-onset progressive nervous system dis-
eases, posed a severe challenge before modern medicine. Parkinson’s disease (PD) is a
widespread neurological disorder that is pathologically characterized by progressive loss
of dopaminergic neurons [1,2]. Aside from common motor disorders such as bradyki-
nesia, tremor, rigidity, and postural instability [3], PD also severely affects the quality of
life through complications such as cognitive impairment, mental health disorders, sleep
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disorders, and pain [4]. The hypothesis that protein aggregation might be a cause of neu-
rodegenerative diseases, including PD, is now being widely acknowledged as evidenced
by numerous medical [5], biochemical [6,7], and biophysical [8] studies that demonstrated
that neurodegenerative diseases are not only caused by diverse environmental factors, but
genetic factors play a crucial role too [3,9,10].

Several neurodegenerative diseases, such as PD, dementia with Lewy bodies, and
Gaucher’s disease, are caused by α-synuclein through protein aggregation pathways and
can be spread to other parts of the nervous system [11–14]. α-synuclein is a small protein
(Mw = 14 kDa) with an intrinsically disordered structure. The physiological functions
of monomeric α-synuclein are debatable [15], though there are some reports that show
its involvement in vesicular transport [16], cellular bioenergetics [17], and immunity [18].
Its aggregated form is the main component of filamentous inclusions known as Lewy
bodies—a defining pathological characteristic of PD [19]. Familial PD-related point muta-
tions (A30P, E46K, H50Q, G51D, A53E, and A53T) occur in a 60-amino-acid-long, lysine-rich
N-terminal region of α-synuclein [20]. The rest of this 140-amino-acid-long protein is of
hydrophobic nature: the 35-amino-acid-long residue (61–95) comprises a non-amyloid
β-component region and is followed by a proline-rich C-terminal region (amino acids
96–140) [21].

As with other proteins prone to aggregation, α-synuclein also seems to be neglected
by the protein quality control system, whose proper work should prevent aberrant protein
structures [22]. At a physiological pH, α-synuclein possesses a net negative charge and
behaves like an unfolded polypeptide chain (70% disordered structure) with the radius of
gyration (Rg) being only 4 nm (more compact than a typical random coil of 140 amino acids
long) [9]. α-synuclein’s remarkable structural plasticity allows it to exist largely unfolded
at physiological conditions, to fold at low pH and high temperatures, or to aggregate when
exposed to environmental changes such as acidity, oxidative damage, and metal ions. Such
changes are very plausible in the cellular environment. In addition, it has been shown that
α-synuclein aggregates are able to self-propagate different conformational variants (also
called “conformational strains”) which, in turn, can produce fibrils of different properties
resulting in their polymorphic nature [23,24]. Hence, besides genetic modifications, certain
environmental factors contribute to the conformational changes of α-synuclein that facilitate
aggregation and fibril formation. Therefore, α-synuclein, as a hallmark of PD pathogenesis,
is the main target of PD diagnosis and treatment. This is evident by numerous contemporary
attempts where PD treatment is sought through small molecule drugs, gene therapy, and
immunotherapy approaches to sequester, silence, and degrade α-synuclein [13,25–27].

Changes in polarity and electric and/or magnetic fields also affect the structure and
functions of biomolecules that possess considerably larger dipoles than small molecules. In
this modern era of technology, we are increasingly exposed to electromagnetic radiation
through various gadgets. Several studies have been conducted to study the effects of
externally applied electric field (EF) at the molecular, cell, and tissue levels [28]. The electric
field, as an external stimulus is also of great interest for neurodegenerative disease research,
too. For instance, for 25 years, deep brain stimulation (DBS) through an oscillating electric
field has been used to treat and improve the quality of life in late-stage PD patients [29].
Recently, the focus of neurodegenerative disease research has been shifted towards the
molecular level: on the effects of electric field on protein conformation, aggregation, and
fibril formation. It has already been shown that different electric field modalities, such as
oscillating [30,31] and static fields [32,33] can induce significant structural changes in amy-
logenic proteins [34,35] and disrupt aggregations and fibrils [36]. Studies also report electric
field-induced changes in activity [37,38], hydration [39], and adsorption [40] of proteins.
Molecular dynamics (MD) simulation is one of the leading tools to study biomolecular
phenomena due to the valuable molecular information that can be obtained. Recent years
have seen many MD studies dedicated to investigating the external electric field’s influence
on protein conformation [41–43]. MD simulations offer atomistic-level insights into indi-
vidual amylogenic protein conformations and their aggregates. For instance, the full-length
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α-synuclein monomer and dimer were investigated by means of atomistic discrete MD
simulations [44]. The modeling results predicted the formation of partial helices around the
N-terminus (residues 8–32). The different types of β-sheet conformation occurred in the
range of residues 35–56 (N-terminal tail) and residues 61–95 (nonamyloid β-component
region). In α-synuclein dimers, some disordered parts of the α-synuclein conformation-
ally transformed into the β-sheet conformation. Other simulation studies also show the
importance of dimerization in triggering the α-synuclein aggregation by conformational
transformations into both intramolecular β-hairpin and β-sheet [45]. Moreover, the effect of
specific conditions, e.g., pH and ions and charge alterations, were also studied by applying
specific computational methods [46–48]. Thus, knowledge about the nature of interactions
between certain regions of α-synuclein plays a critical role in preventing its aggregation [49].
Such precise information and biochemistry findings will help us develop a mechanistic
understanding of protein aggregation diseases and ultimately triumph over such disorders.

