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Drug delivery via the oral route has always been challenging for poorly soluble drugs. Acid-induced hydrolysis, enzymatic
degradation, and poor mucosal absorbency remain the primary hiccups for effective oral delivery of medications. With the advent
of nanotechnology, nanostructured lipid carriers (NLCs) have emerged as a promising delivery carrier that can circumvent
gastrointestinal tract (GIT) barriers hindering the solubility and bioavailability of such drugs. These NLCs can efficiently transport
drug moieties across intestinal membranes shielding medications from intestinal pH and enzymatic degradation. Because they are
composed of lipidic materials, they can be easily absorbed or taken up by various pathways such as transcellular absorption,
paracellular transport, and M-cell uptake. Such mechanisms not only improve the absorption and solubility of drugs but also
augment bioavailability and residence time and may bypass first-pass metabolism. This review explores the diverse applications of
nanostructured lipid carriers (NLCs) in oral drug delivery for various medical conditions, shedding light on their current
regulatory status, including FDA-approved options and those in pre/clinical stages. The review also features patented NLC
formulations. It provides valuable insights into how NLCs can be harnessed for effective oral drug delivery and outlines recent
advancements in optimizing their performance to tackle gastrointestinal barriers, thus opening new possibilities for NLCs in
future pharmaceutical applications.

1. Introduction

Delivery of medications via the oral route is considered the
ideal way to achieve therapeutic and prophylactic effects
against many ailments in treating both acute and chronic
conditions [1]. In addition, oral delivery possesses several
benefits such as noninvasiveness, ease of administration,
patient compliance, and economical and ease of large-scale
manufacturing. Drugs that are capable of sustaining stability
in the stomach acidic environment and do not pose gas-
trointestinal (GI) irritation and toxicity challenges are

preferred for oral delivery [2, 3]. Although most drugs are
lipophilic, poor absorption leading to low bioavailability is
a major concern regarding the formulation of a successful
oral dosage form.

Furthermore, poor permeability across the GI mem-
brane [2, 3], intrinsic dissolution rate (mass of the drug
dissolved per time unit and area), where dissolution is the
rate-limiting step in the absorption of hydrophobic drugs
(especially drugs of BCS class II and IV) [4], acidic envi-
ronment [5], first-pass metabolism, intraenterocyte meta-
bolism, and enzymatic degradation [6] limit the absorption
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of the therapeutic agent. Also, drug eviction from the drug
transporter (P-glycoprotein: P-gp) and interaction with the
food present in the GIT leads to variable absorption of the
drug, finally reaching systemic circulation [6]. In addition,
the age, gender, and pathological condition of patients affect
the absorption of the drug.

Several approaches have been explored to augment the
solubility of BCS class IT and IV drugs. One such method is
the transformation of the drug into a solubilized state,
enabling the absorption profile of the drug to be close to that
of the BCS class I drug [7]. Another approach is the use of
nanotechnological approaches such as polymeric nano-
particles, microspheres, lipid-polymer hybrid nanoparticles
(LPHNPs) [8], lipid-based nanoparticles [9] such as lipo-
somes, niosomes, and solid lipid nanoparticles (SLNs) [10],
and nanostructured lipid carriers (NLCs) for improving the
solubility of drugs [11, 12].

NLC:s are colloidal structures comprising an amalgam-
ation of solid and liquid lipids that constitute an amorphous
lipid matrix fenced by a solid lipid coat. A combination of
solid and liquid lipids provides structural integrity to NLCs
where less organized structures have been created that ac-
cord a steadier enclosure of the drug in the lipid matrix
lending long-term shelf life to the formulation [13]. In
addition, NLCs can incorporate both hydrophilic and hy-
drophobic therapeutics [14].

NLCs present several advantages such as easy
manufacturing, low toxicity, physical stability, custom-
tailored release, high drug entrapment, no drug leaching
during storage, and improvement of drug’s solubility and
stability, which are some excellent features that grant them
an upper hand over other drug delivery systems. NLCs, by
their biocompatible nature, can be administered via the oral,
parenteral, topical, rectal, and pulmonary routes [15-17].

Owing to the several advantages of NLCs, this review
focuses on the events that occurred late and recently in the
successful oral delivery of poorly soluble medications using
NLCs. In this article, we present an understanding of the
mechanism of drug protection in terms of in vitro-in vivo
capacity, preparation methods of NLCs, and applicability in
conveying a variety of medications, proteins and peptides,
bioactive compounds, etc., across biomembranes. In addi-
tion, insights on the clinical trials and patents granted on the
potential implications of NLCs in the delivery of thera-
peutics are provided.

Lipid-based nanoparticles have been utilized in the
delivery of poorly soluble drugs of late with solid lipid
nanoparticles being the earlier drug delivery system that has
shown great potential in the delivery of medications across
the GIT. The use of biodegradable natural lipids and sur-
factants and toxic solvent-free methodologies in their
preparation enable lipid-based nanoparticles to be the
foremost selection for the delivery of poorly soluble drugs.
The natural lipids used can withstand the degradation factors
both in vitro and in vivo rendering them the first choice for
nanoparticulate drug delivery systems that deliver medica-
tions across biological membranes [14]. According to the
data available on Google Scholar, more than twenty-four
thousand pieces of literature are available on lipid
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nanoparticles for oral delivery from 2010 to date, indicating
their extensive use in the transport of biological molecules.

Lipid nanoparticles are now being considered as a sub-
stitutional food supplement post-COVID-19 [18] and are
now the fast-growing sector worldwide with a compound
annual growth rate (CAGR) of 13.6% between 2022 and 2029,
which is expected to rise from $777.4 million in 2022 to
$1,895.1 million by 2029, due to increasing health alarms [19].
People are interested in using these lipid nanoparticles be-
cause of the presence of omega-3 and omega-6 as main
components. Therefore, lipid-based nanoparticles have huge
potential for use in pharmaceutical, healthcare, dietary sup-
plements, functional food/beverages, and cosmetics/personal
care sectors. SLNs share the market with a market share of
45% [20].

2. Types of Nanoparticles

Based on their compositions, nanoparticles can be catego-
rized into inorganic/polymeric/lipid nanoparticles. Owing
to their electrical, physical, optical, or magnetic properties,
inorganic nanoparticles have excellent stability and the
ability to deliver therapeutics, diagnostics, etc. [21]. Metallic
nanoparticles such as gold (AuNps) [22], silver (AgNps)
[23], copper (CuNps) [24], iron (FeNps) [25], and silica
(SiNps) [26] have found applicability in the vast biomedical
sector because of their exceptional biochemical, optical, and
electrical properties. However, these inorganic nanoparticles
have low aqueous solubility and threaten toxicity concerns,
limiting their clinical use [21].

Similarly, polymeric nanoparticles such as polymeric
micelles [27], dendrimers, and micro/nanospheres have
their share in the delivery of medications, proteins/peptides,
and diagnostics. Because of their composition of bio-
degradable, biocompatible material, surface modification
attributes, and ability to deliver both hydrophilic and li-
pophilic drugs at the application site, they remain the first-
choice delivery vehicle [28-31]. However, toxicity concerns,
aggregation of particles, and stability issues restrict their use
as delivery partners [32].

Lipid-based nanoparticles such as liposomes, niosomes,
micelles, and nanoemulsions were developed keeping in mind
the necessity of efficiently delivering poorly soluble, low-
permeability drugs across the biological membranes, espe-
cially through the GIT. The use of natural or synthetic lipids
renders them quick formulation and scale-up ability and easy
evaluation using various techniques. Versatile delivery via
various routes, biocompatibility, augmented drug-loading
efficiency and controlled release, and minimal fluctuations
in the plasma profile of the drug make them ideal drug delivery
systems. Even with such exciting attributes, these lipid-based
drug delivery systems suffer from stability issues both in vitro
and in vivo. Shelf-life degradation, degradation in the acidic
environment of the stomach, and enzymatic degradation due
to bile salts are the major drawbacks that hinder their efficacy.

Considering this, Muller et al. devised a more stable,
nanosized lipid-based drug delivery system comprising solid
lipids dispersed in water and stabilized with the aid of
surfactants and cosurfactants. They utilized various
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biodegradable/biocompatible, natural lipids for the fabri-
cation of lipid nanoparticles and termed them solid lipid
nanoparticles (SLNs) [33, 34]. SLNs can be easily absorbed
through the GIT because of their lipidic nature; thus, they
possess an enhanced intestinal permeability, possess bio-
adhesive attributes to the intestinal wall, and can also kindle
intestinal lymphatic transference, ultimately leading to the
expansion of the bioavailability of both hydrophilic and
hydrophobic drugs. SLNs can hold a high drug payload,
tunable drug release (controlled/sustained), augmented drug
stability, sterilizable formulations, cost-effective scale-up, and
diverse applicability via oral, pulmonary, ocular, transdermal,
and intravenous administration [28]. In addition, they can
adapt to resistance during first-pass metabolism because their
byproducts or metabolites are substantially innocuous and are
normally excreted [35].

SLNs have been extensively used in the delivery of nutra-
ceuticals, pharmaceuticals, and therapeutic delivery engaged in
transporting drugs [36], biomacromolecules (polysaccharides
etc.), genetic components [37], vaccines [38], anticancer drugs
[39-41], radionuclide therapy and theranostics [42], and an-
timicrobial agents [43]. They are also employed in the delivery
of drugs across the blood-brain barrier [44, 45].

Even with such exhilarating attributes and implications,
SLNs composed of solid lipids face challenges in terms of
stability. Solid lipids undergo polymorphic transformation
due to their crystalline nature at low temperatures. These
lipids crystallize into « and B’ form after formulation and
into f8; and f form during storage. The drug is sandwiched
between the free fatty acid chains or in the amorphous
cluster in the crystal imperfection of the solid lipid matrix.
During storage, these imperfect crystals transform into
perfect crystalline structures, allowing little space for the
entrapped drug, which ultimately leads to drug leaching and
an irrational drug release mechanism. In addition, physical
instability, inadequate loading efficiency, and poor ab-
sorption of hydrophobic drugs are other major hindrances
incidental to the utility of solid lipid nanoparticles [13, 46].

