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Biological invasions, resulting from human activities, exert substantial impacts on

ecosystems worldwide. This review focuses onmarine invasive alien species (IAS)

in Europe, examining the current state, proposing strategies to address the

problem, and offering recommendations for enhanced management. Effective

management of biological invasions relies on accessible, accurate data to inform

decision-making. Information systems such as the European Alien Species

Information Network (EASIN), Aquatic Non-Indigenous and Cryptogenic

Species (AquaNIS), and World Register of Introduced Marine Species (WriMS)

provide comprehensive databases on IAS, but their sustainability requires long-

term maintenance, continuous updates, and support. Most countries lack

specific monitoring programs for marine IAS, and standardization and

improvement of monitoring methods are needed. Port monitoring plays a vital

role in the early detection of new arrivals, and recent advancements in molecular

techniques show promise for effective IAS monitoring. Risk screening tools are

commonly employed to rank taxa based on their invasiveness potential in

European regions, but variations in protocols can yield inconsistent results.

European impact assessments highlight resource competition, novel habitat

creation, and predation as primary mechanisms for negative impacts on

biodiversity, while the creation of novel habitats represents a key mechanism

for positive impacts. Preventing IAS introductions is critical, and measures such

as ballast water treatment systems are implemented to reduce the likelihood of

marine introductions. However, understanding introduction pathways remains

uncertain for many IAS. Eradication and control efforts for marine IAS have
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limited success, emphasizing the need for enhanced biosecurity measures.

Climate change, especially ocean warming, can intensify IAS impacts on native

species and ecosystems. In climate change hotspots, some tropical aliens may,

however, compensate for the loss of thermally sensitive natives with similar traits.

Therefore, it is imperative to consider the interactions between climate change

and IAS in developing effective management and conservation strategies.

Enhancing IAS management in Europe entails i) securing adequate funding, ii)

expanding the list of IAS of Union Concern to adequately cover marine invasions,

iii) learning from countries with successful biosecurity practices, iv) sustaining

information systems, v) improving monitoring and early warning systems with

innovative technologies, vi) enhancing prediction models, vii) conducting

integrated impact assessments and mapping cumulative IAS impacts, and vii)

considering the potential benefits of IAS in ecosystem functioning and services.
KEYWORDS

alien species, biodiversity, biological invasions, ecosystem services, impacts, non-
native, pathways, recommendations
1 Introduction

Biological invasions or bioinvasions (Elton, 1958) are among

the most influential human-driven processes impacting Earth’s

terrestrial and aquatic ecosystems (Primack, 1995; Rilov and

Crooks, 2009; Ehrenfeld, 2010; Vilà et al., 2011). Both native and

non-native species have the potential to undergo exponential

population growth and cause outbreaks, i.e., invasions. The

dynamics of biological invasions arise from interspecific (direct or

indirect) interactions, such as predation, competition, mutualism,

or facilitation, often leading to the invader’s dominance over

functionally similar species in the invaded community (Valé ry
et al., 2008; Valéry et al., 2009; Valeıŕy et al., 2013). The success

and impact of a biological invasion depend on the interplay of

ecological and biological characteristics of both the invader and the

species in the invaded community, as well as the environmental

conditions. Restricting the definition of biological invasions to a

geographical phenomenon specific to non-indigenous species

rather than an ecological one is not justified (Valé ry et al., 2013).

Therefore, invasive alien (=non-native, non-indigenous, exotic)

species (IAS) should be regarded as a subset of invasive species,

which can also include native or neonative (sensu Essl et al., 2019).

Non-indigenous species (NIS) are defined as species that have

spread beyond their natural biogeographical range to new regions

with the aid of human actions (Essl et al., 2018). IAS are defined by

the European Union (EU) IAS Regulation as “alien species whose

introduction or spread has been found to threaten or adversely

impact upon biodiversity and related ecosystem services”

(European Union (EU), 2014), giving the term “invasive” a

negative connotation. IAS have rapidly increased worldwide

(Seebens et al., 2017), resulting in significant economic costs

(Diagne et al., 2021). IAS have the capacity to profoundly alter

the structure and functioning of native communities, often leading

to the loss of native biodiversity, disruption of ecosystem services,
02
loss of socioeconomic values, and potential impacts on human

health (Mazza et al., 2014; Tsirintanis et al., 2022). However, the

impacts of IAS can have either (or both) “negative” (reducing the

value of a specific property) or “positive” (increasing the value)

consequences for specific ecological or socioeconomic attributes,

and they can be highly context-dependent (Tsirintanis et al., 2022;

Vimercati et al., 2022; Reise et al., 2023).

IAS are recognized in the Convention on Biological Diversity

(CBD) as a cross-cutting issue with relevance across all thematic

areas. Article 8(h) of the CBD explicitly states that “each contracting

Party shall, as far as possible and as appropriate, prevent the

introduction of, control or eradicate those alien species which

threaten ecosystems, habitats or species”. Recently, the Kunming-

Montreal Global Biodiversity Framework, under decision 15/4, has

set the objective to “eliminate, minimize, reduce and or mitigate the

impacts of invasive alien species on biodiversity and ecosystem

services” through various approaches, with particular emphasis on

eradicating or controlling IAS in priority sites, such as islands

(Table 1). Multiple global and regional legislative instruments,

policies, and guidelines have been established to contribute to the

achievement of these global goals (see Table 1). Typically, species

introduced before a specific cutoff date are not subject to biosecurity

measures and are treated no differently than native species. In some

cases, they may even become the focus of conservation efforts (Essl

et al., 2018). Biosecurity efforts predominantly target neobiota, i.e.,

relatively recently introduced alien species or species that have not

yet been introduced. However, there is no global consensus on this

cutoff date, leading to the use of region-specific temporal thresholds

in NIS databases. For example, in Europe and the Americas, the

widely accepted cutoff date is 1492, which marks Christopher

Columbus’s discovery of America and the related initiation of

species introductions between the two continents. In the

Mediterranean region, some databases have adopted the opening

of the Suez Canal in 1869 as their temporal threshold, as it triggered
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a surge of Red Sea species into the Mediterranean Sea (Gatto et al.,

2013; Essl et al., 2018).

In the EU, the Biodiversity Strategy for 2030 has set the objective of

effectively managing established IAS and reducing by 50% the number

of Red List species they threaten by 2030. The Marine Strategy

Framework Directive (MSFD) recognizes IAS as a significant

pressure on marine ecosystems, negatively affecting environmental

status. The MSFD indicates that achieving Good Environmental

Status requires maintaining alien species at levels that do not cause

adverse alterations to the marine ecosystems (Table 1).
Frontiers in Marine Science 03
In 2014, the EU implemented a comprehensive Regulation

encompassing several key elements aimed at effectively managing

invasive species (European Union (EU), 2014), hereafter called “the

IAS Regulation”. The IAS Regulation is a vital biosecurity program

that operates at a pan-European level. It mandates thorough risk

assessments to assess the potential impact of invasive species and

inform appropriate management strategies. It introduced the

concept of an EU Black List, which comprises invasive species of

Union Concern. The Black List serves as a basis for implementing

specific rules and measures for the prevention of new introductions
TABLE 1 International policy context on biological invasions in coastal and marine environments with relevance for European Seas.

Policy Geography Environmental objectives

Barcelona
Convention
(UNEP-MAP)

Mediterranean
Sea

Non-indigenous species (NIS) introduced by human activities are at levels that do not adversely alter the ecosystem.

HELCOM Baltic Sea To prevent adverse alterations of the ecosystem by minimizing, to the extent possible, new introductions of NIS.

OSPAR North-east
Atlantic

Endeavor to limit the introduction of NIS by human activities to levels that do not adversely alter the ecosystems.

Bucharest
Convention

Black Sea Ecological Quality Objective EcoQO 2c: Reduce and manage human-mediated species introductions.

Marine
Strategy
(MSFD Com
Dec 2017/848)

EU Descriptor 2: NIS introduced by human activities are at levels that do not adversely alter the ecosystems.
D2C1 Number of NIS newly introduced via human activity into the wild [ … ] is minimized and where possible reduced to zero.
D2C2 Abundance and spatial distribution of established NIS, particularly of invasive species, contributing significantly to adverse
effects on particular species groups or broad habitat types.
D2C3 Proportion of the species group or spatial extent of the broad habitat type, which is adversely altered due to NIS, particularly
invasive NIS.

Invasive Alien
Species
Regulation
1143/2014

EU Aims to prevent, minimize, and mitigate the adverse impacts posed by these species on native biodiversity and ecosystem services.
Rules also aim to limit social and economic damage. For example,
Art. 5 “[ … ] a risk assessment shall be carried out in relation to the current and potential range of IAS, having regard [ … ] (e) a
description of adverse impact of the species on biodiversity…”

Art. 13 Action plans on the pathways of invasive alien species.

Alien Species
in Aquaculture
EC Council
Regulation
708/2007

EU Concerning the use of non-indigenous and locally absent species in aquaculture in order to assess and minimize the possible
impact of non-target species on aquatic habitats, based on the “ICES Code of Practice on the Introductions and Transfers of
Marine Organisms”.

EU
Biodiversity
Strategy for
2030

EU Commitment: Manage established invasive alien species and decrease the number of Red List species they threaten by 50% by 2030.

Convention on
Biological
Diversity
(CBD)

Global Kunming-Montreal Global Biodiversity Framework, decision 15/4 (Target 6): “Eliminate, minimize, reduce and or mitigate the
impacts of invasive alien species on biodiversity and ecosystem services by identifying and managing pathways of the introduction
of alien species, preventing the introduction and establishment of priority invasive alien species, reducing the rates of introduction
and establishment of other known or potential invasive alien species by at least 50 per cent by 2030, and eradicating or controlling
invasive alien species, especially in priority sites, such as islands.”

United
Nations
Convention on
the Law of the
Sea (UNCLOS
1982)

Global “to prevent, reduce and control pollution of the marine environment resulting from [ … ] the intentional or accidental
introduction of species alien or new, to a particular part of the marine environment, which may cause significant and harmful
changes thereto.”

Ballast Water
Convention
IMO

Global Article 2: Prevent, minimize, and ultimately eliminate the transfer of harmful aquatic organisms and pathogens through the control
and management of ships’ ballast water and sediments, [ … ].

Biofouling
Guidelines
IMO

Global Objective: Minimize the risk of transferring invasive aquatic species from ships’ biofouling.
UNEP, United Nations Environment Programme; MAP, Mediterranean Action Plan; IMO, International Maritime Organization.
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and further spread, early detection, rapid eradication, and

management of IAS, thereby safeguarding the EU’s ecosystems.

The Black List is dominated by terrestrial and freshwater species,

with only two marine species currently included. The first marine

species, namely, Plotosus lineatus, was introduced to the list in 2019

(European Union (EU), 2019), followed by Rugulopteryx okamurae

in 2022 (European Union (EU), 2022).

This review aims to evaluate the current state of marine IAS in

Europe and explore implemented or proposed strategies developed

to date to mitigate IAS impacts. The review is structured to cover

the existing knowledge base, information systems, methodologies

for monitoring and predicting IAS distribution, pathway

management, impact assessments, management options, and the

combined effects of IAS and climate change. Drawing from this

information, we offer recommendations on how to consider

improving current practices for IAS management in Europe.

Some of these lessons and approaches are centered in Europe but

could be considered and adapted elsewhere.
2 IAS information systems

Biological invasion management policies should rely on timely,

accurate, publicly available data that are easily understood and

usable for decision-making. For example, the effectiveness of IMO

Ballast Water Management Convention (BWMC) measures for

preventing the introduction of harmful aquatic organisms and

pathogens can be assessed by estimating the reduction in the

number of new arrivals through ballast water (Olenin et al., 2014).

Similarly, the effectiveness of other conventions, directives, and

agreements depends on reliable NIS monitoring data and targeted

scientific research. Therefore, monitoring and research data should

be collected, quality checked, harmonized, and presented through

user-friendly and reliable information systems to be useful for

management (Olenin et al., 2011; Lehtiniemi et al., 2015).