In the present research, we use MD simulations to study electric field-induced changes
in α- synuclein fibril conformation. In addition, we unravel the threshold value of the
electric field for total disaggregation of α-synuclein fibrils.

2. Results and Discussion

We carried out MD simulations to investigate the static EF effect on the conforma-
tional changes of the α-synuclein fibril. The chosen mutated α-synuclein H50Q narrow
fibril structure displays a tendency for faster aggregation kinetics and higher toxicity in
comparison to the wild type α-synuclein structure [50]. Thus, the disruption of such fibrils
is important in combat against amyloid-based diseases, including PD. Figure 1 shows the
final snapshots of a replica 1 (out of four) of the 600 ns MD simulation of the α-synuclein
pentamer structure.
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As is clear, there is almost no change in the α-synuclein pentamer in the absence
of EF, i.e., its conformation is quite similar to experimental findings. The low values of
EF, e.g., 0.05 and 0.10 V/nm, induced negligible change. However, the N-terminal end
of the α-synuclein pentamer (i.e., residues between 36–46) unfolded and moved further
from the main core of fibril, starting from 0.05 V/nm EF. Similar alterations in conforma-
tion were observed in the case of 0.15, 0.20 and 0.25 V/nm EF. Moreover, the secondary
structure analysis shows a 17% reduction of the β-sheet conformation for 0.25 V/nm (see
Table 1). Note that the β-sheet conformation plays one of the dominant roles in stabilizing
fibril-like structures [51]. The further increase in the EF strength from 0.30 to 0.40 V/nm,
caused even more impact on fibril conformation. Specifically, β-sheet conformation de-
creased almost four times and the major percentage of this conformation transformed to
the coil conformation, which was doubled in 0.4 V/nm in comparison to the absence of EF
(cf. β-sheet and coil conformation in Table 1). Moreover, the helical conformation also
started emerging in higher intensity of EF (see Supplementary information Figure S1).
Thus, the low intensity of EF such as 0.05–0.25 V/nm was sufficient to induce conforma-
tional changes but the core of the fibril remained. In contrast, the higher values of EF,
e.g., 0.3–0.4 V/nm, caused more changes that resulted in the opening of fibril’s core and
mainly turned it to coil conformation (cf. Figures 1 and S1 and Table 1).

Table 1. Secondary structure analysis of the α-synuclein pentamer in each model system. The various
conformation occurrences (%) of protein’s various secondary structure components.

EF (V/nm) α-Helix 3 10-Helix β-Sheet β-Bridge Bend Turn Coil

0.0 0.0 0.0 49 2 11 6 32
0.05 0.0 0.0 40 3 11 7 38
0.10 0.0 1.0 40 2 14 5 39
0.15 0.0 1.0 40 2 11 6 39
0.20 1.0 1.0 38 2 12 5 40
0.25 0.0 1.0 32 2 13 7 44
0.30 0.0 1.0 19 6 20 4 49
0.35 4.0 0.0 20 2 15 4 54
0.40 3.0 1.0 13 5 10 3 64

The calculated backbone root mean square deviation (RMSD) plot shows that 0.05–0.25 V/nm
EF strength disturbed fibril structure and caused higher fluctuations compared to the ab-
sence of the EF (see Figure 2). However, these fluctuations lead only to the unfolding of the
N-terminal end, i.e., residues from 36 to 46, and the hydrophobic core remained unchanged
(see Figure 1). However, 0.30–0.40 V/nm EF induced more changes in the conformation
of the α-synuclein structure, in that the occurrence of β-sheet conformation decreased
significantly, and this conformation mainly was altered into coil conformations (see Table 1
and Figure S1). Finally, in the case of 0.40 V/nm EF, the α-synuclein fibril completely
unfolded (see Figure 1) and the hydrophobic core of the α-synuclein fibril completely
opened which was remained at lower EF strengths. According to the RMSD, the major
change occurs within the initial 100 ns simulation, i.e., in high EF intensity such as 0.3,
0.35, and 0.4 V/nm (see Figure 1). The secondary structure map also shows insignificant
changes in conformation in the rest of the simulation time (see Figure S1).