3. Nanostructured Lipid Carriers (NLCs)

Lipid-based nanoparticles such as SLNs and NLCs have
revolutionized the way of hydrophobic drug delivery. With the
abovediscussed drawbacks, SLNs have limited scope in en-
hancing the solubility of poorly aqueous soluble medications,
and thus, NLCs have emerged as second-generation lipid
nanoparticles [47]. NLCs are colloidal structures comprising
a blend of both solid and liquid lipids, prepared with various
techniques, resulting in the construction of an unstructured
lipid matrix [47]. NLCs have several advantages over other
lipid-based delivery systems, such as low toxicity due to the
employability of biodegradable/biocompatible lipids, minimal
use of surfactants/cosurfactants, ease of manufacture using
low-cost material, ease of sterilization, and large-scale pro-
duction [16]. Furthermore, the advantages of NLCs can be
elaborated to high entrapment efficiency and drug payload,
customized release, safeguarding the encapsulated contents
from acidic and enzymatic depletion in the GIT, and bypassing
hepatic metabolism.

NLCs also block P-gp efflux of the therapeutic agent,
thereby sustaining drug availability in the systemic circu-
lation. Active transport of the drug at the site of action can
also be achieved by ligand-mediated NLCs, thereby lessening
the side effects and toxicity of medications as the ligand
engages the receptor-mediated pathway and thus facilitates
the internalization processes via endocytosis and trans-
location of attached NLCs or enter by disrupting the in-
testinal membrane [48]. The presence of liquid lipids alters
the core structure of NLCs, causing a commotion in the
lattice structure and creating an imperfect crystal lipid
structure. These disrupted structures can accommodate
a high amount of drugs in the oil. Figure 1 illustrates the
numerous benefits associated with oral drug delivery
using NLCs.

3.1. Types of NLCs. Based on the fabrication process and the
combination of lipidic composition, NLCs can be classified
into imperfect, amorphous/structureless, and multiple types.

3.1.1. Imperfect NLCs. They are fabricated by blending
a variety of lipids, such as glycerides, which aid in lipid
crystallization along with a minimal amount of oils, creating
many voids and spaces that can lodge medications in
shapeless collections. High drug loading can be attained by
augmenting imperfections by using a mix of glycerides of
diverse saturation and varying carbon chain length [49, 50].

3.1.2. Amorphous NLCs. They hold a noncrystalline solid-
ified lipid matrix with special lipids, such as medium-chain
triglycerides, hydroxy octacosanol, hydroxystearate, iso-
propyl myristate, or dibutyl adipate which render them
a structureless amorphous form, thus averting the devel-
opment of -modification. This deters drug eviction from
the NLCs throughout long-term storage [49-51].

3.1.3. Multiple NLCs. They encompass oil nanocubicles or
compartments distributed in the solid lipid matrix. High
liquid lipid composition is used with the idea of solubili-
zation of lipophilic medications, rendering them with high
drug content. High lipid content causes phase separation
and creates nanocubicles in the solid lipid matrix which
prolongs the release of the drug [52]. Multiple NLCs exhibit
outstanding drug entrapment efficiency with minimal drug
expulsion. High drug content can be ascribed to the
structural homogeneity between the two lipids, whereas high
entrapment efficiency can be accredited to the imperfections
in their structures along with solidification where large
amounts of drug could be entrapped [1, 11, 53]. Figure 2
describes the assembly of solid and liquid lipids that create
imperfect, amorphous, and multiple NLCs.

3.2. Composition of NLCs. NLCs comprise a lipid phase that
is a blend of both solid and liquid lipids in varying ratios
(99.9:0.1 and vice versa) formed with the aid of emulsifiers
(1.5-5% w/v) [1]. A wide variety of both solid and liquid
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lipids are employed in the fabrication of the lipid phase
which creates an imperfect solid lipid matrix. NLCs are
identical to SLNSs, in which lipids are dispersed in water as
a continuous phase and are stabilized by emulsifiers. In
NLCs, like SLNS, solid lipids are added to the liquid lipids
that remain in a liquid or amorphous state, rendering them
stable both in vitro and in vivo [16]. Liquid lipids partly
disrupt the matrix assembly and create crystal-disordered
structures in NLCs with voids and spaces to entrap high
quantities of therapeutics compared with SLNs [54]. The
lipid matrix avoids any polymorphic alteration of solid lipids
by inhibiting recrystallization, enabling them to efficiently
encapsulate the drug [13, 29].

A wide variety of lipids are employed in the fabrication of
NLCs that impact their overall performance in the en-
hancement of oral bioavailability of poorly soluble drugs using
various mechanisms. Selection could be made depending on
physiological tolerance, physicochemical properties, drug
solubility, and miscibility in solid and liquid lipids [42]. The
choice of solid and liquid lipids should be carefully scrutinized
by inspecting their compatibility and miscibility by inspecting
the macroscopic lipid phase homogeneity/parting below the
melting point of fat. The selected lipids should be bio-
degradable/biocompatible (GRAS: generally recognized as
safe), withstand environmental/temperature conditions, and
be able to solubilize a wide variety of drugs. If not, lipid should
be versatile enough to attach the drug molecule at the surface
of the nanoparticle or be able to integrate the drug into mi-
celles in the aqueous phase. Ashkar et al. described various
structured edible lipids that could be used in the fabrication of
lipid-based nanoparticles, which can upgrade membrane
permeability and ameliorate the solubility of therapeutic
agents [55].

Elmowafy et al. reported Miglyol incompatibility with
Suppocire A, Geleol, Cacao Butter, and Witepsol E75. Miglyol
was found to be compatible with Compritol 888 ATO and
Gelucireys,9; [56]. Garg et al. fabricated aceclofenac-loaded
NLCs using three different methods and observed formula-
tion effects on entrapment efficiency. Their lipid phase
consists of solid lipids (glyceryl monostearate (GMS), stearic
acid (SA), and cetyl alcohol (CA)), liquid lipids (Transcutol,
Labrafac, and Labrasol), and surfactants and cosurfactants
(ethanol, poloxamer, and tween 80). They employed ho-
mogenization, probe sonication, and sonication with ho-
mogenization methods to prepare NLCs. High entrapment
efficiency (>80%) and uniform size (151.5+11.5) were ob-
served in the latter method of NLC-3, indicating the solubility
of aceclofenac in the CA-lipid matrix. Other lipids and
preparation methods displayed entrapment efficacy between
60 and 80% and higher particle sizes [57]. Jyoti et al. fabricated
paclitaxel-laden Precirol®ATO-5 and Capmul MCM NLCs
with high drug entrapment efficiency and extended drug
release. They reported that the high entrapment efficiency of
PTX-NLCs (>80%) could be attributed to the formation of
liquid nanocompartments created by liquid lipids and the
action of surface active agents used in formulations [58].

Varying chain lengths of fatty acids and triglycerides
affected the particle size of NLCs on the augmented flexi-
bility of internal lipids and fluidity of the emulsifier film.

Long-chain fatty acids (lauric acid as solid lipid) generated
optimum-sized particle rosuvastatin NLCs (192 +2.5nm)
with a %entrapment efficacy of 88.06 + 5.24% in comparison
to medium-chain fatty acids (stearic acid), which produced
NLCs of particle size 198 + 3.4 and a %entrapment efficacy of
92.81 +3.74%. Long-chain fatty acid NLCs augmented the
oral bioavailability of rosuvastatin by 1.5 fold compared with
medium-chain fatty acid-composed NLCs, while both dis-
played ten times higher C,,.x than pure rosuvastatin aqueous
dispersion [59]. Many studies [53, 60-63] have described the
use of various solid and liquid lipids along with surfactants
in the fabrication of NLCs (refer to Table 1).

The abovelisted components aid in the formulation of
NLCs and further add commendable attributes in drug
entrapment/loading efficiency, drug release characteristics,
stability, and both in vitro and in vivo. Solid and liquid lipids
directly impact the particle size of nanoparticles, control the
drug release pattern, and also improve the solubility and
bioavailability of poorly soluble drugs.

Raquel Vieira et al. used sucupira oil for the control of
diabetes and used it as a liquid lipid in the fabrication of
NLCs. They used Imwitor 900 K (glycerol monostearate,
type II), Dynasan 116 (tripalmitin), Kolliwax GMS II
(glycerol monostearate), Compritol 888 ATO (glyceryl
dibehenate), and cetostearyl as the solid lipid components
of NLGCs. As surfactants, they used d-a-tocopherol
polyethylene glycol succinate, vitamin E polyethylene
glycol succinate or vitamin E-TPGS, poloxamer 188,
Tween® 80, and optimized sucupira oil loaded NLCs by
a 27 factorial design to establish the correct blend of solid/
liquid lipids and developed using a hot high-pressure
homogenization technique. Various solid lipids imparted
effects on the particle size and polydispersity index with
good loading (9.6%)/entrapment efficiency (99.98%). D-
a-tocopherol polyethylene glycol succinate ensured a stable
formulation, while cell cytotoxicity studies against Caco-
2 cell lines exhibited >90% cell viability, rendering sucupira
oil-loaded NLCs to be nontoxic [64].

3.3. Fabrication processes of NLCs. Several methods are
available to fabricate NLCs, depending on the input of energy
such as high/low-energy (Figure 3) emulsifiers and solvents.

3.3.1. High-Energy Method. This method involves hot and
cold high-pressure homogenization tactics to develop NLCs.
Another method that falls under this category is the high-
shear/high-speed homogenization method.