The utilization of NIS information systems for research is

growing. These systems have been instrumental in compiling

national and regional NIS inventories (e.g., Chainho et al., 2015;

Ulman et al., 2017; Tsiamis et al., 2019), prioritizing the most

impactful IAS, quantifying and summarizing ecological impacts of

specific taxa (Katsanevakis et al., 2016), identifying major pathways

and vectors of NIS introductions (Katsanevakis et al., 2013; Ojaveer

et al., 2017; Pergl et al., 2020), and analyzing species traits and

ecological preferences (Paavola et al., 2005; Cardeccia et al., 2018)

(Table 2). The use of NIS information systems enhances the

analytical and predictive nature of bioinvasion research, shifting

from scientific curiosity (“nice to know”) to the “need to know”

principle driven by management requirements (Olenin et al., 2011).

The European Commission launched the European Alien

Species Information Network (EASIN) in 2012 to support

European NIS management policies (Katsanevakis et al., 2012;

Katsanevakis et al., 2015). EASIN provides easy and open access

to harmonized data and information on alien and cryptogenic

species, sourced from global, regional, and national databases and
Frontiers in Marine Science 04
scientific literature (Trombetti et al., 2013), through online tools

and web services (Figure 1). EASIN’s core component is the EASIN

Catalogue, the most comprehensive European inventory of

terrestrial, freshwater, and marine NIS. The Catalogue’s updating

and quality assurance is managed by an international Editorial

Board of taxonomic experts (Tsiamis et al., 2016). As of July 2023,

EASIN included ~13,300 alien and cryptogenic (i.e., of unknown

biogeographic status) species, of which ~1,700 were marine or

oligohaline. Moreover, EASIN serves as the official information

system for the European Commission to support the EU Regulation

on IAS (European Union (EU), 2014). Specifically, EASIN features a

Notification System that enables member states to promptly notify

the Commission of new detections of IAS of EU concern and

associated eradication measures.

Aquatic Non-Indigenous and Cryptogenic Species (AquaNIS),

founded in 1997 as the “Baltic Sea Alien Species Database”, is likely

the oldest international online database on aquatic NIS. Over time,

it has expanded to cover all European regional seas and later

incorporated datasets from other world regions. As of March

2023, AquaNIS contained data on nearly 5,500 NIS introduction

events in 25 Large Marine Ecosystems (LMEs). The system features

a flexible search engine with several criteria (taxonomy, geography,

pathways, biological characteristics, etc.) and an analysis tool for

comparing species lists in different LMEs, countries, regions, and

time periods (Figure 2). AquaNIS data are regularly updated by the

International Council for Exploration of the Seas Working Group

on Introductions and Transfer of Marine Organisms (WGITMO).

AquaNIS is increasingly used for assessing marine environmental

status under the MSFD and supporting decision-making for the

IMO Ballast Water Management Convention. Recently, it was

equipped with an Early Warning System aimed at preventing the

spread of harmful aquatic organisms and pathogens through

ballast water.

The World Register of Introduced Marine Species (WRiMS) is a

global database connected to the well-established World Register of

Marine Species (WoRMS). WRiMS provides taxonomic

information for marine species, utilizing the taxonomically

authoritative classification and accepted names from WoRMS. It

specifically focuses on introduced marine species, distinguishing

their native and introduced geographic ranges (Costello et al.,

2021). As of 2021, WRiMS included over 2,300 introduced

species. The amount and quality of the information entered

depend on the availability of experts to update its contents and

are affected by regional biases in sampling and taxonomic effort.

Despite some errors and outdated information, WRiMS is currently

the most comprehensive standardized marine NIS database.

With the advent of Internet technologies and increasing

demand from management and researchers, several NIS databases

have emerged through short-term national or international

projects. However, many of these databases prioritize their design

using web technologies rather than focusing on data collection and

creating ecologically meaningful output functionalities. At best,

these databases prove useful toward the end of a project for

generating reports and, occasionally, scholarly papers. However,
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the long-term utility of a database depends not only on the

employed technologies and project deliverables but also on

sustained user demand and post-project maintenance (Olenin

et al., 2014). Unfortunately, securing funding for database

collaboration, adaptation, improvement, and maintenance is often

more challenging than developing new databases (Simpson et al.,

2006). There are several examples of NIS databases that remained

idle, with data not being updated for extended periods, or ceased to

exist altogether, becoming inaccessible to users.

One notable example is the DAISIE information system, a

product of the project DAISIE (Delivering Alien Invasive Species

Inventories for Europe). The project, with a European Commission

contribution of €2.4 million, spanned 3 years starting in February

2005 (DAISIE, 2009). Its goal was to create a comprehensive

resource on biological invasions in Europe, through an

international team of leading experts in biological invasions,

cutting-edge database design and display technologies, and an

extensive network of European collaborators and stakeholders
Frontiers in Marine Science 05
(DAISIE, 2009). The system compiled and verified over 248

datasets from 98 European countries/regions, making it the

world’s largest invasive species database.

However, “the DAISIE dataset is no longer maintained but can

be used as a historical archive for researching and managing alien

plants or compiling regional and national registries of alien species”

(GBIF, 2023). While part of the data has been preserved and

integrated into other databases, the European Alien Species

Expertise Registry, the European Alien Species Database, and the

European Invasive Alien Species Information System no longer

exist. This is primarily because the project failed to establish

mechanisms for long-term maintenance, continuous updates, and

the transfer of technology to relevant European entities (e.g.,

EASIN) for storage, use, and future development.

Several key factors have been highlighted for sustainable

database management and advancement (Olenin et al., 2002;

Katsanevakis et al., 2012; Olenin et al., 2014; Katsanevakis et al.,

2015; Costello et al., 2021):
TABLE 2 Examples of currently active online information systems on marine, brackish, and coastal freshwater alien species relevant to Europe.

Database
(listed by name
in alphabetic
order)

Launch
date

Coverage and
scope

Tools and services Main references

AquaNIS
Information system on
Aquatic Non-
Indigenous and
Cryptogenic Species
(www.corpi.ku.lt/
databases/aquanis/)

1997*
(2013)

Global with European
focus.
Marine, brackish water,
and coastal freshwater
biota from viruses to
mammals

Multi-criteria search engine (by taxonomy, geography, pathways,
biological traits, status in recipient region, etc.). Built-in tool for
comparison of search results. Early warning system on harmful aquatic
organisms and pathogens

Olenin et al. (2014);
AquaNIS (2023)

SLU Artdatabanken 2002 National (Sweden)
terrestrial, marine,
freshwater

Identification, data, and observations https://
www.artdatabanken.se/

Artsdatabanken 2005 National (Norway)
terrestrial, marine,
freshwater

Knowledge transfer, outreach, scientific support, identification, and
maintenance of systematic information. NIS list available at: https://
www.artsdatabanken.no/fremmedartslista2018

arter.dk 2021 National (Denmark)
terrestrial, marine,
freshwater

Gathering and sharing species observations Arter (https://arter.dk)

EASIN (https://
alien.jrc.ec.europa.eu/
easin)

2012 European
terrestrial, freshwater,
marine

Query and retrieve species information (e.g., records by species
scientific name, their environment, impact, taxonomy, and species of
Union Concern). Distribution maps of single or multiple species

Katsanevakis et al.
(2012); Katsanevakis
et al. (2015); Trombetti
et al. (2013)

ELNAIS (https://
elnais.hcmr.gr/)

2007 National (Greece)
freshwater, marine

Database of distribution records, biological invasion experts, related
projects, and publications. Inventory of Greek NIS; distribution maps

Zenetos et al. (2015)

Great Britain
NonNative Species
Information Portal
(GBNNSIP)

2011 GB
terrestrial, freshwater,
marine

Provides access to distribution maps and other information for all
non-native species in Britain. Linked to the GBNNSIP is an online
“alert system” that has enabled surveillance of many invasive non-
native species

Sewell et al. (2010); Roy
et al. (2014)

Vieraslajit.fi 2011 National (Finland)
terrestrial, marine,
freshwater

Identification, legislation, early warning, data, observations Lehtiniemi et al. (2020)

WRiMS (https://
www.marinespecies.org/
introduced/)

2015 Global
marine

Query and retrieve species information (e.g., taxonomical, distribution,
impacts, pathways and vectors, invasiveness status, records, and
sources)

Costello et al. (2021)
General biodiversity information systems (e.g., GBIF) and citizen science initiatives are not included.
*In 1997, the “Baltic Sea Alien Species Database” was published online; in 2013, it became AquaNIS.
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FIGURE 1

European Alien Species Information Network (EASIN): schematic of its concept, main elements, and outputs (bottom left: marine alien species by
country; bottom right: marine alien species by ecoregion).
FIGURE 2

Information system on Aquatic Non-Indigenous and Cryptogenic Species (AquaNIS) has a flexible search engine and a built-in comparative analysis
tool, which makes it practical for management and useful for research.
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• Determine the database’s intended purposes (e.g., research,

management, environmental status assessment, and early

warning). Ideally, a database should be multipurpose.

• Design a user-friendly technical system enabling easy

searching, extraction, and basic data analysis.

• Ensure a constant flow of reliable data and engage a highly

qualified editorial board.

• Obtain ongoing support from international, regional, or

national environmental authorities.

• Due to the rapidly increasing volume of bioinvasion data,

innovative approaches, e.g., utilizing artificial intelligence,

are necessary for improved data collection, standardization,

and analysis.
3 Monitoring strategies

Monitoring recommendations, including sampling adequacy,

coordination and coherence among programs, integration of

existing monitoring, interoperability, adaptive monitoring,

linkages to assessment needs, risk-based approaches, and the

precautionary principle, are highlighted within the scope of

implementing the MSFD (Zampoukas et al., 2014). Despite the

high cost of inaction (Ahmed et al., 2022), challenges are evident in

global efforts against biological invasions, with monitoring for

timely detection of new NIS, their introduction pathways, spread,

and impacts remaining costly and challenging. However, new

technologies have the potential to revolutionize invasion

monitoring by addressing some of the current difficulties. Here,

we present an overview of the current monitoring focus and

examples showcasing the potential of novel techniques to enhance

the monitoring of marine biological invasions.
3.1 Monitoring the European seas

Regional Sea Conventions (RSCs) have set environmental

objectives (Table 1) to tackle biological invasions. They have also

implemented monitoring guidelines to aid NIS management across

European Regional Seas Basins (Table 3). Collaborative efforts have

been undertaken, such as initial port sampling guidelines developed

jointly by OSPAR and HELCOM, and the continued activity of the

joint task group on BWMC and Biofouling (JTG Ballast and

Biofouling). Furthermore, OSPAR and HELCOM have formed an

expert group on species invasions (JEG-NIS) to foster discussions

on monitoring programs and facilitate the development of joint or

coordinated monitoring initiatives wherever feasible.

The MSFD’s requirements for assessing the impacts of marine

NIS have had an important role in promoting common strategies to

address NIS across RSCs. Many of the indicators and guidelines

adopted by RSCs (Table 3) aim to align with EU requirements,

facilitating reporting by contracting parties, which are also obliged

to report under MSFD. The RSCs’ guidelines reflect synergistic top-
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down and bottom-up approaches to influence and align monitoring

efforts at regional and national levels.
3.2 National monitoring

Most countries lack dedicated marine NIS monitoring

programs (Lehtiniemi et al., 2015), relying instead on existing

broad monitoring initiatives. However, NIS often receive limited

attention in national monitoring programs (Ljungberg et al., 2011).