The RMSD values of backbone atoms increased almost ten times as the EF strength
increased (see Figure 2). Likewise, the solvent accessible surface area (SASA) and radius of
gyration (RG) of fibril increased at higher EF strengths. The SASA and Rg of fibrils reached
the highest values and the conformation of each peptide became almost linear, similar to the
primary structure of proteins. Furthermore, under this condition, the narrow and uniform
shape of the α-synuclein fiber turned into a flat form which marked a full disaggregation
point for the α-synuclein fiber. In addition, the root mean square fluctuations (RMSF) was
calculated to understand the flexibility and dynamics of different regions of the peptide
located in the middle of the pentamer chain C (see Figure S2). The aim of choosing the
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latter is associated with its stability and this chain is highly buried by neighboring chains.
It is also evident that the presence of EF influenced the mobility of residues. As a result,
fluctuations of chain C had considerably changed and showed greater values between 60
and 90 residues at 0.3 and 0.4 V/nm EF intensity (see Figure S2).
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Figure 2. The RMSD of backbone structure of α-synuclein fibril.

Interprotein interactions, specifically in fiber-like proteins, lateral hydrogen bonds
between peptides, hydrophobic packing of residues, and salt bridges play a vital role in
stabilizing and stimulating further elongation of fibrils [52–54]. The extensive number of
hydrogen bonds between individual β-strands and long-range interactions drive cytotoxic
fibril formation [55]. Our results show that the average number of the inter- and intrapep-
tide hydrogen bonds per chain gradually decreased under the influence of EF (see Table 2).
This hydrogen bond loss affects α-synuclein fiber stability by lowering the strength of
intrapeptide interactions. Thus, highly ordered β-sheet-rich fibrils are quite sensitive to EF.

Table 2. The solvent-accessible surface area, the radius of gyration and the number of hydrogen
bonds per chain calculated from the last 200 ns of the simulation trajectory.

EF (V/nm) SASA (nm2) R Gyration (Å) h-Bond/Chain

0.00 139.58 ± 2.38 2.013 ± 0.02 48.20 ± 1.75
0.05 140.52 ± 2.42 2.028 ± 0.01 47.08 ± 1.55
0.10 153.90 ± 2.65 2.129 ± 0.01 44.08 ± 1.47
0.15 153.27 ± 2.44 2.142 ± 0.01 45.63 ± 1.52
0.20 150.69 ± 2.75 2.136 ± 0.01 44.73 ± 1.50
0.25 152.02 ± 2.65 2.214 ± 0.01 45.68 ± 1.44
0.30 164.08 ± 4.01 3.150 ± 0.03 40.03 ± 1.65
0.35 166.54 ± 4.33 3.398 ± 0.02 40.30 ± 1.58
0.40 184.36 ± 4.32 4.179 ± 0.02 35.32 ± 1.83

It is worth mentioning that each type of protein maintains a certain value of a dipole
moment due to the presence of charged side chains [56,57]. The value of a total dipole
moment can serve as one of the indicators that show conformational changes on the protein,
i.e., its folded or denaturated state. An increase in total dipole moments in comparison to
the native state of the protein is associated with conformational transitions towards to the
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denaturation state. Therefore, we also calculated the total dipole moments of the pentamer
for each case of applied EF and the average over the all replicas (see Figure 3).
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As is clear from Figure 3, in the absence of EF the total dipole moment of α-synuclein
fiber is ~1400 Debye. Evidently, the presence of EF induces a force that acts on charged side
chains. Consequently, the total dipole moment increased continuously and reached the
highest value, i.e., ~4800 Debye, at 0.4 V/nm. In other words, the total dipole moment of
the α-synuclein fiber rose more than three times compared to that in the absence of EF. Fur-
thermore, we observed the fast change of orientation of α-synuclein fibril at higher values
of applied EF. This in turn led the alignment of total dipole moments of α-synuclein fibril
along the EF direction in a short period of time during the simulation (see Figure S3). The
contribution of salt bridges is also substantial in holding the conformation of fibers [58–60].
In the current conformation, Glu46 and Lys80 form inter- and intrapeptide salt bridges,
which prevent the opening of the fibril’s hydrophobic core at lower values of EF.

3. Methods and Materials

The graphical processing unit (GPU) version of the GROMACS program package
was employed to perform all simulations [61]. The united atom GROMOS 45a3 force field
parameters were used to generate the necessary files to run the model system [62]. The 3D
coordinate structure of α-synuclein H50Q narrow fibril was obtained from the web page of
the Protein Data Bank (PDB ID: 6PEO) [50].