(1) Hot High-Pressure Homogenization Method. Here, solid
lipids are melted by heating usually 5-10°C above the
melting temperature, and then, liquid lipids are added along
with the drug(s), followed by adding this dispersion to a hot
surfactant solution in water [65]. The mixture is then ho-
mogenized using high pressure (100-2000 bar), leading to
the formation of a hot oil in water primary emulsion, which
after cooling (liquid nitrogen or dry ice) settles into a form
(NLCs) [66]. Elevated temperatures help in reducing the
particle size as the viscidness of lipids gradually drops. To
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TasLE 1: List of solid/liquid lipids, surfactants, and surface modifiers commonly used in the fabrication of NLCs.

Solid lipids

Melting point (°C)

Stearic acid 67-69
Behenic acid 80
Palmitic acid 83
Lauric acid 43
Carnauba wax 78-88
Goat wax 40-50
Beeswax 62-64
Theobroma oil 35-37
Tristearin/glyceryl tristearate 70-74
Cetyl palmitate 54
Glyceryl monostearate 54-64
Imwitor 372P, 491, 900k, 928 61-77, 34
Glyceryl palmitostearate 50-60
Glyceryl behenate 65-77
Trilaurin (Dynasan 112) 43-46
Trimyristin (Dynasan 114) 55-58
Tristearin (Dynasan 118) 70-73
Tripalmitin (Dynasan 116) 61-65
Tribehenate (Dynasan 122) 81-85
Hydrogenated palm oil (Dynasan P60) 58-62
Hydrogenated palm oil (Softisan 154) 53-58
Softisan 100, 138, 142, 154, 378, 601, 645, 649 33-58
Witepsol (E, W, S, H) 31-44
Liquid lipids Viscosity (mPas at 20-30°C)
Miglyol (808, 810N, 812N, 818) 23-33
Capric acid 25-32
Caprylic acid 26-32
Oleic acid 40
Fatty acid esters 6.57
Propylene glycol fatty acid esters 6.98
Mineral oil 95-100
Vitamin E NA
Olive oil 85
Castor oil 390
Palm oil 130
Coconut oil 85
Soybean oil 55
Jojoba oil 333
Mustard oil 117
Garlic oil 80
Clove oil 9
Emulsifiers/coemulsifiers HLB value
Polysorbate 20, 80 15-17
Solutol HS 15
Poloxamer 188 29
Poloxamine 908 31
Cremophor El 12-17
Sodium cholate 18
Sodium dodecyl sulfate 40
Polyvinyl alcohol 18
Sodium oleate 18
Soy lecithin 4
Egg lecithin 6.6
Lecithin 3-5

Surface innovators
Wheat germ agglutinin
Hyaluronic acid
Mannose
B-d-galactosides
Ferritin
Transferrin

Biotin

L-arginine
Oligochitosan
Polyethylene glycol
Folic acid
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FIGURE 3: Various methods for the preparation of NLCs.

obtain a narrow particle size distribution, the emulsion is
usually subjected to ultrasonication.

(2) Cold High-Pressure Homogenization Method. The cold
high-pressure homogenization method involves the melting
of solid/liquid lipids/drug(s) and solidification by liquid
nitrogen or dry ice [34]. The mixture is then milled and
assorted to a cold surfactant solution, resulting in the for-
mation of a presuspension, which is then subjected to high-
pressure homogenization (5-10 cycles, 1500 bar pressure),
leading to the formation of NLCs [61, 67]. Both these
methods offer advantages such as the use of minimal toxic
solvents, easy scale-up technique, and quick NLC
formulation.

(3) High Shear/High-Pressure Homogenization Method. Solid
and liquid lipids are melted 5-10°C higher than their melting
points and then mixed with the drug. To this, simultaneously
heated to an equivalent temperature, a surfactant solution is
added. This mixture is then homogenized at a higher shear
pressure to yield low-particle-sized hot oil in water nano-
emulsion, which after cooling and ultrasonication settles
into a homogeneous NLC formulation [58, 59].

(4) Melt Emulsification Homogenization Method. This
method involves dispersing solid and liquid lipids along with
the drug into an aqueous surfactant solution, which is then
subjected to probe sonication. Later, the blend is cooled to
obtain NLCs [61].

3.3.2. Low-Energy Method

(1) Microemulsion Method. This method involves a simpler
method to fabricate NLCs in which the molten lipid is
blended into the mild hot liquid lipid along with the addition
of medication. Then, under constant stirring, the aqueous
emulsifier solution and lipid blend are added to the melted
lipid mix, leading to the formulation of microemulsion. The
microemulsion is disseminated instantly in ice-cold water

(0-4°C) around 20-50 times the volume of the micro-
emulsion, which leads to the precipitation of microemulsion
globules, creating NLCs [67]. Ice-cold water supports the
formation of smaller particles without aggregation and
homogeneous preparation. High-volume water may lead to
dilution, which may be countered by lyophilization. Al-
though the method is simple, it requires a high volume of
emulsifiers and coemulsifiers [68].

(2) Double Emulsion Method. The aqueous phase containing
the hydrophilic drug is dispersed into the organic phase
(melted solid lipid and liquid lipid) forming primary water
in oil emulsion. This primary emulsion is again dispersed
into the aqueous phase, forming a w/o/w double emulsion in
which the hydrophilic drug is enclosed in the inner watery
continuous phase [69]. This method involves a solvent
evaporation method but generates large particle-sized
nanoparticles.

(3) Membrane Contractor Method. In this method, the
melted lipid is pressed through the pores of the membrane at
a pressure that leaves the temperature of the system higher
than the melting points of the lipids used. The lipid globules
coming out of the pores are distributed away by the aqueous
surfactant under turbulence, flowing just below the mem-
brane. Upon cooling at room temperature, NLCs are
formed. The process is complex and involves the use of
sophisticated instruments, and particle size depends on the
rate of flow of the watery phase, its temperature, lipid phase
pressure, and membrane pore size that may be susceptible to
blockage [68].

(4) Phase Inversion Method. The phase inversion method
involves two-step processes, where the first step involves
formulation of w/o emulsions by integrating lipids, water,
and emulsifiers at elevated temperatures (up to 85°C). Then,
phase inversion is attained (from w/o to o/w emulsion) by
sudden cooling of the emulsion with constant stirring fol-
lowed by a further drop in temperature by adding cold water



(0°C). This causes the transition of minute lipid droplets to
recrystallize into nanolipid carriers. The stability of such
a system relies on the regulation of the temperature cycle
[70-72]. This method produces particles below 50 nm but
involves a high ratio of emulsifiers. In addition, this method
is cost effective and is devoid of toxic solvent involvement.

(5) Coacervation Method. This method allows thermo-
sensitive lipids to be developed as NLCs without the use of
toxic solvents. Here, an amphiphilic emulsifier is added to
the lipidic blend in an acidic environment (coacervation
solution) to form NLCs [68].

3.3.3. Organic Solvent Employed Method

(1) Solvent Evaporation Emulsification Method. This method
involves the use of water-immiscible organic solvents, such
as example dimethyl sulfoxide (DMSO), chloroform, cy-
clohexane, and dichloromethane (DCM), in which drugs
and lipids are dissolved. The blend is then stirred in an
emulsifying aqueous phase and further sonicated or ho-
mogenized to obtain a homogeneous NLC formulation with
uniform particle size and size distribution [73]. The use of an
organic solvent is an obvious disadvantage.

(2) Solvent Diffusion Emulsification Method. Water-mixable
organic solvents are employed, for example, methanol,
ethanol, acetone, benzyl alcohol, and ethyl formate, to
dissolve the lipids and drug. The process involves sonication
of the mixture at an elevated temperature to create a distinct
lipid phase. Subsequently, this lipid phase is blended with an
aqueous surfactant solution, which is also maintained at
a similar temperature as the lipid phase, with continuous
stirring. Dispersion was stirred at room temperature to cool
off and evaporate the organic solvent to obtain nanosized
lipid carriers [74, 75].

(3) Solvent Injection Method. The method is quite similar to
the solvent diffusion method where water-miscible organic
solvents are used. The difference is that lipid is injected into
the aqueous surfactant solution, and the globules are injected
out of the needle [76]. The surfactant solution was kept
under turbulence using a stirrer to aid in the quick solu-
bilization of the lipid. The emulsion so formed is filtered to
eradicate superfluous fat. The selection of solvent and sur-
factant concentrations impacts the size and size distribution
proportionately. The method itself is unique as it allows the
formulator to use simple techniques without the use of
sophisticated instruments [77].

(4) Supercritical Fluid Method. The medication and lipids are
solubilized in an organic solvent with the emulsifier, leading
to the formation of an organic solution. This is then dis-
persed into the watery phase, followed by high-pressure
homogenization, which creates an oil-in-water emulsion.
Lipid nanoparticles are formulated by injecting the o/w
emulsion from the top of an extraction column while
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simultaneously introducing a supercritical fluid, typically
carbon dioxide, at a constant flow rate to ensure complete
solvent removal [78, 79].

3.4. Improvisation of Fabricated NLCs

3.4.1. Surface modification of Lipid-Based Nanoparticles and
NLCs. Surface modification is intended for site-specific
delivery of the drug at the target and cellular sites. For
this, innovators are attached to the NLC surface via some
linkage such as succinic acid-PEG, folate PEG-Chol, or by
linking the coating agent such as oleoyl-quaternized chi-
tosan to the NLC component [80]. Polymers such as
Eudragit RS100 [81], polyacrylamide, poly(ethylene oxide)-
modified poly(epsilon-caprolactone), or poly-
vinylpyrrolidone [82], antibodies such as anticarbonic
anhydrase (CA) IX [83], proteins such as low-density li-
poproteins [84], and aptamers, for example, HER2 and ATP,
have been used as guiding moieties to deliver therapeutics to
the target sites [85]. Small molecules such as folate and
transferrin are also employed as the targeting agents in NLCs
[86]. Priya Sakshi et al. discussed the role of various surface
modifiers that can guide various lipid-based nanoparticles
such as SLNs and NLCs to the target sites for the effective
delivery of medications [87].

