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Abstract: Molecular docking is a key method used in virtual screening (VS) campaigns to identify
small-molecule ligands for drug discovery targets. While docking provides a tangible way to
understand and predict the protein-ligand complex formation, the docking algorithms are often
unable to separate active ligands from inactive molecules in practical VS usage. Here, a novel docking
and shape-focused pharmacophore VS protocol is demonstrated for facilitating effective hit discovery
using retinoic acid receptor-related orphan receptor gamma t (RORγt) as a case study. RORγt is
a prospective target for treating inflammatory diseases such as psoriasis and multiple sclerosis.
First, a commercial molecular database was flexibly docked. Second, the alternative docking poses
were rescored against the shape/electrostatic potential of negative image-based (NIB) models that
mirror the target’s binding cavity. The compositions of the NIB models were optimized via iterative
trimming and benchmarking using a greedy search-driven algorithm or brute force NIB optimization.
Third, a pharmacophore point-based filtering was performed to focus the hit identification on the
known RORγt activity hotspots. Fourth, free energy binding affinity evaluation was performed on
the remaining molecules. Finally, twenty-eight compounds were selected for in vitro testing and
eight compounds were determined to be low µM range RORγt inhibitors, thereby showing that the
introduced VS protocol generated an effective hit rate of ~29%.

Keywords: molecular docking; docking rescoring; negative image-based rescoring (R-NiB); brute
force negative image-based optimization (BR-NiB); pharmacophore (PHA) filtering; retinoic acid
receptor-related orphan receptor gamma t (RORγt); virtual screening (VS); inflammation

1. Introduction

Molecular docking has an established role in protein structure-based drug discovery.
However, often default scoring functions cannot identify the bioactive binding poses and
therefore cannot successfully identify the active ligands in virtual screening (VS). Unfortu-
nately, this happens even when the docking sampling has worked out satisfactorily [1–3].
A straightforward way to overcome this persistent docking scoring problem would be to
rescore the already generated docking poses using a fast and accurate scoring method.

Negative image-based rescoring (R-NiB) is a protein cavity-based docking rescoring
methodology that ranks docked compounds based on their shape and the electrostatic
potential (ESP) complementarity with the protein’s binding cavity [4]. For this purpose,
mirror images of the protein’s binding cavity known as negative image-based (NIB) models
are generated using the cavity detection and filling software PANTHER [5]. The cavity-
based docking rescoring, which is performed with the ultrafast similarity comparison
algorithm ShaEP [6], has been shown to improve the yields with several docking algorithms
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and on multiple drug targets [4,7–9]. The NIB models can also be used directly in rigid
docking known as NIB screening in which the ab initio generated ligand 3D conformers
are aligned using ShaEP against the NIB model [10,11]. The NIB models can even be
augmented with actual ligand fragments. This hybrid approach facilitated effective hit
identification for phosphodiesterase 10A in rigid docking-based VS [12].

Although the PANTHER-generated NIB models have worked well in both rigid
docking and docking rescoring [4,7,10–12], the model fitness can be improved substantially
by tinkering with cavity detection settings or even by removing a few cavity atoms manually.
This trimming can be done effectively via an automatic greedy search-driven method
known as brute force negative image-based optimization (BR-NiB) [13]. In BR-NiB, the
cavity atoms of the input NIB model are removed one at a time iteratively and the pool of
new model variants (−1 cavity atom) are benchmark tested with ShaEP using a training
set composed of known active ligands and inactive or decoy compounds. A large set of
structurally diverse inactive or decoy compounds is essential for the optimization of a
NIB model. Decoy compounds are used to validate the model’s performance in a realistic
drug screening setting where few active molecules must be identified from among a large
number of mostly inactive compounds [14]. The NIB model variant that generates the
highest enrichment as estimated by ROCKER [15] at each generation is chosen for further
editing and benchmarking until the enrichment improvement halts. Notably, the rescoring
yield can be boosted yet more by incorporating protein-bound ligand(s) into the NIB models
prior to the optimization in a process known as ligand-enhanced brute force negative image-
based optimization (LBR-NiB) [16]. Because the model’s final composition is affected both
by the improved shape/ESP scoring of active ligands and weakened ranking for the
decoys, BR-NiB and LBR-NiB can be considered as shape-focused pharmacophore (PHA)
modeling methods.