This is noteworthy since monitoring of the arrival and spread of IAS

are required by several international regulations (e.g., European

Union (EU), 2008; European Union (EU), 2014), and information

on the abundance/biomass of IAS and their impact is required by

the MSFD for assessing good environmental status (GES) (Stæhr

and Jakobsen, 2023). National inventories of marine NIS have been

compiled and published for several EU countries, e.g., Greece

(Zenetos et al., 2018; Zenetos et al., 2020), Italy (Occhipinti-

Ambrogi et al., 2011; Servello et al., 2019), Portugal (Chainho

et al., 2015), Malta (Evans et al., 2015), Norway (Sandvik et al.,

2019), Denmark (Stæhr et al., 2020), and Belgium (Verleye et al.,

2020), often prompted by international working groups on NIS

such as those of ICES (ICES, 2022) in the Atlantic and CIESM in

the Mediterranean.

In line with the MSFD, each EU Member State has established

improved records of marine NIS in their seas. These baseline

inventories were developed through the initial MSFD evaluation

in 2012, updated information from EASIN, and an expert elicitation

process (Tsiamis et al., 2019). The assessment revealed that Italy,

France, Spain, and Greece have the highest NIS richness among

member states, while Slovenia, Lithuania, Latvia, and Finland have

the lowest. Among the EU ecoregions, the Levantine Sea has the

highest NIS richness, followed by the western Mediterranean, North

Sea, and Aegean Sea (Table 4).
3.3 Port monitoring

Ports are considered a key hub in the introduction of IAS

(Miralles et al., 2021 and references therein) and are valuable sites

for monitoring new NIS arrivals. One of the earliest port survey

approaches is the CRIMP protocol, initially developed in 1995 to

assess marine invasions and survey effectiveness in Australian ports

(Hewitt and Martin, 1996). An updated version of the protocol was

published in 2001 following 5 years of implementation in practice

(Hewitt and Martin, 2001). The protocol was adopted by the IMO

GloBallast program for port surveys. However, the CRIMP protocol

relies heavily on scuba diving surveys, which are not feasible in all

locations. In such cases, qualitative surveys, such as Rapid

Assessment Surveys, can provide insights into the presence of

alien species and changes in their spatial distribution (e.g., Cohen

et al., 2005; Pederson et al., 2005; Ashton, 2006).

Baltic Sea Port Monitoring, based on established protocols

(Hewitt and Martin, 2001; Power et al., 2006; Buschbaum et al.,

2010; Andersen et al., 2023), was originally designed for granting
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exemptions from the BWMC. HELCOM’s port sampling protocol

has been implemented in the Baltic Sea since 2012 (HELCOM,

2013; Outinen et al., 2021), though regular monitoring is lacking in

most countries. Finland initiated a port monitoring program in

2022, and Denmark published a port monitoring report in 2022 that

was expanded to compare environmental DNA from IAS across

seasons (Knudsen et al., 2022). In the Mediterranean, a study

compared environmental DNA (eDNA) levels inferred from

metabarcoding with fishing fleet activity to detect IAS in harbors

around Sicily and the northwestern Mediterranean (Aglieri et al.,

2023). In the Bay of Biscay, eDNA metabarcoding was utilized on

water samples from major ports for IAS monitoring (Borrell

et al., 2017).
3.4 Molecular approaches

Recent years have witnessed an explosion in the application of

molecular methods based on organismal or eDNA or RNA due to

their rapid technological advancements (Fonseca et al., 2023). In the

context of biodiversity monitoring, the most applied methods can

be categorized into 1) methods targeted to specific species based on

quantitative real-time PCR (qPCR) or digital PCR (dPCR; including
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digital droplet PCR) and 2) untargeted methods based on

metabarcoding of amplified taxonomic marker sequences using

“universal” primers with broad coverage. Both types of methods

offer advantages over traditional monitoring, including enhanced

sensitivity and the ability to identify sparse NIS populations, even

when visually challenging to identify life stages or when local

taxonomic expertise is lacking (Bowers et al., 2021). Sample

collection and preservation are relatively straightforward,

requiring smaller sediment volumes, while eDNA can be directly

extracted from water filters. In recent years, numerous evaluation

and proof-of-concept studies have demonstrated the utility of both

approaches for NIS monitoring in the environment and

transportation vectors such as ballast water (e.g., Zaiko et al.,

2015; Borrell et al., 2017; Rey et al., 2018; Holman et al., 2019;

Rey et al., 2020; Bowers et al., 2021; Duarte et al., 2021; Knudsen

et al., 2022).

The obvious disadvantage of targeted methods is the

requirement of species-specific assays for each NIS of interest,

whereas metabarcoding can theoretically detect any species eDNA

present in collected samples (Hablützel et al., 2023). When many

species are of interest, metabarcoding therefore becomes more cost-

efficient. Conversely, targeted approaches generally exhibit higher

sensitivity and specificity, allowing for more accurate estimates of
TABLE 3 Brief overview of current efforts by Regional Sea Conventions (RSCs) toward improved monitoring and management of NIS in European
Regional Seas Basins.

RSCs Main elements

Baltic Marine
Environment
Protection
Commission
(HELCOM)

There is currently no coordinated monitoring specifically targeting NIS in the Baltic Sea, but it is under development. HELCOM has, however,
identified a variety of monitoring approaches and methods, which may be used for NIS monitoring, addressing all biotic components, as NIS may
belong to any trophic level and be found in various man-made as well as natural habitats. For specific aspects, a series of monitoring guidelines were
developed that aim to provide standardized protocols to be used as part of routine bioinvasion monitoring or early detection of new incursions within a
pathway hub to support reporting core indicators (e.g., “Trends in arrival of non-indigenous species”) and meet environmental (e.g., “Prevention of
unwanted human-mediated introductions”) and management objectives (e.g., “No introductions of alien species from ships”). These HELCOM
guidelines have a particular focus on the use of molecular methods for target NIS, including those adequate for NIS in biofouling and NIS in ballast
water of ships and also for the monitoring of NIS in marinas and of mobile and sessile epifauna as well as on the collection of citizen observations on
NIS. To support the monitoring plans, countries have agreed on keeping a continuously revised and updated list of target species for the Baltic Sea
within HELCOM (2023).

Convention for
the Protection
of the Marine
Environment
of the North-
East Atlantic
(OSPAR)

There is currently no coordinated monitoring specifically targeting NIS in the OSPAR region. Current reporting guidelines within OSPAR are described
in the OSPAR CEMP Guidelines (2022). The need for harmonized NIS monitoring was highlighted in the OSPAR QSR2023 report on NIS (Stæhr
et al., 2022). The plan is to collaborate with HELCOM and EU to coordinate and develop a common NIS monitoring guideline, which will make it
possible to provide better and more comparable data for all of the NIS (D2) indicators. Assessing new introductions through analysis of trends in new
arrivals is currently the main parameter being monitored, for which efforts to develop a baseline distribution list of NIS are being directed. Aligned with
MSFD objectives, other parameters to be monitored in the future by OSPAR will be total number of NIS, dispersal range, and rate. For all parameters,
standardized ways of monitoring and reporting among contracting parties are being agreed upon, for example, guidelines for most adequate monitoring
for early detection.

Convention for
the Protection
of the
Mediterranean
Sea Against
Pollution
(Barcelona
Convention)

The 19th Meeting of the Contracting Parties to the Barcelona Convention adopted an action plan concerning species introductions and invasive species
in the Mediterranean Sea [UNEP/MPA (2017)] aiming to “promote coordinated efforts and management measures throughout the Mediterranean
region in order to prevent as appropriate, minimize and limit, monitor, and control marine biological invasions and their impacts on biodiversity,
human health, and ecosystem services”. The Action plan requires member states to inventory the alien species reported in the national territory; assess
trends in abundance, temporal occurrence, and spatial distribution; estimate the ratio between alien and native species; assess their impacts; and
implement monitoring programs to support data collection and assessments. They were also asked to support the database MAMIAS with related data.
Regional training sessions have been organized to train scientists from member states on monitoring methods and protocols, including both traditional
and novel (eDNA) methods. The Barcelona Convention has adopted the Ecosystem Approach with very similar monitoring requirements as the MSFD.

Convention on
the Protection
of the Black
Sea Against
Pollution
(Bucharest
Convention)

The issue of NIS in the Black Sea is reflected in the Black Sea Integrated Monitoring and Assessment Program for years 2017–2022 (BSIMAP 2017-
2022). This program was partially harmonized with the EU MSFD approach and contains measures to address both MSFD and the Black Sea Strategic
Action Plan (BS SAP 2009) as regards reduction and management of human-mediated species introductions (EcoQO 2b). Among preparatory actions
are the following: finalize the List of Black Sea non-indigenous species (which is periodically updated on the regional level), develop and/or apply
indicators (e.g., bio-pollution index), and map areas of non-indigenous species proliferation. In line with BSIMAP, the dedicated indicator “Number of
new introduced non-indigenous species (for each 6 years)” has to be mandatorily reported every 6 years to the Black Sea Commission.
NIS, non-indigenous species; MSFD, Marine Strategy Framework Directive; eDNA, environmental DNA.
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absolute abundance (McColl-Gausden et al., 2023; Sapkota et al.,

2023). For successful NIS identification, both approaches rely on the

availability of reference sequence data. The specificity of

metabarcoding also depends on the phylogenetic resolution of the

amplified taxonomic marker, which can be severely limited, e.g.,

when using partial sequences of the small subunit (18S) rRNA gene

that may show little or no variation across metazoans, for which 12S

or COI is commonly used. Insufficient database coverage can
Frontiers in Marine Science 09
severely limit the utility of metabarcoding, especially in regions

where baseline biodiversity is poorly characterized. For example,

Pearman et al. (2021) found that only 31% of 18S and 4% of the

unique COI metabarcoding sequence variants obtained from a

diversity survey of marinas in Tahiti could be assigned to species.

Metabarcoding of eDNA is also dependent on the genetic reference

sequences deposited on genetic databases that originate from

vouchered museum specimens, as this makes species

identification from sequence reads more reliable (Pleijel et al.,

2008; Buckner et al., 2021). It is important that the bioinformatic

handling of eDNAmetabarcode sequence data includes a validation

step that allows for identification being based on vouchered

sequence data, rather than the most prevalent sequences. It also

underlines the continuous importance of having taxonomic

expertise in museum collections and the value of natural history

collections at museums (Rocha et al., 2014).

To estimate the database coverage of NIS in European waters,

we cross-referenced species listed in the AquaNIS and EASIN

databases with species in the sequence databases Midori v253

(Leray et al., 2022), PR2 v5.0.0 (Guillou et al., 2013), SILVA 138

SSURef and LSURef NR (Quast et al., 2013), MitoFish v2023-03-23

(Iwasaki et al., 2013), MetaZooGene (downloaded April 4, 2023;

Bucklin et al., 2021), and a list of all rbcL gene entries from global

data repositories (Omonhinmin and Onuselogu, 2022). Out of

2,197 NIS in European waters, sequence data for at least one

taxonomic marker were available for 1,318 species (60%; see

Table 5). For 854 species (39%), multiple marker sequences

were available.

Sampling design is critical for comprehensive biodiversity

coverage, especially in heterogeneous habitats such as ports

(Knudsen et al., 2022; Aglieri et al., 2023). Rey et al. (2020)

demonstrated this in the Port of Bilbao and its upstream estuary,

where 192 samples were taken from various locations using

zooplankton nets, filtered water, sediment grabs, and settlement

plates. Less than 1% of the species identified through COI and 7%

through 18S rRNA metabarcoding were shared among all four

sampling methods. Koziol et al. (2019) reported similar findings.

This highlights the need for standardized eDNA monitoring

protocols and further studies that compare eDNA and traditional

monitoring methods.
TABLE 4 Numbers of alien and cryptogenic marine and oligohaline
species reported in EASIN by ecoregion (sensu Spalding et al., 2007),
ordered by species richness.