Targeted delivery of drugs with poor solubility is another
challenge that can be effectively attained by employing
NLCs, as these can play a major role in cancer therapy. Alicia
Fernandez-Fernandez et al. discussed the potential of
nanotherapeutics in the management of cancer [88]. Folic
acid-conjugated chitosan-modified NLCs were used to
transport umbelliprenin to cancer cells. Modified NLCs
reduce the expression of angiogenesis genes and tumor
volumes over 19 days [89]. Drugs such as curcumin have
been successfully targeted for brain delivery via transferrin
conjugation with nanolipid carriers [90].

Orally administered doxorubicin was efficiently targeted
to breast cancer cells by folic acid-coupled NLCs [91]. Luiz
discussed the use of NLCs treating cancer via hybrid magnetic
lipid-based nanoparticles [92]. Supramagnetic iron oxide
magnetic NLCs have been employed in the accurate targeting
of hepatocytes, providing a ray of hope for future magnetic
resonance contrast imaging tools in the detection of liver
diseases [93]. Ascorbyl palmitate (AP), a lipophilic derivative
of ascorbic acid, is formulated in NLCs that are integrated into
magnetic nanoparticles for cancer treatment [94].

3.4.2. Hydrophobic Ion Pairing/Surface Charge Adjustment.
The surface charge on nanoparticles plays a critical role in
their stability and cellular uptake. Factors such as floccu-
lation, creaming, coalescence, sedimentation, and Ostwald
ripening directly affect the stability of nanoemulsions.
Surface modification of lipid carriers with charged ionic
compounds maintains electrostatic repulsion. In addition,
positively charged ions allow extended retention time at the
negatively charged biomembrane surface, creating an en-
hanced cellular uptake environment.
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In a study, NLCs were surface decorated to safeguard
encapsulated insulin from enzymatic degradation. Poly-
ethylene glycol ester, polyethylene glycol ether, and poly-
glycerol ester were used as surfactants to fabricate three NLC
formulations using the solvent diffusion method. Insulin
lipophilicity was upgraded from (—)1.8 to 2.1, which upheld
high drug loading in lipid carriers. The NLC surface possessed
a negative surface charge with a size distribution of 0.2-0.5
and nanometer-sized particles ranging between 64 and
217 nm with a polydispersity index of 0.2-0.5 and a negative
surface charge. From proteolysis analysis, PEG-ether NLCs
provided maximum protection to encapsulated peptide,
followed by PG/PEG-ester NLCs, indicating that surface
modification aids in safeguarding the peptide from GI pro-
teases. The protection to insulin could be attributed to bond
formation between PEG-ether NLCs lacking the ester sub-
structures on surfaces that are susceptible to lipid-digesting
enzymes of pancreatin, thus exhibiting resistance to pan-
creatic lipase and shielding peptide. The protective effect
could also be due to the medium-chain length of surfactants
and the particle size of the so-formed NLCs [95].

3.5. Characterization Techniques of NLCs. Characterization
techniques for NLCs are essential for assessing their phys-
ical, chemical, and biological properties. These techniques
provide valuable information for optimizing NLC formu-
lations and ensuring their quality. Here are some common
characterization techniques for NLCs, which are discussed
in details in literature [49, 96, 97]:

(1) Particle size analysis:

(a) Dynamic light scattering (DLS): DLS measures
the hydrodynamic diameter of NLC particles in
suspension. It provides information about
particle size distribution and polydispersity.

(2) Zeta potential measurement:

(a) Electrophoretic light scattering (ELS): ELS
measures the zeta potential of NLCs. Zeta po-
tential reflects the surface charge of particles and
can indicate their stability and potential for
aggregation.

(3) Morphological analysis:

(a) Transmission electron microscopy (TEM):
TEM allows for high-resolution imaging of
NLCs, providing information about particle
shape, size, and morphology.

(b) Scanning electron microscopy (SEM): SEM can
also be used to visualize NLCs although it
provides surface morphology information.

(4) Drug loading and encapsulation efficiency: HPLC
and UV-Vis spectroscopy are frequently used to
quantify the drug content in NLC formulations and
to calculate encapsulation efficiency.

(5) Physical stability:

(a) Centrifugation: centrifugation tests can assess
the physical stability of NLC dispersions by
monitoring particle sedimentation or creaming.

(b) Freeze-thaw cycling: repeated freeze-thaw cy-
cles can be used to assess the stability of NLC
formulations under stress conditions.

(6) In vitro drug release studies:

(a) Dialysis or membrane diffusion: these tech-
niques are used to study the release kinetics of
drugs from NLCs over time, simulating drug
release behaviour in vivo.

(b) Franz diffusion cell: this allows for the mea-
surement of drug release from NLCs through
a synthetic or biological membrane.

(7) Thermal analysis:

(a) Differential scanning calorimetry (DSC): DSC
can determine the thermal behaviour of NLC
components, including lipid melting points and
drug-lipid interactions.

(b) Thermogravimetric analysis (TGA): TGA as-
sesses the thermal stability and decomposition
patterns of NLC formulations.

(8) X-ray diffraction (XRD): XRD helps in un-
derstanding the crystalline structure of lipid com-
ponents and any changes in drug crystallinity
within NLCs.

(9) Nuclear magnetic resonance (NMR): NMR spec-
troscopy can be used to study drug-lipid in-
teractions and assess the distribution of drug
molecules within the lipid matrix.

(10) Fourier-transform infrared spectroscopy (FTIR):
FTIR spectroscopy is used to analyze chemical
bonds and functional groups in NLC components
and assess drug-lipid interactions.

(11) Rheological analysis: rheological tests can provide
information about the viscosity and flow behaviour
of NLC dispersions, which is important for for-
mulation stability and administration.

(12) Biological studies:

(a) Cellular uptake studies: these studies assess the
cellular internalization of NLCs loaded with
drugs using techniques such as confocal mi-
croscopy or flow cytometry.

(b) In vivo studies: animal or human studies can
evaluate the pharmacokinetics, biodistribution,
and therapeutic efficacy of NLC-based drug
delivery systems.

(13) Stability and shelf-life testing: accelerated stability
studies can assess the long-term stability of NLC
formulations under various storage conditions.
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The choice of characterization techniques depends on
the specific properties and objectives of the NLC formula-
tion, and a combination of these techniques is often used to
comprehensively assess NLCs for drug delivery applications.

3.6. Mechanism behind the Improvement in Oral Absorption of
Therapeutics via NLCs. NLCs promote the medication’s oral
bioavailability by augmenting the uptake of drugs by
microfold cells (M-cells) in the intestinal membrane and,
also, can bypass first-pass hepatic metabolism. Lipid
nanocarriers can be transported across the intestinal wall via
several pathways such as transcellular absorption, para-
cellular transport, P-glycoprotein, and cytochrome 450 in-
hibition. In addition, lipidic compounds instigate the
production of chylomicrons, which help in their transfer
across the membranes [98, 99].

Many factors impact the effective absorption of drugs
that are encapsulated in lipid nanoparticles. The lipids of
NLCs are assimilated partly in the stomach, followed by
digestion in the small intestine. Lipids in the stomach
stimulate the secretion of gastric lipase enzyme, which
hydrolyzes the acyl chain of lipids. The pancreatic lipase and
colipase in the small intestine help in the digestion of most
lipids, where they are converted into digestible diglycerides
and free fatty acids. Lipidic nature protracts the exit of the
drug in the GIT, thus augmenting its absorption. Owing to
nanosize, the increased surface area aids lipids to stay in
contact with the biomembrane, supplementing higher
absorption.

The various mechanisms by which NLCs augment the
bioavailability of poorly soluble drugs are as follows:

(1) Direct uptake: NLC enhances the bioavailability of
lipophilic drugs through intestinal lymphatic
transport. By using triglycerides, NLCs can stimulate
the formation of chylomicrons, facilitating trans-
cellular absorption. This allows lipophilic drugs to
follow the route of the intestinal lymphatic system
and bypass the first-pass effect. The hydrolysis of
triglycerides is initiated in the GIT, aided by lingual
lipase and gastric lipase, resulting in the formation of
a triglyceride emulsion. This emulsion, in turn,
triggers the secretion of bile salts, pancreatic juice,
and biliary lipids. Biliary lipids are adsorbed onto the
surface of the triglyceride emulsion and stabilized,
and the triglyceride droplet undergoes a trans-
formation through the action of pancreatic lipase. It
evolves into monoglycerides and fatty acids, which
are subsequently absorbed by enterocytes. These
components are then processed to constitute the
lipid core of chylomicrons and are further stabilized
through the addition of phospholipids and apoli-
poproteins. These lipoproteins are then secreted into
the lamina propria and mesenteric lymph nodes,
ultimately entering lymphatic circulation [100, 101].

(2) Adherence to the mucosal membrane: NLC adheres
to the mucus, leading to extended residence dura-
tion, consequently resulting in an elevated drug
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release from NLC. The tight epithelial cells of GIT are
enveloped by a hydrophilic and negatively charged
protective mucus layer, which acts as a barrier,
limiting the transit of foreign particles. Nevertheless,
scientists have harnessed mucus as a valuable
strategy to enhance the plasma concentration and
therapeutic effectiveness of drugs. This is accom-
plished by designing engineered nanoparticles that
can adhere to mucus. The binding of nanoparticles to
mucus extends their presence in the GIT, making it
easier for drugs to passively transport and ultimately
improving their absorption [102].

Lipid-based nanoparticles and NLCs with a coating
of agents such as positively charged polymers such as
chitosan and benzalkonium chloride could bind to
the negatively charged intestinal mucosa and thus
transport drugs passively [103]. A covalent bond
formed between the mucus membrane and thiomers
decorated over NLCs aids in the site-specific delivery
as the covalent binding of the thiol group of the
polymer and cysteine-rich components of the mu-
cous membrane slows down the peristalsis of the
intestine [104, 105]. Also, thiomers can bind to the
transmembrane domain of P-gp and could improve
the delivery of P-gp substrate drugs when conjugated
with NLCs [106].