Modern drug discovery projects rely increasingly on cost-effective and target-tailored
multi-method protocols that boost the identification of hit compounds in massive VS cam-
paigns. Here, a novel docking-based VS protocol, relying on (1) flexible-ligand molecular
docking, (2) cavity-based rescoring with BR-NiB-optimized NIB models, (3) point-based
PHA filtering, and (4) molecular mechanics/generalized Born surface area (MM/GBSA)
calculations, is pioneered and tested using retinoic acid receptor-related orphan receptor
gamma (RORγ or NR1F3) as a case study. RORγ, which is a nuclear receptor acting as a
transcription factor in the cytosol of various cells, has multiple roles in regulating circadian
rhythm, metabolism, and immunity. An isoform of RORγ, RORγt or RORγ2, is expressed
in various immune cells located mostly in the thymus where it has many roles in the
regulation and activation of the immune system [17–19].

RORγt is important in mediating an immune response to aid in fighting against
pathogens or destroying abnormal malignant cells in the body. However, constantly elevated
expression of RORγt is connected to multiple inflammatory diseases such as arthritis, psori-
asis, inflammatory respiratory diseases, autoimmune encephalomyelitis, multiple sclerosis,
and inflammatory bowel disease [18,20,21]. Thus, RORγt is an appealing drug target for
inflammatory conditions, and importantly, RORγt inhibition has already been demonstrated
in vivo to reduce the symptoms of psoriasis-like skin inflammation, arthritis, and colitis in
mice [22–24]; RORγt-deficient mice develop resistance to autoimmune encephalomyelitis
and multiple sclerosis [25,26]. Lately, several clinical trials (Phase I/II) for treatment mainly
of psoriasis with RORγt modulators have emerged, highlighting the potential and growing
demand of effective RORγt inhibitors for therapeutic human use [27–29].

RORγt-mediated inflammatory response initiates when an agonist is bound into the
ligand-binding domain (LBD; Figure 1, left), stabilizing helix 11 positioning. This leads to a
conformational change of the adjacent helix 12 that further stabilizes the allosteric binding
site (ABS) and enables binding of a co-activator peptide. The activated RORγt shifts to the
cell nucleus and binds as a monomer to the specific DNA sequences activating gene tran-
scription responsible for inflammation. Antagonists block RORγt activation by preventing
co-activator binding to the ABS. Inverse agonists stabilize ABS into a conformation that
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allows it to bind a co-repressor peptide instead of the co-activator. Co-repressor binding
modulates the RORγt function in a manner that the physiological effects are the opposite
of the agonist-bound RORγt. Consequently, the genes responsible for inflammation are
downregulated, and anti-inflammatory genes are upregulated in the anti-inflammatory
effect [18,27,30,31].
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model with green carbons). On the right, the H-bond (orange dashed line) formed between His479 
and Tyr502 (magenta and pink stick carbons, respectively) in helices 11 and 12 (magenta and pink 
cartoons, respectively) is shown. The atom coloring for O, N, S, and F is set to red, blue, yellow, and 
light green, respectively. Water (WAT) is shown as a red sphere. 

Modulation of the hydrogen bonding (H-bonding) between His479 in helix 11 and 
Tyr502 in helix 12 is crucial for determining whether the helix 12 conformation favors 
either co-activator or co-repressor binding [32]. Some inverse agonists facilitate co-re-
pressor binding by preventing the inter-helix H-bond formation via steric obstruction. Al-
ternatively, as a basis for inverse agonism, the movement of helix 12 has also been sug-
gested to follow the release of a water molecule that is trapped into an unfavorably hy-
drophobic niche (Figure 1, right) [32]. 