In order to build the simulation system, the α-synuclein structure was centred in the
dodecahedron box, and the dimensions of the current box were chosen to be 1.1 nm from
atoms of α-synuclein to the edges of the box (see Figure 4a). Further, the system was filled
by a simple point charge water model with 0.1 M NaCl to create a similar physiological
environment (see Figure 4a,b) [63].
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conformations (see Table 1 and Figure S1). Finally, in the case of 0.40 V/nm EF, the α-
synuclein fibril completely unfolded (see Figure 1) and the hydrophobic core of the α-
synuclein fibril completely opened which was remained at lower EF strengths. According 
to the RMSD, the major change occurs within the initial 100 ns simulation, i.e., in high EF 
intensity such as 0.3, 0.35, and 0.4 V/nm (see Figure 3). The secondary structure map also 
shows insignificant changes in conformation in the rest of the simulation time (see Figure 
S1). 

Figure 4. The representation of the initial state of the model system. (a) α-synuclein pentamer is
placed in the center of the dodecahedron box (represented in cartoon view—rainbow color). (b) The
simulation box filled with water molecules (represented in licorice view) and sodium and chloride
ions (shown as violet and green beads).

Initially, the energy minimization was run to remove the excess potential in the model
system. During this simulation, atoms found the appropriate positions corresponding
to the nearest local minimum energy conformation for the given model system. Next,
short 100 ps NVT (canonical ensemble) and 500 ps NPT (isobaric-isothermal ensemble)
simulations were performed by applying the position-restrained potential. Subsequently, a
600 ns four replica production run was performed by releasing position restrained potential
and randomizing velocities by applying 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, and 0.40 V/nm
static electric fields along the X direction. The velocity-rescaling thermostat [64] and the
Parrinello–Rahman barostat [65] were applied at 310 K and 1 atm, respectively. A 1 nm cut-
off radius was used in these simulations. The entire trajectory dataset was used to calculate
the root mean square deviation (RMSD) [66], and the last 200 ns of trajectory data was
employed to calculate the radius of gyration, solvent accessible surface area (SASA) [67],
number of hydrogen bonds per chain, residual root mean square fluctuations (RMSF),
and secondary structure analysis of α-synuclein. The DSSP tool was used to determine
detailed conformational changes in the α-synuclein structure. Pymol and visual molecular
dynamics viewer (VMD) software were used to create images [68,69]. Note that, the data
and snapshots in the main text was obtained from replica 1 simulation. The rest of the data
which belong to other replicas are given in supplementary material (see Figures S1–S4 and
Table S1).

4. Conclusions

PD is a progressive movement disorder with other nonmotor symptoms. Because of
our brain’s plasticity, PD symptoms appear only after more than 50–60% of dopaminergic
neurons within the substantia nigra are already dead [70]. Electrical DBS of specific areas
shows good results for PD. The associated drawback is that it loses its effectiveness over
time. The main idea of DBS is to stimulate the electric activity of neurons, but its effect
on a molecular level is not totally clear. In our research, we perform MD simulations to
investigate the static EF effect on the conformational changes of the α-synuclein fibril. We
showed that the application of 0.30, 0.35, and 0.4 V/nm EF during 600 ns disorganized
α-synuclein fibrils. Typical DBS parameter settings of voltage, pulse width, and frequency
range are from 1 to 3.5 V, 60 to 210 ms, and 130 to 185 Hz, respectively [71].

We believe that classical settings of DBS might be enough to disorganize α-synuclein
fibrils in brain cells; however, it should be tested in further experiments.

The formation of the α-synuclein inclusions occurs by a generic process of misfolding,
by which an ordinarily soluble protein converts into fibrillar aggregates via a series of
oligomeric intermediates and, ultimately, the insoluble fibrils are deposited in the brain.
Soluble oligomeric species generated during the formation of fibrils are the most neurotoxic



Int. J. Mol. Sci. 2023, 24, 6312 8 of 11

species linked with the development of PD [72–74]. The kinetic of α-synuclein fibril forma-
tion can often be dominated by secondary nucleation events, such as fibril fragmentation,
adding further elements of complexity to the kinetic process [75]. Disorganization and
spread prevention of amyloid fibrils are some of the main goals for scientists involved in
PD research. Disorganization of α-synuclein fibrils, which we saw during MD simulation,
might possibly lead to the formation of toxic oligomeric structures, which might further
undergo second nucleation events or structures that will be utilized by the protein qual-
ity control system. Thus, we assume that further research, both in silico and in vitro, is
needed to understand whether the disruption of α-synuclein fibrils by EF has a positive or
negative impact.
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