(3) Upsurged permeability: NLCs are comprised of

surfactants that alter intestinal permeability through
various mechanisms. For instance, the surfactant
poloxamer induces structural changes in the cell
membrane, resulting in the opening of tight junc-
tions in intestinal epithelial cells, thereby facilitating
paracellular transport. In addition, it inhibits P-
glycoprotein efflux, consequently enhancing the
transport of NLC [107, 108].

(4) Formation of mixed micelles: Lipid content in NLC

induces bile secretion within the small intestine. As
enzymes degrade this lipid, it combines with bile to
create mixed micelles. NLCs trigger the secretion of
bile, bile salts, phospholipids, and cholesterol from
the gall bladder, leading to the formation of micelles,
averting lipid precipitation, and thus easing NLC
lipid and drug solubilization. They also aid in the
carrier transfer across the stationary layer lying amid
the intestinal bulk fluid and the brush-border
membrane of enterocytes, further enhancing the
absorption of the medication [49, 109, 110].

(5) Bypassing first-pass metabolism: Well-designed

NLCs can serve as a delivery system, effectively
shielding drugs from early degradation while they
traverse the GIT, thereby evading the effects of first-
pass metabolism. NLCs engage with bile salts within
the GIT, resulting in the formation of mixed mi-
celles. The lymphatic system selectively takes up
these micelles, effectively bypassing the liver [111]. In
addition, these mixed micelles facilitate the solubi-
lization of lipid digestion products within the gut
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lumen, establishing a concentration gradient that
aids absorption. This versatile capability of NLCs to
bypass hepatic metabolism enhances the therapeutic
efficacy of drugs that undergo extensive liver
metabolism while reducing their dosing frequency
and associated dose-related side effects [102].

Figure 4 illustrates the diverse processes through which
NLCs are absorbed within the GIT, their ability to cir-
cumvent first-pass metabolism, and their capacity to
maintain stability against both acidic conditions and en-
zymatic degradation.

3.6.1. Drug Release Mechanism from NLCs. Drug release
from a nanoparticulate formulation can follow the diverse
processes that rely primarily on their composition. These
mechanisms may be categorized into matrix erosion, dif-
fusion, or swallowing, where lipid nanoparticles exhibit
matrix diffusion and erosion release patterns [112].

Particularly in NLCs, the liquid lipid component in-
cidents into a highly unordered lipid-matrix structure that
could incorporate a high amount of medications and
restrict drug exile. Typically, the drug might be situated in
the middle of fatty acids, within lipid layers, or even
within structural irregularities such as amorphous re-
gions. When dealing with lipid structures that closely
resemble more organized matrix molecules, particularly
when utilizing extensively purified monounsaturated
glycerides such as tristearin, the drug-loading capacity is
notably constrained, leading to drug release within hours
to a few days. The mechanism of drug release from NLCs
involves various factors and processes, which are as
follows:

(1) Diffusion: Drug molecules can diffuse through the
lipid matrix depending on their solubility in lipids.
Lipid diffusion is generally slower than aqueous
diffusion, which contributes to controlled release.

(2) Matrix erosion: Over time, the lipid matrix can erode
or degrade due to factors such as water penetration,
enzymatic activity, or hydrolysis of lipid compo-
nents. As the matrix erodes, it releases the
encapsulated drug.

(3) Partitioning and solubility: The drug’s solubility in
the lipid matrix plays a significant role in its release.
If the drug has a high affinity to the lipid matrix, it
may be released slowly. Conversely, if the drug is
more soluble in the surrounding aqueous environ-
ment, it can be released quickly.

(4) Lipid mobility: The mobility of lipid molecules
within the matrix affects drug release. Higher mo-
bility can lead to faster drug release as the lipid
matrix becomes more permeable.

(5) Surfactants and cosurfactants: Surfactants and co-
surfactants are often added to NLC formulations to
improve drug loading and release. These additives
can alter the lipid matrix’s structure, affecting drug
release kinetics.
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(6) Particle size: The size of NLCs plays a role in drug
release. Smaller particles generally have a larger
surface area-to-volume ratio, leading to faster drug
release than larger particles.

(7) pH and ionic strength: Changes in the pH and ionic
strength of the surrounding environment can influence
drug release from NLCs. These factors can alter the
stability of the lipid matrix and affect drug partitioning.

(8) External stimuli: Some NLC formulations are
designed to respond to external stimuli, such as
temperature, light, or magnetic fields. These stimuli
can trigger changes in the lipid matrix’s structure
and, consequently, drug release.

(9) Targeting ligands: NLCs can be engineered to in-
clude targeting ligands on their surface, allowing
them to specifically bind to certain cell types or
tissues. This can influence the interaction between
the carrier and the biological environment, thereby
affecting drug release at the targeted site.

In summary, drug release from NLCs is a complex
process influenced by the composition of the lipid matrix,
drug solubility, particle size, environmental factors, and
potential external stimuli. These factors can be tailored to
design NLCs with specific drug release profiles for various
therapeutic applications.

3.7. Applications of NLCs

3.7.1. In Vivo Enhancement of the Bioavailability/Solubility of
Lipophilic Drugs. The mechanism could be explained by
Figure 4, where NLCs are depicted to remain stable from
enzymatic degradation, proteolysis, and bowel peristalsis
following absorption. After coming in contact with the
mucus layer in the GIT, lipids are absorbed via various
pathways such as transcellular, paracellular, and lymphatic
transport. The enterocytes of the villi help in the absorption
of lipids via transcytosis and endocytosis by passing through
the apical cell membrane into the cell [113, 114]. Many
findings demonstrate that lipid-based nanoparticles signif-
icantly ameliorate the oral solubility of hydrophobic drugs.

Because of their lipid nature, large surface area, and
bioadhesive attributes, NLCs are better absorbed in the
lymphatic system. Fathi et al. developed simvastatin-loaded
NLCs to improve the oral bioavailability (>5% in neat form)
of the loaded antihyperlipidemic drug. They prepared the
formulation using an emulsification solvent evaporation
technique and stated that preparation abridged total cho-
lesterol and low-density lipoprotein cholesterol levels,
whereas drug nanosuspension failed to lower cholesterol
levels. In addition, a four-fold augmentation in the oral
bioavailability of simvastatin by NLCs was reported [115].

Nintedanib (BIBF), an oral triple tyrosinase inhibitor, is
a P-glycoprotein substrate that undergoes hepatic first-pass
metabolism that may cause efflux during intestinal ab-
sorption, leading to its poor bioavailability. Yunjing Zhu
explored the potential of NLCs for improving the intestinal
absorption and oral bioavailability of BIBF. They reported



12

Journal of Nanotechnology

3
&
Ei
3
Lipases
eQ
@) -”3%’"-
.:%*f
“Ht Stable
NLCs 8.
Bile salts =
"'/ l Free drug 5
P-glycoprotein =
* 3k glycop S

L]
) g,,’Chylomicron
% = formation
s

Enterocyte

Tranpcellular uptake

B' first-pass metabolism

Lymphatic portal system

Microfold
cell uptake

Blood capillary

FIGURE 4: The drug-loaded NLC absorption pathway via the intestinal wall.

that BIBF-NLC-1 and BIBF-NLC-2 augmented the oral
bioavailability by 3.13- and 2.39-fold, respectively. The tiny
particle size of BIBF-NLC-2, measuring 7.99 +0.06 nm,
presented a large surface area. This, in turn, caused the
nanoparticles to agglomerate within the rat intestine,
thereby reducing necessary bending energy during endo-
cytosis. Hence, agglomerated small-sized particles may have
been taken up by clathrin-mediated endocytic pathways
[116]. BIBE-NLC absorption could also be aided by the
degradation of lipid nanoparticles by local enzymes that
might have formed mixed micelles along with bile salts,
which can be easily absorbed by the intestine [1].

Gefitinib (GEF), with a log P value of 3.2, is a hydrophobic
drug with low bioavailability. GEF-NLCs [117] were developed
for the treatment of metastatic lung cancer as lipidic carriers that
upgraded the lymphatic uptake of drug-loaded NLCs by
enterocytes through receptor-mediated endocytosis or phago-
cytosis. This could be due to lymphatic uptake by M cells of small
particles below 500 nm [118, 119]. Praziquantel (PZQ) is the
preferred drug for treating human schistosomiasis [120].
However, its hydrophobic nature limited dissolution properties
with inconsistent and low bioavailability following oral ad-
ministration [121]. Said et al. investigated the effect of charge on
PQZ-NLC:s for its oral bioavailability enhancement and effective
schistosomicidal activity after oral administration and compared
its efficacy with aqueous drug suspension. Upon oral

administration, positively charged PQZ-NLCs showed a signif-
icant reduction in the number of ova cells (90%) and granuloma
size and number (62.1% and 42.55%) in the histopathological
examination of the Swiss albino male mice compared to the PQZ
suspension, negatively charged PQZ-NLCs, and traditional
drug-loaded NLCs. SEM micrographs demonstrated improved
ultrastructural changes in histopathological features of the liver
of the S. mansoni-infected mice when compared with other
formulations. These changes can be attributed to electrostatic
interactions that permitted higher concentrations of PQZ to
interact more with the worm surface by positively charged PQZ-
NLCs [122].

Etxebeste-Mitxeltorena et al. in their investigation de-
veloped 2m-NLCs for the treatment of visceral leishmani-
asis. 2m is a trypanothione reductase (TR) inhibitor and is
categorized as a BCS class IV drug. The group developed 2 m
loaded glyceryl palmitostearate and diethylene glycol
monoethyl ether-based NLCs (2m-NLCs) for oral bio-
availability enhancement. Loading 2m into NLC signifi-
cantly improved its intestinal permeability and resulted in
plasma levels surpassing its effective concentration (ICsg). In
BALB/c mice infected with L. infantum, 2m-NLC achieved
a reduction of at least 95% in parasite burden in the spleen,
liver, and bone marrow after 5 doses, showcasing compa-
rable effectiveness to intravenous administration of the
marketed formulation (Fungizone) [123].
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Velmurugan and Selvamuthukumar developed NLCs for
the oral delivery of ifosfamide (IFS) using response surface
methodology. Their in vitro study demonstrated a gradual
release of ifosfamide from the NLCs over a 72-hour period,
suggesting that IFS-NLCs are capable of delivering an initial
dose and maintaining prolonged plasma levels in vivo [124].
Table 2 illustrates the numerous oral solubility enrichment
studies undertaken by these versatile carriers.