European ecoregions No. of NIS and cryptogenic
species

Levantine Sea 306

Western Mediterranean 277

North Sea 272

Aegean Sea 236

Celtic Seas 199

Ionian Sea 164

South European Atlantic Shelf 136

Southern Norway 110

Adriatic Sea 106

Tunisian plateau/Gulf of Sidra 86

Northern Norway and Finnmark 75

Azores, Canaries, and Madeira 55

Alboran Sea 54

Black Sea 36

North and East Barents Sea 27

White Sea 18

South and West Island 17
In total, 1,671 alien and cryptogenic marine and oligohaline species are reported in the
European Seas by EASIN (as of July 2023).
EASIN, European Alien Species Information Network.
NIS, non-indigenous species.
TABLE 5 Identified reference sequences per taxonomic marker for NIS encountered in European waters extracted from the EASIN and AquaNIS
databases (in total 2,209 unique species) per marker and database (“*” denotes a marker from a mitochondria or chloroplast encoded gene).

Taxonomic
marker

IAS with ref.
sequence

Midori
Meta-
ZooGene

PR2 SILVA
Mito-
Fish

Omonhinmin and Onuselogu,
2022

COI* 1,096 (50%) 1,069 807 – – – –

18S rRNA 664 (30%) – 443 484 117 – –

16S rRNA* 572 (26%) – 544 54 20 – –

12S rRNA* 375 (17%) – 338 – – 126 –

28S rRNA 83 (4%) – – – 83 – –

rbcL* 49 (2%) – – – – – 49

Any marker 1,318 (60%) 1,078 926 493 191 126 49
NIS, non-indigenous species; EASIN, European Alien Species Information Network; AquaNIS, Aquatic Non-Indigenous and Cryptogenic Species; IAS, invasive alien species.
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Sampling design for eDNA monitoring must also consider

variation in distribution across time and depth. Different depths

harbor different NIS, and the eDNA they release to the water will

vary (DiBattista et al., 2019; Canals et al., 2021; Merten et al., 2023).

Organism distribution fluctuates throughout the year, resulting in

seasonally dependent eDNA release (Sigsgaard et al., 2017;

Agersnap et al., 2022; Knudsen et al., 2022; Baudry et al., 2023).

Diurnal activity patterns impact eDNA levels (Jensen et al., 2022),

necessitating nighttime sampling for monitoring nocturnal NIS.

Environmental RNA (eRNA), similar to eDNA, is shed by

metazoans or exists in the form of whole live or dead individuals

of smaller organisms, making it a potential monitoring target

(Lejzerowicz et al., 2015; Keeley et al., 2018). eRNA has the

disadvantage of lower stability in the environment (Kagzi et al.,

2023) and requires stricter sample contamination and preservation

protocols but is likely a better reflection of the presence of live

organisms (Pochon et al., 2017).
3.5 Other technological tools

Artificial intelligence (AI) applications for species recognition

(Wäldchen and Mäder, 2018) can greatly facilitate marine NIS

monitoring. AI has made significant advancements in various areas,

including species identification. AI technology, powered by

machine learning and neural networks, has revolutionized

biodiversity monitoring and species identification, fostering NIS

monitoring (Carvalho et al., 2023). Platforms like iNaturalist utilize

AI to assign taxonomic names based on uploaded images, with

expert verification and training for improved accuracy. Several

organizations have developed AI systems for marine species

detection, fish and plankton identification, benthic image

annotation, and even stock assessment (e.g., Connolly et al.,

2021). Tools like Linne Lens enable real-time identification of

multiple species from photos and videos, providing instant

species recognition using smartphones and internet connectivity.

Automated species identification from images and videos has

become widespread, offering a cost-efficient approach that

archives valuable data for NIS monitoring.

Remote sensing using color infrared (IR) photos has been

employed for NIS detection in shallow waters since the 1970s

(e.g., water hyacinth, Rouse et al., 1975). Advances in imaging

technologies and image processing algorithms have significantly

enhanced the effectiveness of remote sensing. Remote sensing

techniques are particularly valuable when target species form

large homogenous patches, exhibit distinctive features (e.g.,

flowers), or possess unique chemical properties (He et al., 2015;

Bolch et al., 2020). Roca et al. (2022) demonstrated the effective use

of multispectral remote sensing data from drones and satellites to

monitor the IAS of EU concern R. okamurae, providing crucial

information for decision-making and species management.

However, remote sensing in aquatic ecosystems has limitations

due to various confounding factors. To overcome these limitations,

high radiometric quality in images, thorough calibration processes,

hyperspectral information, customized image timing, and radiative

transfer modeling are often required for adequate detection and
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differentiation of submerged and water column IAS (Bolch

et al., 2020).

Furthermore, data mining from social media, although with

severe limitations, has been proposed as a promising source of NIS

data (Caley and Cassey, 2023).
3.6 Citizen science

An increasingly relevant amount of data to support decision-

making and reporting against international targets comes nowadays

from citizen science (Pocock et al., 2019). Citizen science

observations, especially for charismatic and visible IAS,

complement regular monitoring (Giovos et al., 2019; Lehtiniemi

et al., 2020). Although citizen-based observations of birds have been

utilized for over a century, citizen science has gained wider

popularity since the late 20th century (Tulloch et al., 2013).

Online applications and global platforms have garnered immense

participation and contribute daily to global biodiversity data

(Seltzer, 2019). For example, iNaturalist has contributed over 58

million research-grade observations to the Global Biodiversity

Information Facility (GBIF) as of March 2023, and these data

have been integrated successfully with scientific research for

various purposes, evident in over 3,403 publications citing the

dataset (Nugent, 2018). Citizen science in environmental

monitoring not only compensates for resource limitations in

generating comprehensive and up-to-date species presence

databases but also holds value beyond data provision, gradually

being incorporated into solutions and mitigation actions (Pocock

et al., 2019; Ferreira-Rodrıǵuez et al., 2021).

A recent survey identified 103 citizen science initiatives related

to biological invasions across 41 countries that contribute to

research, policy, and management (Price-Jones et al., 2022).

Among the 31 initiatives specifically focused on marine

environments, nearly half (47%) aimed to collect species presence

or abundance data to map their distribution and spread. NIS

detection for early warning programs (16%) and compiling

species lists (14%) were also common objectives. Interestingly,

citizens are increasingly involved in gathering more complex

information, such as evidence of NIS impacts on biodiversity

(11%) and generating experimental data for scientific hypothesis

testing (5%).

The potential for citizen science to contribute to biodiversity

monitoring, including biological invasions, is indisputable (Pocock

et al., 2018). However, uncertainties arise during sampling design,

data collection, and statistical analyses of citizen science data, as

well as linguistic uncertainties that affect information interpretation

(Probert et al., 2022). Limitations of citizen science data include

accuracy and uneven spatial distribution of observers (Wiggins and

Crowston, 2011). Data quality decreases when species are difficult to

identify or quantify (Lewandowski and Specht, 2015), especially in

cases of low density (false negatives) or co-existence with

morphologically similar species (false positives) (Fitzpatrick et al.,

2009). Furthermore, citizen science often provides presence-only

records, limiting data usefulness for range expansion calculations or

species distribution models (Peron et al., 2016). Recognizing these
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challenges, efforts have been made to address uncertainties and

enhance data reliability in citizen science (Probert et al., 2022).

The most successful instances of marine citizen science

focused on the Mediterranean Sea are exemplified by the CIESM

Jelly Watch Program initiatives related to jellyfish blooms. These

stand out as the most impactful marine citizen science endeavors

in the Mediterranean, achieving extensive time coverage, broad

geographic reach, and significant citizen participation, resulting in

a substantial number of reports (>24,000 jellyfish presence

records, and a total of 115,367 presence+absence records)

(Marambio et al., 2021). In Italy alone, data collected from 2009

to 2014 comprised >15,000 presence records contributed to the

discovery of new NIS for Italy and the western Mediterranean

(e.g., Phyllorhiza punctata and Mnemiopsis leiydi, in Boero et al.,

2009) and even the finding of a jellyfish species new to science—

undisputedly classified as cryptogenic in the northern Adriatic Sea

(Piraino et al., 2014).

Coupling citizen science with eDNA monitoring is a promising

approach in both marine (e.g., Tøttrup et al., 2021; Agersnap et al.,

2022; Suzuki-Ohno et al., 2023) and freshwater habitats (Biggs et al.,

2015). Citizen science involvement in eDNA monitoring allows for

broader geographical sampling and public engagement in

biodiversity research (Agersnap et al., 2022), including

educational benefits (Tøttrup et al., 2021; Knudsen et al., 2023).

However, careful consideration is needed to mitigate the increased

risk of sample contamination from unwanted DNA due to the

inexperience of participants in eDNA protocols. Incorporating

negative and positive controls in sample analysis can improve the

validity of citizen science-based eDNA monitoring (Tøttrup et al.,

2021). Another advantage of citizen science is the potential cost

reduction associated with eDNA monitoring, as demonstrated by

studies in Denmark where volunteers collected and filtered water,

eliminating the need for a field biologist. Leveraging citizen science

and traditional approaches for eDNA monitoring can enhance

understanding of biodiversity loss and the impacts of climate

change, similar to approaches used for terrestrial organisms

(Hudson et al., 2014; Newbold et al., 2015; Outhwaite et al.,

2022). Furthermore, eDNA monitoring has shown superior

performance compared to traditional surveys, leading to its

implementation in national surveys (De Brauwer et al., 2023;

Kelly et al., 2023).
4 Predicting biological invasions

As the costs of invasions are high, there is a global need to

predict invasions before they occur and to adjust monitoring or

management policies (Wylie and Janssen-May, 2017). Several

attempts have been made, mainly using species distribution

models (SDMs) to predict favorable areas for species (e.g., Kotta

et al., 2016; Liversage et al., 2019; Poursanidis et al., 2022) and assess

the vulnerability of marine protected areas (MPAs) to IAS (e.g.,

D’Amen and Azzurro, 2020a; Stæhr et al., 2023). Additionally,

studies have explored factors contributing to successful invasions,

such as life-history traits or global invasion history (Vilizzi et al.,

2019; Vilizzi et al., 2021; D’Amen et al., 2022; D’Amen et al., 2023).
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When modeling and projecting species invasions, several

challenges arise, such as the need to extrapolate to novel

conditions due to the lack of analogous conditions in the invaded

region (Mesgaran et al., 2014), niche pioneering (part of a species’

fundamental ecological niche observed only in its invaded range) or

niche expansion (Atwater et al., 2018), and niche unfilling (niche

space that is occupied in the native but unoccupied in the invaded

domain) (Strubbe et al., 2013). Biased predictions can result from

excluding limiting variables from models, e.g., ignoring the

minimum winter temperature for thermophilic Lessepsian species

(Dimitriadis et al., 2020). Ignoring these challenges led to biased

predictions of the lionfish distribution in the Mediterranean Sea

(Poursanidis, 2015; D’Amen and Azzurro, 2020a). For example,

predictions by Johnston and Purkis (2014), based on a biophysical

model, incorrectly suggested that the lionfish would not successfully

invade the Mediterranean, but the subsequent rapid expansion of

the species proved these predictions false (Dimitriadis et al., 2020;

Poursanidis et al., 2020; Poursanidis et al., 2022).

Over the past two decades, modeling the fundamental

ecological niche (i.e., ecological niche models) and correlating the

presence or absence of species with environmental factors (i.e.,

SDMs) have gained popularity for projecting the expansion of

marine IAS (for thorough reviews, see Marcelino and

Verbruggen, 2015; Robinson et al., 2017; Melo-Merino et al.,

2020). To enhance predictive accuracy and overcome inherent

limitations associated with correlative modeling tools, several

advancements have been proposed. Hybrid distribution models,

incorporating physiological performance estimates (called

physiology SDMs), outperformed regular SDMs and provided

more realistic range shift forecasts for marine invaders (Gamliel

et al., 2020). Similarly, applying temperature constraints on the

reproductive phenology of invaders improved the predictions by

niche models (Chefaoui et al., 2019). To account for niche

variations between native and invaded ranges, models coupled

with univariate niche dynamics projected shifts under novel

conditions (D’Amen and Azzurro, 2020b). The hypothesis of

phylogenetic conservatism of ecological niches, which posits that

closely related species share similar or identical niches, has been

applied through supraspecific modeling units, i.e., combining

occurrences of focal IAS and sister species in their native ranges.