3.7.2. NLCs for Site-Specific Delivery of Medications at the
GIT. NLCs have been extensively used to enhance low
solubility and permeability across the intestinal membrane.
Shrestha et al. verified NLC passage capacity across the
intestine via Caco-2 intestinal monolayer cells (enter-
ocell-like models). The researchers encapsulated two pep-
tides exenatide and liraglutide in NLCs and conjectured that
these can activate endogenous glucagon-like peptide-1
(GLP-1) secretion. Exenatide was completely released be-
cause of its hydrophilic nature owing to its higher affinity to
bile salt-rich fasted state simulated intestinal fluids. Lir-
aglutide release from Lira-NLC was limited due to the high
hydrophobic interactions between the fatty acid chain in the
liraglutide structure and the lipidic matrix. Placebo and
loaded NLCs induced GLP-1 secretion from enter-
oendocrinal L-cells (GLUTag) under in vitro conditions.
NLCs exhibited a 2.9-fold increase in the permeability of
exenatide across the Caco-2 intestinal monolayer and can
also act as GLP-1 agonists [141].

In a similar study, oral absorption of khellin, a natural
pleiotropic molecule, was tested ex vivo using Caco-2 cell
lines. Khellin-loaded stearic acid, hempseed oil, Brij S20, and
Labrafil M 1944 CS-composed NLCs were developed by the
emulsification-ultrasonication method. Studies have re-
ported a two-fold increase in the membrane permeability of
khellin by nanolipid carriers, suggesting the possibility of
oral bioavailability enhancement [142].

In situ intestinal absorption studies conducted by
Dudhipala et al. showcased the superiority of NLCs com-
pared with SLNs in transporting nisoldipine across the rat
intestine. Nisoldipine-loaded NLCs exhibited a permeation
coefficient of 2.95+0.025x1072, whereas SLNs showed
2.36+0.018 x 107 in comparison to the nisoldipine nano-
suspension permeation coefficient of 1.02+0.015x1072.
This indicated that drug-loaded lipid carriers could cir-
cumvent the intestinal barriers while transporting the drug
across the biomembrane. An enhancement ratio above 1
marked an enhanced perfusion rate of NLCs and SLNs over
nisoldipine nanosuspensions. In addition, drug permeation
was augmented twofold as the drug accumulated in the
intestinal folds of the rats.

A 2.46- and 2.24-fold increment in the bioavailability of
nisoldipine was more pragmatic by NLCs and SLNs than
drug suspension. The oral bioavailability of the medication
for NLCs was superior by 1.09 times that of SLNs as the lipid
composition and size of NLCs persuaded longer duration
adhesion to the GI tract. They further explained the role of
formulation excipients in the increment of permeation, drug
transport, and uptake of lipid content by the lymphatic
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system, thus minimizing drug degradation by the first-pass
effect [143].

Nintedanib esylate (NE) is a poorly soluble drug with
extremely low oral bioavailability. Being a P-gp substrate, it
undergoes hepatic metabolism by esterases. Thus, to evade
these glitches, NE-NLCs were fabricated using a high-speed
homogenization technique followed by probe sonication
[144]. Cellular uptake showed that FITC-labeled NE-NLCs
penetrated better than FITC dye into Caco-2 cells. In vivo
studies revealed that NLCs increased the C,,,x of NE by
4 times compared with its suspension. MRT and t;,, were
also extended due to the sluggish release of NE from NLCs
as well as an increment in bioavailability was observed to
26.31-fold. The author asserted that NLCs were likely taken
up by the lymphatic system, thereby bypassing hepatic
metabolism.

In addition, the use of tocopheryl polyethylene glycol
succinate (TPGs) and poloxamer inhibited the P-gp efflux of
the drug. Sodium deoxycholate as a permeation enhancer
may have destabilized the intestinal membrane and aided in
the efficient absorption of nintedanib. The plasma
concentration-time profile after oral administration of NE-
NLCs to cycloheximide- (CHX-) treated and nontreated
(control) mice demonstrated that the C,,,, of CHX-treated
NE-NLCs declined from 1190.11+191.02ng/mL to
582.82+20.67 ng/mL, indicating a reduction in the in-
testinal absorption of NE compared with CHX-treated rats
because cycloheximide blocked intestinal lymphatic trans-
port. The chylomicron flow-blocking study exhibited that
nintedanib nanolipid carriers were absorbed over the
lymphatic alleyway [144]. Table 3 summarizes the recent
trends in the delivery of medications using NLCs in the GIT.

3.7.3. NLC:s for Oral Delivery of Drugs. NLCs, owing to the
excellent virtues discussed above, can reduce the solubility
and bioavailability of various drugs in vivo and have found
applicability in transporting medications and bioactives
across intestinal membranes. Shaimaa S. Ibrahim developed
NLCs loaded with prednisolone acetate (PA) for enhanced
anti-inflammatory activity via the oral route. NLCs were
fabricated with Compritol as the solid lipid, oleic acid as the
liquid lipid, and Tween 80 or Pluronic F68 as the surfactant
using the solvent injection method. They observed excellent
suppression of inflammation by PA-loaded NLCs
(83.9+4.46%) in comparison to PA suspension
(40.5+7.03%), whereas drug-free NLCs showed an anti-
inflammatory activity of 54.7+6.12% [156]. Several drugs
such as raloxifene [157], ifosfamide [124], baicalin [158, 159],
and artemether-lumefantrine [160, 161] have been explored
for oral delivery via NLCs.

Trimyristin as a solid lipid was intended to provide
stability to resveratrol from enzymatic and pH degradation
in glycerol tricaprylate and glyceryl trioleate as liquid lipid
nanostructured nanocarriers [162]. Hydrochlorothiazide
(HCT) demonstrates low solubility and permeability; hence,
an attempt was made to upsurge its bioavailability by in-
corporating it into NLCs [163]. HCT nanocarriers were
found to be stable under simulated gastric fluidic conditions,
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whereas in vivo pharmacodynamic experiments on adult
male rats indicated augmented diuresis from 1h to 6h in
comparison with the control. Table 4 lists some orally de-
livered therapeutic agents with the aid of NLCs.

3.7.4. NLCs for Reaching the Brain via the Oral Route.
The literature has evidenced NLC involvement in the de-
livery of medication via several routes, including oral with
the aid of various approaches to the brain [182, 183].
Nonetheless, the blood-brain barrier (BBB) acts as a shield
against the infiltration of foreign substances into the brain.
BBB protects the brain by isolating it from regular systemic
circulation and restricting the entry of toxins, pathogens,
and other harmful substances. It only offers selective entry to
some agents, which are regulated by the monolayer of tightly
packed endothelial cells. Endothelial cells are again sealed
sturdily by a tight junction, rendering them impermeable to
pathogenic organisms and unwanted substances and mol-
ecules while permitting the supply of oxygen, entry of highly
lipophilic smaller substances, and other nutrients needed for
brain functioning [184].

NLCs can be transported across the BBB via various
mechanisms such as passive diffusion through paracellular
and transcellular routes and active diffusion through re-
ceptor and carrier-mediated transport [185]. Reports have
confirmed that NLCs augment the permeability of the BBB
by easing the partial opening of the tight junction. In ad-
dition, the surfactant or permeation enhancer present as
a component of NLC dissolves the lipids of endothelial cells
and facilitates the transcellular diffusion of the therapeutic/
biologics [186, 187]. Improvization of the NLC surface could
be another approach where target-specific guiding moieties
such as lactoferrin, transferrin, CPP28, LDL29, and other
peptides can aid in crossing and reaching the target site by
guiding the NLCs to a specific receptor at BBB via a receptor-
mediated endocytosis mechanism [188].

Khan et al. improved the oral bioavailability of ataza-
navir (ATZ), which is used in the treatment of neuroAIDs
(acquired immunodeficiency disease) with the aid of NLCs.
They developed ATZ-NLCs using the quality-by-design
approach and further optimized the formulation by the
Box-Behnken design. ATZ-NLCs displayed a 2.36-increase
in ATZ permeation across the rat intestine. From their
pharmacokinetic evaluation, they reported a 2.75-fold up-
surge in C,,, in the brain and a 4-fold enhancement in brain
bioavailability compared to ATZ suspension, signifying
NLCs capability of transporting drug to the brain circum-
venting resistance offered by the BBB [189].

Zotepine (ZT), a BCS class II drug, is an antipsychotic
drug with poor solubility, oral bioavailability of nearly 10%
(Log P 4), and undergoes hepatic metabolism. Tirumalesh
et al. attempted an oral bioavailability enhancement of ZT by
incorporating it into NLCs. They formulated ZT-NLCs using
hot homogenization with the probe sonication method and
reported a 1.8-fold increment (P <0.05) in the oral bio-
availability of ZT in male Wistar rats compared to ZT coarse
suspension [190]. Olanzipine is also a BCS class II drug that
has been successfully formulated in NLCs for an oral
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bioavailability enhancement of a 5%-fold by formulating it
with NLCs, indicating the potential of these carriers for the
transport of lipophilic drugs for treating ailments such as
schizophrenia [191].

Temazepam (TZP) NLCs were formulated for the
treatment of insomnia through oral administration. TZP-
NLCs were found to accumulate in higher concentrations in
the brain after 4h, as evidenced by gamma scintigraphy
images. In addition, the brain biodistribution of TZP by
NLCs was 10 times higher than that of plain drug suspension
[177]. Lopinavir (LPV) is used in the treatment of HIV-
associated neurocognitive disorder (HAND), where its
potential was adjudged by comparing oral optimized LPV-
NLCs with intravenous LPV-NLCs. Tween 80-coated LPV-
NLCs were able to breach the BBB when administered via
the oral route with a brain biodistribution of ~2.35-fold
compared, which was similar to the LPV concentration
when administered via the intravenous route (~2.8 fold).
This finding indicated that upon intravenous administra-
tion, the concentration of LPV in the brain was higher than
that after oral administration, although therapeutic per-
formance of oral LPV-NLCs (16.5-fold increase in AUC) was
better than that of plain drug suspension [192].

Raju et al. designed berberine-loaded NLCs (Berb-
NLCs) by the melt emulsification and ultrasonication
method by using Geleol, Miglyol 812 N, and Solutol HS 15 as
a solid lipid, liquid lipid, and surfactant, respectively. Berb,
an isoquinoline alkaloid, which is reported for the treatment
of Alzheimer’s disease, has a low therapeutic window, poor
absorption, and low oral bioavailability and limited per-
meability to the brain. Pharmacodynamic studies included
behavioural evaluation by the locomotor activity, passive
avoidance test, and elevated plus maze test, and spatial
memory assessment by Morris water maze indicates aug-
mentation in behavioural parameters in vivo by Berb-NLCs
as equated with pure berberine in albino Wistar rats [193].

3.7.5. NLCs for the Delivery of Biologics via the Oral Route.
The delivery of proteins and peptides demands a safer ve-
hicle so that their degradation and integrity are safely
guarded from the in vivo environment. NLCs can deliver
these agents by protecting proteins and peptides from the
body’s enzymes, transporting them efficiently across bi-
ological membranes, augmenting their systemic circulation
time. Shahzadi et al. used the contemporary ratio of a solid/
liquid lipid, i.e., 70: 30, for the oral delivery of insulin. They
assessed the impact of surfactants on the safeguarding of the
peptide in three different NLC formulations containing
polyethylene glycol ester (PEG-ester), polyethylene glycol
ether (PEG-ether), and polyglycerol ester (PG-ester) sur-
factants prepared by the solvent diffusion method. Re-
searchers have reported that cleavable substructures of
surfactants on the NLC surface provide cumulative pro-
tection to insulin from the degrading enzymes of the
GIT [95].

Calder6n-Colén et al. encapsulated insulin B-chain
peptide sequence 9-23 (Bpep) into sodium deoxycholate
NLCs using the phase inversion temperature method
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[194, 195] and design of experiment (DOE) methods for
antigen-specific immunotherapy for diabetes. They reported
that the solubility of peptide was improved when encap-
sulated into NLCs with high encapsulation efficiency and
stability. Gellucire 44/14 was used as a surfactant that aided
in dosing flexibility, the achievement of therapeutic con-
centrations, and minimal systemic toxicity. They demon-
strated that, upon oral delivery, NLC formulation
accumulated in gut-draining lymphatic tissues such as
mesenteric and pancreatic lymph nodes in mice [196]. In
another study, the lipophilicity of two peptides, desmo-
pressin (DES) and leuprolide (LEU), was increased by the
formation of a hydrophobic ion pair (HIP) with sodium
docusate as a surfactant in NLC formulations for oral de-
livery [197].

NLCs and lipid-based nanoparticles have been utilized in
the delivery of small molecules such as RNA, and siRNA
[198], replicating viral RNA (rvRNA), and s-glutathione
[199], offering them safety from enzymatic degradation
and in vivo environment. Pfizer/BioNtech and Moderna
developed lipid-based nanoparticle-mediated delivery of
two approved COVID-19 mRNA vaccines that displayed
remarkable disease control efficacy [200, 201]. The ionizable
lipids of both vaccines provided a positive charge that en-
abled RNA complexation and were neutral at physiological
pH that lowered toxic effects and triggered payload release.
PEGylated lipid composition diminished opsonization by
serum proteins and clearance by phagocytes, allowing them
to remain for a longer period in systemic circulation.

Vaccine delivery via NLCs has also been shown in the
picture where ovalbumin was efficiently taken up by mac-
rophages when delivered by encapsulating an antigen into
chitosan-modified NLCs [202]. RNA vaccines against severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
must be stowed under cold storage conditions before use.
Gerhardt et al. devised lyophilized NLCs complexed with
RNA vaccines that exhibited long-term stability at room
temperature (for a period of greater than eight months) and
refrigerated conditions (for a period of greater than twenty-
one month) and reported the efficacy of these vaccines to be
viable for protein expression in vivo [203].

Emily A. Voigt et al. developed a potent self-amplifying
RNA (saRNA) vaccine (stable itself at room temperature)
against SARS-CoV-2 complexed with NLCs with improved
stability and degradation. In their preclinical studies, they
demonstrated that the saRNA/NLC vaccine produced potent
humoral immunity by performing pseudovirus neutraliza-
tion titer to a, f3, and A variants and inducing bone marrow-
secreting cells. When lyophilzed, saRNA/NLCs were stable
when stored for at least six months at room temperature and
for at least ten months in refrigerated settings and present
a horizon for RNA vaccines in the treatment of COVID-19
and other pandemics [204].

Oral vaccine (peptide RNA or DNA-based) delivery via
the oral route has presented challenges such as poor bio-
availability due to low oral absorption of vaccines, possibly
due to enzymatic degradation, poor membrane perme-
ability, first-pass metabolism, and complex GI environment.
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Thus, lipid-based nanoparticles and possibly NLCs could
solicit the abovementioned drawbacks by shielding the
antigens from degradation in GIT, transporting antigens to
the inductive mucosal surface, promoting antigen uptake
(M-cells and Peyer’s patches), activating immune cells, and
triggering sustained mucosal and systemic immune
responses.

3.7.6. NLCs for Delivering Herbal Medications. NLCs have
also been found to be applicable in delivering herbal/phy-
tomedicines. Lacatusu et al. adopted diosgenin and Gly-
cyrrhiza glabra extracts in NLCs to upgrade the antioxidant
and anti-inflammatory properties of the two herbal medi-
cines [175]. Silymarin (SLM), derived from the seeds of
Silybum marianum L. Gaertn., has been employed as
a hepatoprotectant for many years. SLM is a drug with low
water solubility (BCS class IV) and restricted oral bio-
availability. In their study, Piazzini et al. proposed that
employing NLCs could enhance solubility and absorption in
the intestine. The permeation study showed that SLM-NLCs
effectively improved the permeation of SLM. Furthermore,
the transportation of NLCs through the cell monolayer
relied on energy and involved pathways associated with
clathrin, caveolae, or lipid rafts [170].

NLCs could also be employed to enhance the bio-
availability of lipophilic functional biocompounds, vita-
mins, minerals, plant-derived constituents (polyphenols
and carotenoids), prebiotics, probiotics, and postbiotics
[205].

Current chemotherapy regimens for breast cancer are
primarily focused on eradicating cancer cells or slowing
down their division. Unfortunately, these treatments often
lead to undesirable side effects and exhibit limited efficacy.
For instance, they can result in conditions such as anemia,
which causes fatigue and negatively impacts patients’ overall
quality of life. In addition, issues such as the development of
drug resistance, the presence of P-glycoprotein efflux
transporters, and substantial first-pass metabolism further
complicate the delivery of an effective therapeutic dose to the
intended target site. In this challenging landscape, NLCs
present a promising solution to address the shortcomings
associated with traditional breast cancer chemotherapy.
Many herbal drugs have been delivered via the oral route
including resveratrol [206], curcumin [207], gambogic acid
[208], thymoquinone [209], and exemestane [210]. A few
patents have also been documented, which are given in
Table 5.

3.8. Patents on NLCs. NLC constituent natural lipids and
biodegradable emulsifiers have been considered safe by
regulatory bodies, and hence, their use as drug delivery
systems has expanded recently. Several patents have been
granted on NLCs that have been involved in the delivery of
medications/cosmetics via various routes such as oral
parenteral, ophthalmic, nasal, topical, CNS, and trans-
dermal. Table 5 summarizes the granted/pending patents
on NLCs.
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3.9. Toxicity Concerns of NLCs via the Oral Route.
Although, during NLC formulation, biodegradable, bio-
compatible, physiological lipids are employed, which are
generally regarded as safe, the toxicity aspect has to be
considered for their in vivo use. Many studies have been
performed addressing their safe use in both in vitro, ex vivo,
and in vivo environments. Alhalmi et al. fabricated ralox-
ifene and naringin- (RLX/NRG NLCs-) loaded NLCs for
breast cancer. RLX/NRG NLCs were prepared using
Compritol 888 ATO and oleic acid using a hot
homogenization-sonication technique optimized by a cen-
tral composite design. Their results indicated that the oral
gavage delivery of dual drug-loaded NLCs produced no
acute toxicological effects on vital organs on repetitive de-
livery of the formulations compared with control-treated
Wistar rats [234].

In another study, thymoquinone (TQ) was incorporated
into NLCs to lower its toxicity when administered orally. In
their subacute toxicity study, it was found that upon oral
administration of 100 mg/kg of TQNLC and TQ, it did not
cause mortality to either male or female but resulted in
minor toxicity to the liver and not to the extent of altering
the functions of the organ [235]. Nordin et al. developed
citral-loaded NLCs for cancer treatment and reported that
NLC-citral showed no toxic effects toward the proliferation
of mice splenocytes, and no mortality or toxic signs were
reported in the treated groups after 28 days of treatment
[236]. Zhou et al. demonstrated that tripterine-NLCs did not
exhibit substantial cytotoxicity and that cell viability was
>90% in Caco-2 cells [237]. Thus, based on the above few
studies, it could be inferred that NLCs, being composed of
biodegradable and physiological lipids, remained stable and
did not impart toxic effects during in vitro and in vivo
cytotoxicity studies.