This approach has enhanced projections of invasion potential

(Castaño-Quintero et al., 2020).

Monitoring marine NIS, whether using traditional or molecular

methods, often suffers from imperfect detectability, which can lead

to false predictions of occupancy (Issaris et al., 2012; Darling et al.,

2017). Several methods have been developed to estimate occupancy

based on presence–absence data, considering the imperfect

detection of the target species (MacKenzie et al., 2006). These

methods involve multiple visits to each site and have been widely

applied in all environments. Cost-efficient protocols for data

collection through scuba diving or snorkeling and modeling

occupancy in the marine environment have been developed,

involving multiple observers (Issaris et al., 2012). Such

approaches have been used to document cascading effects due to

native-invasive species interactions (Dimitriadis et al., 2021) for

large-scale multi-species monitoring efforts (Gerovasileiou et al.,
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2017; Crocetta et al., 2021) or for explaining IAS spatial patterns

(Salomidi et al., 2013). In monitoring programs coupling molecular

and traditional methods, site occupancy–detection (SOD) modeling

holds great promise for converting eDNA-positive detections into

robust estimates of species distribution (Darling et al., 2017).

Positive correlations have been observed, for example, between

eDNA levels and tidewater in SOD for a marine endangered goby

on the Californian coast (Schmelzle and Kinziger, 2016) and

between oxygen levels and eDNA from an endangered crayfish

threatened by the expansion of introduced crayfish (Baudry

et al., 2023).

It is crucial to anticipate future invasions and their risks for

effective strategy and policy development, risk management, and

research prioritization (Ricciardi et al., 2017; Vaz et al., 2021). In the

framework of the IAS Regulation, an important horizon scanning

study was conducted at the European scale, bringing together

international experts to identify potential IAS in terrestrial,

freshwater, and marine environments (Roy et al., 2019). From an

initial list of 329 species, 66 were identified as very high, high, or

medium risk for the EU, including 16 marine species (P. lineatus,

Codium parvulum, Crepidula onyx, Mytilopsis sallei, Acanthophora

spicifera, Perna viridis, Potamocorbula amurensis, Symplegma

reptans, Ascidia sydneiensis, Balanus glandula, Ciona savignyi,

Dictyospaeria cavernosa, Didemnum perlucidum, Dorvillea similis,

Rhodosoma turcicum, and Zostera japonica). Tsiamis et al. (2020)

developed a scoring tool that aims at identifying the most likely

invasive species in European waters. In the Baltic Sea, Jensen et al.

(2023) conducted a horizon scanning study that identified 38

potential IAS, with 31 species meeting the invasiveness scoring

criteria by Tsiamis et al. (2020). That horizon scan was combined

with hydrodynamic models to predict the potential spread of these

species after arrival in commercial harbors and marinas.

Dobrzycka-Krahel and Medina-Villar (2023) developed a stepwise

tool to identify potential IAS in the less saline parts of the Baltic. In

Cyprus, horizon scanning using expert elicitation identified 45

marine species with potentially adverse impacts on biodiversity,

economy, or human health, such as the venomous fish P. lineatus, a

species of EU concern (Peyton et al., 2019; Peyton et al., 2020).
5 Pathways of marine IAS in Europe

The first large-scale assessment of marine NIS pathways of

introduction was conducted a decade ago (Katsanevakis et al.,

2013), based on the Hulme et al. (2008) pathway classification.

With the use of the EASIN Catalogue (version 2.3), the assessment

identified 1,369 marine NIS in European seas, with 1,257 associated

with likely pathways of introduction. The study revealed a rising

trend in new introductions, with shipping as the primary pathway

for over half of the species. The second-most common pathway was

marine and inland corridors, mainly the Suez Canal, with

aquaculture and aquarium trade following in terms of the

numbers of introduced species. Interestingly, aquaculture showed

a notable decrease in new introductions from 2001 to 2010,

attributed to regulatory measures at national and European levels

(e.g., ICES, 2005; European Union (EU), 2007). In contrast,
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introductions through other pathways, particularly aquarium

trade, showed a consistent increase. The assessment underscored

the ongoing expansion of the Suez Canal and the reduced barriers to

the entry of Red Sea species as factors that are likely to facilitate the

invasion of the Mediterranean Sea by additional Lessepsian species.

These Lessepsian species have been greatly facilitated by climate

change, and the increased temperatures of the eastern

Mediterranean and currently dominate demersal communities

(Box 1).

The CBD Pathway Classification Framework has become a

global standard in recent years (Convention on Biological

Diversity [CBD], 2014; Harrower et al., 2018). It consists of six

broad categories: Release, Escape, Transport-contaminant,

Transport-stowaway, Corridors, and Unaided. These are

subdivided into several subcategories. EASIN has incorporated

the CBD classification of pathways based on expert assessments

that addressed implementation challenges (Pergl et al., 2020).

According to the latest data in EASIN (March 2023), the main

pathways of NIS introductions in Europe are “Transport-

stowaway” and “Corridors” , fol lowed by “Transport-

contaminant”, “Escape from confinement”, and “Release in

nature” (Figure 3A). However, when considering only high-

impact NIS (as defined in EASIN), species introduced through

“Transport-stowaway” and “Transport-contaminant” appear to

have a greater impact compared to those introduced through

“Corridors” (Figure 3B).

Quantifying changes in pathways over time and space is crucial

for understanding the dynamics of species introductions (Essl et al.,

2015). These changes are influenced by complex interactions

between environmental and socioeconomic factors, species traits,

and the regions involved. Nunes et al. (2014) investigated the spatial

distribution of initial introductions of marine NIS in European Seas,

including all Mediterranean countries. They identified key entry

points for invasions based on distinct geographic patterns related to

different pathways (Figure 4). Aquaculture introductions were

prominent in France and Italy, Lessepsian species were primarily

found in Levantine Sea countries, shipping introductions were

widespread near major ports, and species introduced through

inland canals were primarily observed in the southern Baltic

countries (Katsanevakis et al., 2014a; Nunes et al., 2014). In the

Mediterranean, the Suez Canal was the most important pathway,

responsible for over half of marine NIS introductions (Zenetos

et al., 2012), whereas in all other European Seas, shipping was the

dominant pathway (Nunes et al., 2014).

Pathway assessments for NIS entry and spread involve

uncertainties, particularly when introductions are unintentional

and poorly documented (Essl et al., 2015; Katsanevakis and

Moustakas, 2018). Examples include species traveling as ship

stowaways or using canals as corridors. Assigning specific

pathways for these species often relies on assumptions or

ecological inferences rather than concrete evidence. Overlooked

or insufficiently studied pathways, such as aquarium trade (e.g.,

Padilla and Williams, 2004; Vranken et al., 2018) and marine litter

(e.g., Barnes, 2002; Carlton and Fowler, 2018; Barry et al., 2023),

may have greater significance than currently recognized.

Transparently addressing these uncertainties and providing
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estimates of pathway assignment uncertainty would be valuable

(Zenetos et al., 2012; Katsanevakis et al., 2013). Clear and consistent

pathway definitions and guidelines are essential to ensure consistent

application by different assessors, which can be facilitated through a

pathway manual.
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Secondary pathways of spread within Europe are important but

poorly studied. Unaided dispersal by ocean currents is the most

important secondary pathway, often surpassing primary pathways

in importance. In the Aegean Sea, unaided dispersal from

neighboring countries accounted for 56% of NIS introductions,
BOX 1 The Levant bioinvasion and climate change hotspot: a look into the future of Mediterranean biodiversity

The southeastern Mediterranean, known as the Levantine basin or the Levant, is probably the most invaded region of the global ocean (Edelist et al., 2013; Costello et al.,
2021). It is also one of the fastest-warming regions (Ozer et al., 2016; Rilov, 2016; Pastor et al., 2020) and a major global change hotspot, driven by fast tropicalization (Rilov
et al., 2019b). Mollusca, for instance, is dominated by alien species due to the collapse of native populations (Rilov, 2016; Albano et al., 2021). The co-occurrence of intense
warming and thermophilic bioinvasions makes it challenging to ascertain the primary cause of the native species decline (especially non-harvested ones). Experiments and
correlative studies have indicated that warming is likely the main driver for species decline, such as in the case of the purple sea urchin Paracentrotus lividus (Yeruham
et al., 2015; Yeruham et al., 2019), fish (Givan et al., 2018), and possibly mollusks (Albano et al., 2021). Recent experimental work further supported this, showing that
tropical alien species are more resilient to warming than native species (Rilov et al., 2022).

Considering the formation of a new Levant ecosystem dominated by alien species, an important question arises: how does this process impact ecosystem functioning
and services? To address this, indirect methods such as biological trait analysis can be used, using traits as proxies for functions. Recent research revealed distinct traits
between native and alien assemblages, indicating that aliens cannot fully compensate for the loss of native species (Steger et al., 2022). Additionally, direct measurements of
ecosystem functions through experiments have shown that alien macrophytes can restore lost biomass due to invasive rabbitfish grazing, unlike vulnerable native
macroalgae (Peleg et al., 2020; Mulas et al., 2022), and therefore compensate for the reduction of blue carbon.

With ongoing warming and the influx of invaders to the Levant, the collapse of native species and the spread of alien domination are expected to rapidly extend
westward and northward in the Mediterranean Sea. Thus, the current situation in the southeast corner of the Mediterranean Sea likely foreshadows the future of other parts
of the basin, serving as a warning sign for the entire region (a “canary-in-the-coal-mine”). MPAs alone may not effectively combat NIS in such climate change and
bioinvasion hotspots (Rilov et al., 2018; Frid et al., 2021). Given the native species collapse and proliferation of tropical aliens, regardless of protection from local human
pressures, it is necessary to adapt and reconsider conservation objectives and indicators of success, adjusting criteria for good environmental status accordingly (Rilov et al.,
2020).
The Red Sea alien lionfish Pterois miles and the alien urchin Diadema setosum meet again on the reefs of the Israeli coast (photo: G. Ra’anan).
BA

FIGURE 3

Number of marine NIS (A) and high-impact NIS (B) in European Seas known or likely to be introduced by each of the main pathways, according to
the CBD classification. Percentages add to more than 100%, as some species are linked to more than one pathway. High-impact NIS are according
to the EASIN classification. Data retrieved from EASIN (March 22, 2023). NIS, non-indigenous species; CBD, Convention on Biological Diversity;
EASIN, European Alien Species Information Network.
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followed by “Transport-stowaway” (35%) (Katsanevakis et al.,

2020). In the Baltic Sea, shipping and natural NIS spread from

the North Sea dominate among the pathways for established NIS

(Ojaveer et al., 2017).
6 Impacts on biodiversity, ecosystem
services, and human health: assessing
and mapping impacts

IAS impact and risk assessments are increasingly demanded by

managers for informed decision-making. Risk screening can help

identify species with invasive potential in the area of interest,

requiring further analysis of their potential impacts (Ricciardi and

Rasmussen, 1998; Copp et al., 2005). IAS often share life-history

traits, such as frequent reproduction, large body size, long life span,

high degree of omnivory, and a climate match with the area of

interest (Statzner et al., 2008; Chan et al., 2021). Moreover, invasive

species tend to have broad tolerance to abiotic conditions (Leuven

et al., 2009) and a history of being invasive in other regions.

Several protocols exist for IAS impact and risk assessment, such

as BPL/BINPAS (Olenin et al., 2007; Narsč̌ius et al., 2012), EICAT

(Hawkins et al., 2015), SEICAT (Bacher et al., 2018), FISK and

related tools (Copp et al., 2005; Copp, 2013), GABLIS (Essl et al.,

2011), GB-NNRA (Baker et al., 2008), GISS (Nentwig et al., 2016),

Harmonia+ (D’hondt et al., 2015), ISEIA (Branquart, 2009), and

NGEIAAS (Sandvik et al., 2013). These tools rank taxa based on

their threat level in the risk assessment area at a specified spatial

scale. Until recently, there was no standardized and evidence-based

system to classify the positive impacts of alien species; EICAT+

covered this gap by offering a protocol to categorize the magnitude

of positive NIS impacts (Vimercati et al., 2022). The screening tools

vary in objectives, taxonomic resolution, and target (e.g., specific

habitats or pathways), as well as complexity, approaches to assess
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uncertainty, and scoring systems used. These variations may result

in significant differences and inconsistencies in the assessment

outcomes; selection of assessors, clear assessment guidelines, and

adequate training are important in addition to arriving at final

decisions collaboratively by consensus (González-Moreno

et al., 2019).

A pan-European systematic review of NIS impacts

(Katsanevakis et al., 2014b) identified 87 marine species in

Europe with documented high impacts on biodiversity or

ecosystem services. The study revealed that food provision was

the most affected ecosystem service both positively and

negatively. Other services negatively affected included ocean

nourishment , recreat ion and tourism, and l i fe cycle

maintenance, while cognitive benefits, water purification, and

climate regulation were among the services often positively

impacted. Additionally, 49 assessed species were considered

ecosystem engineers, altering habitats through physical or

chemical modifications. The study acknowledged a potential

bias against NIS, suggesting that positive impacts might

be underestimated.

Tsirintanis et al. (2022) studied the impacts of biological

invasions on biodiversity, ecosystem services, and human health

in the Mediterranean Sea. They identified various biological

mechanisms through which NIS affect Mediterranean

ecosystems, resulting in both negative and positive impacts

(Figures 5, S1; Table S1). Negative impacts on biodiversity

were primarily due to competition for resources, followed by

the creation of novel habitats and predation (Figure 5; Table S1).

NIS structural ecosystem engineers can completely transform

seascapes and substantially change community composition,

leading to the loss of native species (Garcıá-Gómez et al., 2021;

Mancuso et al., 2022). Alien predators and grazers cause

significant negative impacts on Mediterranean ecosystems by

consuming native biota (Sala et al., 2011; Kampouris et al., 2019).
FIGURE 4

Pathways of introduction for first European records of marine NIS per recipient country (i.e., countries of initial introduction in Europe). For clarity,
data are shown for countries with more than two recorded first introduction events (numbers shown next to the charts). Adapted from Nunes et al.
(2014). NIS, non-indigenous species.
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Predator–prey interactions in the marine environment are dynamic

ecosystem processes influenced by local environmental factors and

species’ ecological features, capable of affecting multiple food-web

levels (Rilov, 2009).

Biofouling is the primary mechanism of negative impacts on

provisioning services, with many IAS densely colonizing

aquaculture facilities and reared species, leading to significant

economic losses (Tsotsios et al., 2023). IAS also greatly impact

cultural services through the degradation of highly valued

habitats, algae massively washed ashore, and jellyfish blooms

reaching coastal waters, negatively affecting tourism (e.g.,

Ghermandi et al. , 2015; Ruitton et al. , 2021). Habitat

degradation is the primary mechanism through which IAS

negatively impact regulating services. Regarding human health,

IAS primarily cause negative impacts through stinging or

poisonings/intoxications (Galil, 2018; Bédry et al., 2021)

(Figure 5; Table S1).

Many positive NIS impacts have been reported in the European

Seas (Katsanevakis et al., 2014b; Tsirintanis et al., 2022). In the

Mediterranean, provisioning services benefit the most from NIS

introductions through the provision of new commodities. Various

fish, mollusks, and crustaceans have proven a boon for the fisheries

and aquaculture sector, especially in the Levantine Sea (e.g.,

Katsanevakis et al., 2018). The creation of novel habitats is the

most important mechanism of positive effects on biodiversity, as

alien structural ecosystem engineers provide new habitats and

shelter for various species through the formations they create

(Katsanevakis et al., 2014b; Guy-Haim et al., 2018; Figure 5).

Cultural services are positively affected by research conducted on

NIS specimens for future potential exploitation of molecules for

pharmaceutical or industrial applications (e.g., Genovese et al.,

2012; Nekvapil et al., 2019). Regarding regulating services, the

creation of novel habitats, carbon sequestration, and biofiltration

are the most important mechanisms contributing to positive

impacts (Figure 5; Table S1).
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Evidence of reported impacts is mostly of medium strength

(Figure 6; Table S1), predominantly from direct observations (e.g.,

novel habitat creation, competitive overgrowth of sessile organisms,

or predation effects derived through stomach content analysis),

followed by non-experimental-based correlations between a species

presence/abundance and an impact, and modeling to project impact

consequences (Figure 6; Table S1). Many reported impacts are only

based on expert judgment. Only a small percentage of NIS impacts

are supported by robust evidence from manipulative or natural

experiments (Katsanevakis et al., 2014b; Tsirintanis et al.,

2022; Figure 6).

Several indices have been developed to assess NIS ecological

impacts and ecological status considering NIS presence. ALEX

(ALien biotic indEX; Çinar and Bakir, 2014) evaluates NIS

impacts on benthic communities, aligning with the EU Water

Framework Directive classification system; Piazzi et al. (2015) also

recommended its application. ECOfast, an ecological evaluation

index for shallow rocky reefs, was recently developed (Kytinou et al.,

2023). ECOfast-NIS, a variant of this index, penalizes the presence

of certain NIS that have negative impacts on local food webs.

CIMPAL (Cumulative IMPacts of invasive ALien species) is a

conservative additive model based on IAS and habitat

distributions, reported magnitude of ecological impacts, and the

strength of such evidence (Katsanevakis et al., 2016). CIMPAL has

been implemented for the Mediterranean Sea (Katsanevakis et al.,

2016), the European scale (Teixeira et al., 2019), and other marine

regions like Maltese waters (Bartolo et al., 2021) and the Aegean Sea

(Tsirintanis et al., 2023).

Despite extensive negative impacts, global documentation of

marine IAS-related extinctions remains scarce. A recent global

review on drivers of marine extinctions reported IAS as

responsible for 27 out of 786 extinction cases (seven global and

20 local extinctions) (Nikolaou and Katsanevakis, 2023). Among

the seven globally extinct species due to IAS, six were seabirds and

one was a diadromous fish, while the invasive species causing the
FIGURE 5

Mechanisms (outer circle) of IAS impacts on biodiversity, ecosystem services, and human health (inner circle) in the Mediterranean Sea (circle
compartment size corresponds to sample size). Based on Tsirintanis et al. (2022). IAS, invasive alien species.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1271755
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Katsanevakis et al. 10.3389/fmars.2023.1271755
extinctions were not marine (e.g., invasive rats). In many reported

extinctions, IAS were not the sole driver, and their contribution was

often unknown, introducing uncertainty about their actual role as

the cause of extinctions. The Mediterranean-endemic fan mussel

Pinna nobilis is an example of IAS-related local extinctions in

Europe. It experienced extensive local extinctions due to infection

by the newly described protozoan Haplosporidium pinnae (likely

introduced by shipping), putting the species at risk of global

extinction (Katsanevakis et al., 2022). It is now critically

endangered in the Red List (Kersting et al., 2019).

Although complete species extinction due to biological

invasions is rare in the marine environment, dramatic declines in

populations caused by predation or parasitism can lead to

functional extinction (Boero et al., 2013). For instance, in the

Baltic Sea, the invasion of the round goby Neogobius

melanostomus resulted in a significant decline in the population

of blue mussels (Mytilus edulis trossulus), leading to the

disappearance of the mussel-created biotope, which served as a

crucial habitat for wintering bird populations (Skabeikis

et al., 2019).

The predatory impacts of IAS are often focused on, with most

studies emphasizing the top-down predatory effects of invaders on

native prey, although many species play both predator and prey

roles in the ecosystem. The prey role is particularly interesting since

nearly all NIS eventually become subject to predation by native

predators, which can even lead to the control of IAS populations

(e.g., Hunt and Yamada, 2003; Jensen et al., 2007), a process that

often takes time (Santamarıá et al., 2022). For example, in the

Chesapeake Bay, USA, native blue crabs exert predation pressure on

the invasive green crab to the point where there are no green crab

populations left (DeRivera et al., 2005). In many cases, native

predators may even benefit from the new prey (Crane et al., 2015;

Pintor and Byers, 2015). Conversely, there are instances where the

increased invasive resource leads to an increase in predator

populations and results in increased predation on native species

(Noonburg and Byers, 2005).
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Prey naivety toward invasive predators has been extensively

studied and documented (e.g., Sih et al., 2010; Anton et al., 2020).

However, less focus has been given to the naivety of predators,

although similar naivety may occur, especially toward novel prey

(Reid et al., 2010; Santamarıá et al., 2022). This can be particularly

noticeable during the early stages of invasion, resulting in lower

predation pressure on the novel species compared to native, more

familiar prey (e.g., Carlsson et al., 2009; Santamarıá et al., 2022).
7 Management options: lessons
learned from the implementation of
management measures

7.1 Prevention: pathway management

Prevention of IAS introductions is the first line of defense

(Olenin et al., 2011; Katsanevakis, 2022). According to Article 13

of the IAS Regulation, EU Member States need to “carry out a

comprehensive analysis of the pathways of unintentional

introduction and spread of invasive alien species of Union

concern” in their marine waters and “establish and implement

one single action plan or a set of action plans to address the

priority pathways”.

To prevent introductions through shipping (Transport-

stowaway), the most important pathway of marine introductions

in the EU (Figure 3), a critical development was the entry into force

of the IMO BWMC in 2017. The BWMC mandates all ships to

adopt a ballast water management plan and, by September 2024,

treat their ballast waters with an approved ballast water treatment

system to diminish the survival probabilities of ballast water-

transferred marine organisms. Although enforcement of the

BWMC is challenging, it is expected to substantially reduce new

introductions via ballast waters. In contrast, biofouling is currently

regulated only voluntarily. The IMO’s Biofouling Guidelines

(Resolution MEPC.207(62)2011) aim to establish a globally
FIGURE 6

Type of evidence of IAS impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Based on Tsirintanis et al. (2022).
IAS, invasive alien species.
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consistent approach to biofouling management. However, there is

growing support for a new Biofouling IMO Convention, with

intensive research focusing on efficient biofouling systems,

including surveillance optimization (e.g., Abdo et al., 2018;

Luoma et al., 2022) and hull cleaning (e.g., Morrisey and Woods,

2015; Zabin et al., 2016).

Corridors, particularly the Suez Canal, rank as the second-most

significant introduction pathway in Europe (Figure 3). However,

managing the Suez Canal to control invasions (e.g., implementing a

salinity barrier or establishing locks to reduce current movement)

falls beyond EU jurisdiction, and there is no political will from

Egypt or the Barcelona Convention to undertake such measures

(Galil et al., 2017). Nonetheless, there are arguments that consider

climate change impacts in the eastern Mediterranean, Lessepsian

species may not pose the primary threat to biodiversity and

ecosystem services; instead, they could potentially play a role in

securing ecosystem functions and services (see Box 1).

Regulation 708/2007 “concerning the use of alien and locally

absent species in aquaculture” (European Union (EU), 2007) has

been an important instrument for reducing aquaculture-introduced

species. It was implemented well before the IAS Regulation, based

on the ICES Code of Practice on the Introductions and Transfers of

Marine Organisms (ICES, 2005), and resulted in a noticeable

decline in new introductions (Katsanevakis et al., 2013). In

contrast, the aquarium trade, a lesser but growing pathway

(Zenetos and Galanidi, 2020), lacks EU-level regulation, leading

to continued risks of new introductions. Numerous potentially

invasive marine species are traded in EU markets (e.g., Mazza

et al., 2015; Vranken et al., 2018).
7.2 Implemented eradication and
control measures for marine IAS
(physical, chemical, and biological
approaches): lessons learned

In a recent systematic review of implemented species-specific

eradication and control measures for marine IAS, only 31 studies

covering 40 cases were found, of which 11 failed to achieve

eradication or control targets (Table S2; Katsanevakis, 2022).