3.10. Stability of NLCs. Although NLCs are significantly
more stable than SLNs, aggregation has the potential to
impede their long-term physical stability. In addition, the
presence of water in NLCs could also contribute to stability
problems. These problems can be resolved by converting the
nanosuspension into a solid powder through methods such
as spray drying, freeze-drying, or lyophilization [29, 238].
Spray drying changes liquid into powder form, thus
stabilizing particles by restricting mobility inside molecules,
facilitating transport, and reducing cost. A careful selection
of NLC components should be made as the lipids used may
be exposed to high temperatures during spray drying,
making them susceptible to polymorphism changes. The use
of sodium chloride as an excipient in NLC formulations
dried by spray drying rendered excellent flowability to the
formulation with optimum nanoparticle particle size [239].
Freeze-dying could lend them a long-term stability asset
while maintaining the integrity of nanoparticles. In a pre-
vious study, freeze-dried lopinavir-laden NLCs remained
stable in a long-term stability chamber with no further
increase in particle size and no reported significant change in
the polydispersity index, zeta potential, and drug content
[240]. However, the redispersibility of freeze-dried powder
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could be a determining factor, but cryoprotectants such as
aerosil (rifabuin-NLCs) [241], carbohydrate trehalose (ve-
rapamil-NLCs) [242], mannitol (tilmicosin-lipid nano-
particles) [243], sucrose, and glucose might be helpful to
achieve this [244]. A careful selection of lipid components,
surfactants and preservatives could also provide them with
physical stability for longer use. Figure 5 shows the layout of
varjous stability governing factors of NLCs.

3.11. Regulatory challenges and Marketed NLCs.
Regulations governing the constituents used in NLC for-
mulation are essential to ensure their safety for various
applications, including pharmaceuticals, biologics delivery,
diagnostics, nutritional food, and cosmetics [102, 245, 246].
Most of the components of NLCs are derived from natural
sources; hence, their in vivo use could only be permitted after
strict toxicity tests [54].

Lipid-based nanoparticles, such as SLNs and liposomes,
have several products that are available in the market
[37,247-249] though NLC entry in the market for delivering
therapeutics is not available. NLCs hold significant promise
as drug delivery carriers, yet available preclinical and clinical
studies remain inadequate. Consequently, there is a pressing
requirement to broaden their range of applications to en-
compass clinical trials conducted under appropriate ethical
oversight. This inadequacy may be attributed to the absence
of a comprehensive examination of the safety profile of
NLCs as drug carriers. Oral lovastatin NLCs were reported
to display improved stability and augmented clinical ade-
quacy indicating NLC potential [250]. Topical NLCs were
prepared for the delivery of acitretin (ACT) to treat psoriasis.
The clinical study results revealed a decrease in erythema,
followed by a significant reduction in scaling. These findings
indicate a range of improvement in disease symptoms,
ranging from moderate to excellent, as a result of using the
ACT-NLC gel formulation [251].

NLCs have been used in the formulation of various
cosmetic preparations that are currently marketed in dif-
ferent countries, for example, Cutanova Nanorepair Q10
cream, FloraGlo®, NanoLipid Restore CLR®, NLC deep
effect eye serum, extra moist softener, and Cutanova
Nanovital Q10 cream [61]. They have been involved in the
delivery of functional foods to ensure their safety from
degradation by environmental stresses such as pH, light,
and oxygen [252]. NLCs have their share in the food and
cosmetic market currently with regulatory approval;
however, their explicit use is awaited in drug delivery
applications.

3.12. Constraints of NLCs in Drug Delivery. While NLCs offer
many advantages in drug delivery, it is important to know
their potential drawbacks and limitations to ensure the
fabrication of better formulations. Below are some limita-
tions that must be taken into account while designing NLCs:

(i) Complex formulation: Developing NLCs can be
technically challenging and time consuming.
Achieving the desired properties, such as particle
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FiGure 5: Influential factors on the stability of NLCs.

size, drug encapsulation efficiency, and controlled
release, often requires careful formulation
optimization.

(ii) Polymorphism: This hypothesis posits that the

destabilization of the suspension occurs because of
matrix lipid recrystallization, leading to the
transformation of spherical particles into needle-
shaped particles. The transition to a needle-like
morphology is attributed to thermodynamic
stability and the presence of a well-ordered
B-structure within the lipid matrix. Furthermore,
it is worth noting that this phenomenon can be
influenced by surfactants, impurities, and stabi-
lizers [253]. In the process of spray drying, the
rapid evaporation of solvent leads to the formation
of unstable polymorphic forms. A similar phe-
nomenon has been documented in the spray-
congealing method where the a-form of
triglyceride can undergo a transformation into the
more stable fB-form, characterized by a higher
melting point [254]. This transformation leads to
the formation of crystalline aggregates and facili-
tates the release of drugs due to a reduction in the
number of amorphous zones within the carrier
matrix [255].

(iii) Phase separation: Particle aggregation can result in

either irreversible processes, such as coalescence
and sedimentation, or reversible processes such as
flocculation, leading to phase separation. During
storage, there is also a possibility of formulation
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gelling. To mitigate aggregation and gelling issues
and to stabilize NLC suspensions, surfactants are
employed. Depending on their characteristics,
surfactants serve distinct roles in this stabilization
process. Cationic or anionic surfactants can en-
hance the zeta potential value, whereas nonionic
surfactants function as steric stabilizers. To address
the storage stability challenges associated with
liquid lipids, solid forms can be employed. This
transformation can be achieved through processes
such as lyophilization or spray drying of the sus-
pension [256].

(iv) Lipid modification during storage: NLCs represent

dynamic systems in which lipid molecules exhibit
thermodynamic instability. This structural char-
acteristic enhances their capacity to encapsulate
drugs more effectively. However, the increased
drug incorporation efliciency in these unstable
configurations comes at the cost of enhanced drug
mobility. Over time, during storage, the rear-
rangement of the crystal lattice may result in the
formation of a thermodynamically stable config-
uration, ultimately leading to the expulsion of drug
molecules.

(v) Storage conditions: NLCs are ideally stored at

a temperature of 4°C. In this study, the physical
stability of quercetin-loaded NLCs under var-
ious temperature conditions (4, 22, and 37°C) in
the absence of light was assessed. Size, the
polydispersity index, and zeta potential (ZP)
were employed as stability indicators. The re-
sults revealed that quercetin-loaded NLCs
exhibited stability when stored at a low tem-
perature of 4°C for 28 days. However, exposure
to higher temperatures, specifically 22°C for
10 days and 37°C for 24 hours, led to particle
aggregation and a decline in the surface charge.
This phenomenon was attributed to the dis-
ruption of hydrogen bonds between surfactant
molecules at the lipid/water interface, which
occurred as a consequence of the increasing
temperature [257].

(vi) Manufacturing challenges: Scaling up the pro-

duction of NLCs from a laboratory to a commer-
cial scale can be challenging and costly, and
maintaining consistent quality during large-scale
manufacturing might be difficult.

(vii) Potential toxicity: Some lipid components used in

NLCs may have toxic effects if administered in
high doses or if they accumulate in the body over
time. It is important to carefully select bio-
compatible lipids and conduct thorough toxicity
studies.

(viii) Limited drug payload: NLCs may have limitations

in terms of the amount of drug loaded into the lipid
matrix. This limitation can be a constraint for
drugs requiring high doses.
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(ix) Drug release variability: Achieving precise control
over drug release kinetics in NLCs can be chal-
lenging. Variability in drug release profiles may
affect dosing regimens and therapeutic outcomes.

(x) Immune response: The body’s immune system
may recognize and clear NLCs, especially if they
are administered repeatedly. Surface modifications
may be necessary to reduce immunogenicity.

4. Conclusion and Future Perspectives

Designing and delivering therapeutics and biologicals via the
oral route has always posed challenges to formulators. Issues
such as poor solubility, permeability, drug degradation, first-
pass metabolism, intraenterocyte metabolism, and enzy-
matic degradation have been persistent problems. Various
approaches have been developed to address these issues, and
NLCs offer a promising solution. NLCs represent a new
generation of lipid-based nanoparticles with the capability to
deliver medications effectively. They offer higher entrapment
efficacy, protecting drugs from degradation in both in vitro
and in vivo environments. NLCs are composed of bio-
compatible and biodegradable solid and liquid lipids that are
FDA-approved. These NLCs also contain minimal amounts
of surfactants and cosurfactants, making them suitable and
safe for human use. The substantial amount of data available
on PubMed reflects the significant interest among re-
searchers in lipid-based nanoparticles.

The availability of NLC-based dermal products in the
market has prompted scientists to explore NLC formulations
for delivering therapeutics via other routes. In the context of
oral drug delivery, NLCs can prolong GI transit time, en-
hance drug bioavailability, and reduce drug-induced tox-
icity. They offer adjustable release characteristics, facilitate
the formation of micelles and chylomicrons, improve gas-
trointestinal permeation through intestinal lymphatic tro-
pism, adapt at enterocyte layers, and enhance drug retention
against P-gp pump efflux. This positions NLCs as promising
candidates for drug delivery vehicles. However, one critical
aspect to consider is the solubility of drugs in different lipids.
This is crucial because many drugs exhibit limited solubility
in various lipids, which can restrict achievable dosage levels.
NLCs have been extensively studied for delivering both
lipophobic and lipophilic drugs, brain delivery, proteins/
peptides, theranostics, and other bioactives via oral ad-
ministration. Addressing concerns related to lipid stability,
cost-effectiveness, batch variability, and shelf life is essential.

We have highlighted the information about numerous
patents that have been filed and granted for NLCs, under-
scoring their wide applicability and potential advantages over
other carriers. Continuous advancements in NLC develop-
ment, incorporating medications and biological substances,
along with rigorous evaluation, promise to expand practical
applications for formulators and researchers. Encouraging
collaboration among academia, the industrial sector, and
regulatory authorities is vital to ensure the safety and efficacy
of NLCs. This collaboration may lead to the progression from
research laboratories to well-defined clinical trials, ultimately
paving the way for potential market entry of NLCs.
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