These studies mainly focused on macroalgae (10), ascidians (7),

and fish (seven; all related to lionfish). Physical methods were most

commonly used (e.g., removal by divers, mechanical removal by

trawling, dredging, or suction, jute matting, heat treatment, using

traps, or promoting targeted fisheries), followed by chemical (using

various chemicals such as bleach, herbicides, salt, acetic acid, copper

sulfate, and sodium hypochlorite) and biological methods (using

native predators or parasites).

Only six successful eradication cases have been reported in

the global literature (Table S2): sodium hypochlorite used to

eradicate the green alga Caulerpa taxifolia from California, USA

(Anderson, 2005); physical removal by divers to eradicate the

brown alga Ascophyllum nodosum from Redwood City,

California, USA (Miller et al., 2004); a combination of physical

removal by divers and heat treatment to eradicate the brown alga

Undaria pinnatifida from a sunken trawler in Chatham Islands,
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New Zealand (Wotton et al., 2004); eradication of the sabellid

polychaete Terebrasabella heterouncinata from an intertidal site

in California, USA, by removing its main native host (Culver and

Kuris, 2000); extensive chemical treatment with 187 tonnes of

liquid sodium hypochlorite and 7.5 tonnes of copper sulfate to

eradicate the musselM. sallei from three sheltered marinas in the

Darwin Harbour Estuary (Northern Territory, Australia) (Bax

et al., 2002); and dredging to eradicate the invasive mussel Perna

perna from a subtidal soft-sediment habitat in central New

Zealand (Hopkins et al., 2011). Remarkably, successful

eradication efforts have been reported only from the USA,

New Zealand, and Australia; no successful eradication of a

marine IAS from the EU has been reported.

In the EU, only four related studies appear in the literature

(Uchimura et al., 2000; Žuljevic et al., 2001; Mancinelli et al.,

2017; Kleitou et al., 2021). The first three are experimental

investigations or proposals of control approaches, lacking

large-scale implementation. Only the latter (Kleitou et al.,

2021) made an effort to control lionfish populations in Cyprus,

with partial success; lionfish removals significantly decreased its

density and biomass (by >50%) in the short term, but long-term

suppression requires repeated removals due to rapid population

recovery. Another unpublished control effort in the EU (also

from Cyprus) is the case of the silver-cheeked toad-fish

Lagocephalus sceleratus, a toxic predatory fish with serious

impacts on fisheries and human health. A targeted fishery by

the smal l - sca le fleet was promoted through fishers ’

compensation based on the fished and incinerated biomass

(Table S3). Although there has been no targeted monitoring to

assess the measure’s effectiveness, empirical evidence from

fishers supports its success in reducing the species’ biomass

and mitigating its impacts; food web modeling indicates that L.

sceleratus populations could have been higher without any

measures, and continuous management is necessary to prevent

the population’s rebound at high levels (Michailidis et al., 2023).

The only two species for which large-scale control efforts have

been implemented in the EU (Pterois miles and L. sceleratus) have

not been included in the IAS list of Union Concern of the IAS

Regulation. Both species were proposed, but their inclusion in the

latest (2022) update of the list was not approved. Conversely, there

are no known successful control efforts for the only two marine

species included in the Union List, i.e., the fish P. lineatus and the

alga R. okamurae (Supplementary Text 1; Table S4). This highlights

an inconsistency between the criteria for inclusion in the Union List

(which may secure EU or national funding for management efforts)

and existing applicable management options for specific

marine IAS.

Reported successful eradication or control efforts globally

(Katsanevakis, 2022) have highlighted several best practices

(Table S2). The most critical factor for eradication success is a

rapid response after detection (e.g., Bax et al., 2002; Miller et al.,

2004; Anderson, 2005; Hopkins et al., 2011); delayed responses

compromised many eradication efforts (e.g., Read et al., 2011;

Sambrook et al., 2014). Developing rapid response mechanisms

among EU member states (largely missing) is essential for

successful eradication. Missing the critical time window for a
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rapid response makes eradication from the marine environment

practically impossible. Once an IAS is established, alternative

management strategies beyond eradication should be explored,

essentially focusing on control (see Section 7.3) or considering the

option of non-intervention (ignore).

Other best practices for successful eradication or control

include flexibility in amending existing legislation (Bax et al.,

2002); good coordination among local, regional, and national

authorities and stakeholders (Anderson, 2005); effective

communication with stakeholders and the local community to

gain public support (Bax et al., 2002; Wotton et al., 2004);

adequate and continuous funding (Wotton et al., 2004;

Anderson, 2005; Hopkins et al., 2011; Sambrook et al., 2014);

continuous monitoring (Culver and Kuris, 2000; Miller et al.,

2004; Wotton et al., 2004; Anderson, 2005; Kleitou et al., 2021);

and a good knowledge of biology and ecology of the IAS and

underlying ecological theory to select appropriate eradication/

control methods (Culver and Kuris, 2000; Wotton et al., 2004;

Anderson, 2005; Hopkins et al., 2011; Green et al., 2014; Harris

et al., 2020).
7.3 Management options for
established IAS populations

Managing marine IAS is more challenging than terrestrial and

freshwater species due to the increased functional connectivity of

the oceans (Kinlan and Gaines, 2003; Katsanevakis, 2022).

Nevertheless, several management measures have been

implemented (Section 7.2; Table S2), and potential additional

options have been investigated (e.g., Thresher and Kuris, 2004;

Giakoumi et al., 2019; Katsanevakis, 2022) (Table 6). The

applicability of these measures depends on factors, such as

effectiveness, technical feasibility, social acceptability, side impacts

on native communities, and cost (Giakoumi et al., 2019). Some

options, such as biological control using alien predators, parasites,

or viral diseases, are strongly opposed by experts and stakeholders

due to fears of irreversible detrimental side effects on native

biodiversity. Despite their low expected effectiveness, soft

measures like “education and awareness” or “environmental

rehabilitation”, and inaction were ranked high by experts

(Thresher and Kuris, 2004; Giakoumi et al., 2019). Commercial

utilization of IAS has been widely suggested as a means of turning

mitigation costs into profits for local populations (Mancinelli et al.,

2017). Targeting and eating invaders, such as the lionfish (Kleitou

et al., 2022), offers several supplementary advantages, such as

raising public awareness about IAS and encouraging citizen

participation in identifying new populations and engaging in

other control measures (Nuñez et al., 2012).

A striking result reported by Thresher and Kuris (2004) was

that the perceived likelihood of success of management options was

negatively correlated with their acceptability. This suggests the need

to enhance the effectiveness of existing techniques or increase the

acceptability of potentially effective techniques (e.g., biological

control and genetic technology to decrease pest viability) or
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develop new techniques that are both acceptable and effective

(Thresher and Kuris, 2004).
8 IAS and climate change

Climate change, primarily ocean temperature increases, may

facilitate the introduction and establishment of thermophilic

NIS. It can also amplify the impacts associated with IAS,

reducing the fitness of thermally sensitive species and thereby

decreasing the resilience of native species, habitats, and

ecosystems (Birchenough et al., 2015). The Mediterranean Sea,

a semi-enclosed basin experiencing rapid warming compared to

other marine regions (Schroeder et al., 2016), is a hotspot for

bioinvasions by thermophilic Red Sea species (Costello et al.,

2021; Box 1). In the Mediterranean, it was shown that an alien

intertidal gastropod is much more resilient to warming than

three native gastropod species, which may disappear in the

future, leaving it the only large mollusk grazer in the region

(Rilov et al., 2022).

Higher rates of between-continent dispersal events due to

increasing international trade and human traveling are expected

(Hewitt et al., 2018; Sardain et al., 2019; Roura-Pascual et al., 2021).
TABLE 6 Management options for controlling established marine IAS
populations.

Physical measures

Physically remove IAS—culling efforts.

Encourage targeted removal and commercial or recreational utilization
(excluding trading of live individuals).

Chemical measures

Deploy pest-specific biocides, reproductive inhibitors, etc.

Deploy non-specific biocides, tactically applied.

Biological/ecological measures

Rehabilitate the environment in the belief that resistance to IAS impacts will
increase.

Promote native consumers (predators or grazers) that attack the IAS.

Promote native diseases and parasites that attack the IAS.

Apply biological control using alien consumers (predators or grazers).

Apply biological control using alien parasites and/or diseases.

Apply biological control using alien viruses.

Genetically modify native species (i.e., to use them as vectors for physiological
inhibitors).

Genetically modify disease/virus to increase pathogenicity against pests.

Apply genetic approaches that affect only the IAS.

Other

Education and public awareness.

Do nothing in the belief that the problem might go away.
Adapted from Thresher and Kuris (2004); Giakoumi et al. (2019), and Katsanevakis (2022).
IAS, invasive alien species.
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For marine ecosystems, trade/transport and climate change are

considered by invasion scientists as the primary drivers of IAS

impacts until 2050 (Essl et al., 2020). The combined effects of

climate and rapid transport could result in large-scale biotic

homogenization, potentially exceeding the impact of either

climate change or IAS acting alone due to context-dependent

interactions (Gissi et al., 2021). Despite global climate change

often facilitating IAS (Dukes and Mooney, 1999), these two issues

are mostly treated independently (Pyke et al., 2008).

Climate change may affect IAS introduction pathways and

vectors (Robinson et al., 2020). Melting Arctic ice caps have

already facilitated new, faster shipping routes, connecting

previously isolated ports and regions and increasing the chances

of propagules surviving transit (Pyke et al., 2008; Miller and Ruiz,

2014; McCarthy et al., 2022). Climate change can also alter shipping

connectivity by affecting trading patterns and tourism destinations,

leading to increased propagule pressure in some locations and

decreased pressure in others.

The effects of ocean climate change and acidification on NIS

introductions and impacts are frequently discussed in the

literature (Occhipinti-Ambrogi, 2021). However, causal effects

are not well-documented. Studies that aimed to elucidate the

influence of climate change on NIS tend to focus on the impact

of increasing ocean temperature, with less attention to non-

thermal factors associated with climate change (e.g., ocean

acidification, salinity, dissolved oxygen, weather events, and

hydrodynamic changes). Furthermore, limited research

evaluates the effects of multiple factors and their interactions

(Gissi et al., 2021), restricting our ability to robustly predict future

IAS impacts.

Marine species are expected to undergo a general poleward

expansion due to seawater warming (Pinsky et al., 2013;

Poloczanska et al., 2016; Essl et al., 2019). Some evidence

suggests that climate-related changes are increasing IAS

abundances in marine systems (Sorte et al., 2010; Garcı ́a-
Gómez et al., 2020; Stæhr et al., 2020). Among the different

pathways of NIS introductions, the poleward expansion linked to

ocean warming would be most relevant for secondary

introductions. This is because southern seas, as hotspots of

NIS introductions, could serve as source populations for

further introductions to northerly regions as temperature

conditions gradually become favorable there.

The rate of new NIS has significantly increased since the early

1980s (e.g., Zenetos et al., 2022; Jensen et al., 2023) possibly

influenced by climate change-induced warming of the sea. Recent

studies suggest a higher rate of new NIS arrivals in southern seas

(Tsiamis et al., 2018; Tsiamis et al., 2019; Zenetos et al., 2022), with

up to 76% of all NIS primary introductions in Europe originating

from the Mediterranean Sea. This suggests the importance of

secondary non-assisted dispersal for many observed NIS species

in northern regions. In the OSPAR regions, secondary

introductions accounted for only 5% of NIS introductions (Stæhr

et al., 2022). The influence of climate-related warming on NIS

introductions is not generally strongly supported by data and
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requires targeted species-specific analysis for the different

European regions.

Climate change can alter the effectiveness of IAS management.

Temperature dictates the life cycle of many IAS, influencing

maturation, reproduction, establishment, and persistence (e.g., King

et al., 2021; Teixeira Alves et al., 2021), with implications for eradication

and population control under climate change. Some studies suggest

that mechanical control of IAS becomes less efficient under climate

change pressure (Hellmann et al., 2008; Pyke et al., 2008; Kernan,

2015), necessitating increased management efforts to achieve the same

management goals (Teixeira Alves and Tidbury, 2022). Further

research is needed to understand how both thermal and non-

thermal factors of climate change influence IAS management.

In climate change hotspots, particularly in land-locked basins,

such as the Mediterranean Sea, native biodiversity decline due to

climate change may compromise ecosystem functioning and

services (see Box 1). In such cases, thermophilic NIS could play a

significant role in sustaining ecosystem functioning and services. As

a result, a change in conservation goals has been proposed, moving

from protecting native biodiversity to protecting functions and

services (Rilov et al., 2019a; Rilov et al., 2020). Similarly, Reise

et al. (2023) highlighted that some NIS in theWadden Sea positively

contributes to sediment stabilization, mud accretion, and

diversification of lower food web levels, potentially benefiting

foraging birds. They argued that these NIS have raised the tidal

ecosystem’s capacity to adapt to environmental change rather than

degrade it.
9 Recommendations: how to improve
the management of IAS in Europe

9.1 Costs of biological invasions
and funding

Global damage and management costs associated with

biological invasions have exponentially increased in the last 50

years (Diagne et al., 2020). However, the allocation of economic

resources toward invasive species prevention, control, research,

long-term management, and eradication measures needs a

substantial increase to offset the economic losses caused by direct

and/or indirect impacts of invaders (Diagne et al., 2021).

The extensive economic impacts of invasions, reaching beyond

administrative and national scales, highlight a clear discrepancy

between the implementation of international agreements (Table 1)

by local authorities and the achievement of broad policy objectives.

Enhancing governance, encompassing the capacity to implement

policies through expertise and resources, is crucial for preventing

and managing biological invasions and their impacts. International

initiatives and European Institutions play a critical role in supporting

and expediting measures that require local implementation but rely

on effective global and regional coordination. Strategic planning and

securing adequate funding will be central to addressing many of the

challenges raised in this review.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1271755
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Katsanevakis et al. 10.3389/fmars.2023.1271755
9.2 Inadequate coverage of marine
biological invasions by the IAS Regulation

Currently, only two marine species (P. lineatus and R.

okamurae) are included in the List of Invasive Alien Species of

Union Concern, which does not reflect the status of marine

biological invasions in the EU. Marine NIS thrive in the

European seas, with EASIN listing 1,602 alien or cryptogenic

species, while globally, WRiMS and AquaNIS currently report

2,781 and 2,028 species, respectively. The Mediterranean Sea, in

particular, is a hotspot of biological invasions, harboring more NIS

than any other sea globally (Costello et al., 2021). Many of these

species are invasive, significantly impacting biodiversity, ecosystem

services, and human health (Katsanevakis et al., 2014b; Tsirintanis

et al., 2022). An EU horizon scanning exercise identified 18 marine

species absent from or with a limited distribution in EU marine

waters as potential candidates for inclusion in the list based on their

impacts and management feasibility (Tsiamis et al., 2020).

However, it seems that member states hesitate to include marine

species in the list of IAS of Union Concern, assuming that

management of marine IAS is impossible. As indicated in

previous sections, managing marine IAS is more challenging than

terrestrial or freshwater species, but it is not impossible. Hence, the

current list of IAS of Union Concern does not fully acknowledge the

threat marine IAS pose to the EU marine environment, and it needs

to be supplemented based on current scientific advice and risk

assessments (as per Article 5 of the IAS Regulation).

9.3 Learning from countries with high
biosecurity: take stock of good practices

Ideally, a robust biosecurity system should encompass all three

steps of the invasion process (pre-border, border, and post-border)

and implement effective and timely interventions, drawing from

countries with established cutting-edge biosecurity programs

(Carvalho et al., 2023). New Zealand, Australia, and the USA

have well-established biosecurity systems, as evidenced by their

successful cases of marine IAS eradication or control (Table S2). For

example, New Zealand’s Marine Biosecurity Team, operating under

the Ministry of Fisheries since 1998, conducts various activities such

as quarantine, surveillance, response to incidents, long-term control

of established pests, and enforcement of legislation (Hewitt et al.,

2004). Europe could benefit from the experience, learning from

both successes and failures in managing IAS in these countries.

Organizing workshops and meetings involving high-level

policymakers, marine scientists, managers, and officials from

various countries can promote collaborative knowledge sharing

and mutual learning to enhance global marine IAS management.
9.4 Creating an EU funding mechanism
to secure the sustainability of
important information systems

Adequate EU funding is crucial to sustain key databases and

online information systems. EASIN plays a central role in

harmonizing and integrating information on NIS in Europe. It

primarily acts as an aggregator that gathers data from various
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harmonized datasets. However, the foundation of the European

infrastructure relies on national institutions, local and regional

networks, and online databases and initiatives. These entities are

essential data suppliers to centralized systems like EASIN. Therefore,

it is critical to financially support and sustain national institutions and

scientific networks to ensure the continuous flow of information,

knowledge, and expertise to EASIN and the scientific community.

NIS information systems should be multipurpose, following the

principle of “gather data once, utilize it many times”. In addition to

operational usage, these systems should continuously accumulate

data for analysis and forecasting. Ideally, this should not only

include information on species occurrences but also offer search

functions for NIS biological traits, environmental tolerance limits,

and their impacts on native biodiversity, ecosystem functioning,

economy, and public health.
9.5 Improving monitoring and early
warning systems

Continued efforts to increase the spatial and temporal coverage of

marine IAS monitoring, as well as transboundary cooperation, are

required. Aligned with the ethos of “take once, use many” and driven

by the application of novel techniques such as eDNA, automated

monitoring, and even citizen science, integration of NIS monitoring

with other biodiversity monitoring programs, where applicable, is an

opportunity to balance data collection against increasing costs/

declining budgets. Automated eDNA monitoring (Hansen et al.,

2020; Preston et al., 2023) and using citizen science for monitoring

eDNA also have associated difficulties (Agersnap et al., 2022; Knudsen

et al., 2023), and the eDNA metabarcoding itself (Fonseca, 2018) and

species-specific eDNA detection are not without pitfalls and problems

with interpretation (Klymus et al., 2019). The data analysis required

when eDNA is to be interpreted is often complicated and is better off

being aided by taxonomic experts who are familiar with the organisms

known to inhabit the sampled area. Further, streamlining marine NIS

data flow and reducing data time lags will enhance early warning

systems and facilitate rapid response. Understanding introduction

pathways is also crucial for implementing effective prevention

measures and reducing new introductions.

Several studies have considered how man-made structures

(offshore wind farms, wrecks, and oil and gas platforms) could

act as de facto MPAs, facilitating colonization by both native and

NIS (Birchenough and Degraer, 2020). It is important to highlight

that the presence of these man-made structures will alter the species

pool, with repercussions for trophic interactions (Mavraki et al.,

2019) and secondary production, and may also serve as stepping

stones for range-expanding (sometimes non-indigenous; Kerckhof

et al., 2011) species altering population connectivity patterns

(Henry et al., 2018; Coolen et al., 2020).
9.6 Improving predictions

Accurately predicting the potential distribution of invasive

species is crucial for global marine conservation. To improve
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predictions, it is imperative to consider the biological characteristics

and distribution of the species, biotic interactions, and

environmental conditions. Incorporating intrinsic traits in

modeling can prove advantageous, as these traits can either

facilitate higher adaptation rates or impose limitations on the

invasion process (Gamliel et al., 2020). More data from both

native and invaded ranges enhance prediction accuracy, allowing

for a better assessment of the role of environmental factors in

distribution and expansion potential. Removing noisy or uncertain

predictors can further increase model accuracy. Integrating

invasion dynamics like biotic interactions, dispersal limitations,

and adaptation potential can inform potential niche conservatism

violations (D’Amen and Azzurro, 2020b; Liu et al., 2020). As a final

note, when selecting modeling approaches (e.g., correlative,

mechanistic, and process-oriented), careful consideration of

available input data accompanied by rigorous validation is

essential (Melo-Merino et al., 2020).
9.7 Improving integrated impact
assessments: cumulative impact mapping
to prioritize actions

Cumulative impact assessments of invasive species are valuable for

several reasons. They offer a comprehensive understanding of the

combined effects of multiple IAS on marine ecosystems, aiding

policymakers and managers in understanding the extent and severity

of ecological disturbances. This knowledge is crucial for devising

effective strategies to prevent new invasions and mitigate existing

impacts. As marine management shifts toward ecosystem-based

spatial approaches, cumulative impact assessments become essential

tools. They facilitate the integration of spatial information into

environmental decisions and the setting of specific operational

objectives. By identifying highly impacted areas, resources can be

directed toward priority zones or targetedmanagement actions for IAS.

Comprehensive large-scale analyses of the impacts of all alien

marine species are urgently needed. Policymakers and managers,

particularly in regions like the European Union, require a better

understanding of invasive species’ impacts to meet environmental

protection goals. Despite limitations and uncertainties in impact

assessments, the adaptive management approach, involving

monitoring, filling data gaps, and learning from management

actions, offers a way to address and manage IAS impacts over time.

In a limited-funding environment, decision-makers can efficiently

allocate resources by focusing on sites, pathways, and species with

high impacts and low uncertainty, increasing the chances of success

in mitigating IAS effects. These initial successes can motivate further

efforts to address biological invasions.
9.8 Assessing positive impacts
and exploiting NIS

NIS have become a permanent component of contemporary

ecosystems, and their potential benefits on ecosystem services,
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human wellbeing, and biodiversity should be thoroughly

investigated (Schlaepfer et al., 2011; Vimercati et al., 2020;

Vimercati et al., 2022). Many invasion studies are biased toward

perceiving alien species as harmful due to their history of

detrimental effects on ecosystems. Some reported negative

impacts supported by limited strength of evidence may be

influenced by this bias (Katsanevakis et al., 2014b; Tsirintanis

et al., 2022), affecting impact assessments (e.g., compare Figures 5

and Figure S1). Scientists should adopt holistic approaches,

considering both the negative and positive consequences of IAS

on recipient ecosystems, relying on substantial evidence. The role of

NIS in marine conservation, restoration, and securing ecosystem

functioning and services, particularly in climate change hotspots,

deserves serious consideration (see Box 1) (Mačić et al., 2018; Rilov

et al., 2019a; Rilov et al., 2020).

In such regions heavily impacted by climate change, such as the

eastern Mediterranean, IAS commercial exploitation becomes not

merely a management choice but an essential measure to ensure the

fishing industry’s viability and safeguard seafood supply from the

ocean (Katsanevakis, 2022). However, in other regions, there are

risks associated with promoting commercial utilization of IAS, and

initiatives aimed at controlling IAS through human consumption

should be carefully evaluated, as they could produce unintended

outcomes contrary to their goals (Nuñez et al., 2012; Katsanevakis,

2022). This shift in perception could lead to illicit attempts to spread

IAS to new areas, ultimately exacerbating their invasive potential

(Mancinelli et al., 2017). Furthermore, it might create pressure to

maintain and sustainably exploit these problematic species (Nuñez

et al., 2012), as has happened in the cases of Rapana venosa in the

Black Sea (Demirel et al., 2021) and the invasive red (Kamchatka)

king crab (Paralithodes camtschaticus) fishery in the Barents Sea

(Spiridonov, 2018).

Bioprospecting involves identifying and extracting new

bioactive compounds with various potential applications, such as

biomedicine, human health, food provision, nutraceuticals,

cosmeceuticals, and the search for anti-fouling and antimicrobial

agents. Managing IAS through prospecting can turn a threat into a

resource, as demonstrated by growing research on invasive species,

e.g., alien or native jellyfish (see Leone et al., 2015; Leone et al., 2019;

De Domenico et al., 2023, and references therein), alien macroalgae

(Misal and Sabale, 2016; Vitale et al., 2018; Cherry et al., 2019;

Meinita et al., 2022), and even the poisonous L. sceleratus (Çavas ̧
et al., 2020).
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