Both structure-based and ligand-based VS approaches have been successfully em-
ployed to identify novel compounds for targeting RORγt in the literature [33–39]. Initial 
hits have demonstrated micromolar activities in the AlphaScreen assay and a cell-based 
reporter gene assay and, after optimization, a few compounds have displayed signifi-

Figure 1. Retinoic acid receptor-related orphan receptor gamma t ligand binding domain. On the
left is a 3D-structure of the ligand-binding domain of retinoic acid receptor-related orphan receptor
gamma t (RORγt; PDB: 5NTW, cartoon representation) with a co-crystallized inverse agonist (CPK
model with green carbons). On the right, the H-bond (orange dashed line) formed between His479
and Tyr502 (magenta and pink stick carbons, respectively) in helices 11 and 12 (magenta and pink
cartoons, respectively) is shown. The atom coloring for O, N, S, and F is set to red, blue, yellow, and
light green, respectively. Water (WAT) is shown as a red sphere.

Modulation of the hydrogen bonding (H-bonding) between His479 in helix 11 and
Tyr502 in helix 12 is crucial for determining whether the helix 12 conformation favors either
co-activator or co-repressor binding [32]. Some inverse agonists facilitate co-repressor
binding by preventing the inter-helix H-bond formation via steric obstruction. Alternatively,
as a basis for inverse agonism, the movement of helix 12 has also been suggested to follow
the release of a water molecule that is trapped into an unfavorably hydrophobic niche
(Figure 1, right) [32].

Both structure-based and ligand-based VS approaches have been successfully em-
ployed to identify novel compounds for targeting RORγt in the literature [33–39]. Initial
hits have demonstrated micromolar activities in the AlphaScreen assay and a cell-based
reporter gene assay and, after optimization, a few compounds have displayed significantly
enhanced RORγt inhibition with half maximal inhibitory concentration (IC50) values at
the nanomolar level [35,36]. Previously, NIB screening was used to discover novel RORγt
ligands, where pIC50 values ranged from 4.9 (11 µM) to 6.2 (590 nM) [37]. Molecular dock-
ing and/or molecular dynamics simulations have been successfully used to explore how
agonist and inverse agonist compounds bind with the RORγt LBD [27,30,40,41]. Likewise,
further optimization of absorption, distribution, metabolism, and excretion (ADME) and
physicochemical properties with guidance from molecular simulations and modeling have
assisted in improving compounds to achieve the level and duration of target engagement
required for efficacy in the clinic [33].

Overall, these prior results provide a promising starting point for discovering new
potent small-molecule RORγt inhibitors using the novel VS protocol pioneered in this study.



Molecules 2023, 28, 3420 4 of 20

2. Results and Discussion
Shape-Focused Pha Modeling and Docking Rescoring

Two NIB models of the RORγt binding cavity (Models Ia and IIa; Figure 2) were
generated with PANTHER [5] and optimized using the BR-NiB method [13] before their
docking rescoring usage (Figure 2).
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Figure 2. Negative image-based models of the RORγt binding cavity. The original cavity-filling
negative image-based (NIB) models, Model Ia (PDB: 5NTW [32], cyan transparent surface) and Model
IIa (PDB: 5VB6 [42]; yellow transparent surface), were trimmed with brute force negative image-
based optimization (BR-NiB) using the complete set of active ligands from the ChEMBL database
yielding Models Ib and IIb, respectively. Alternatively, the models were also optimized using only a
subset of the ligands yielding to Models Ic and IIc (transparent surfaces with electrostatic potential).
The protein 3D structures (blue/orange cartoon models) used in the NIB model generation with
PANTHER are shown in complex with the co-crystallized ligands (CPK models with green/magenta
carbons). The NIB models (transparent surfaces) are composed of neutral (C; gray), negatively
charged (O; red), and positively charged (N; blue) cavity atoms. The projected H-bonds (orange
dotted lines) of these cavity atoms with residues (cyan/orange stick models) lining the binding cavity
are shown. Hydrogens are omitted for clarity.

Out of the box, in the PANTHER-generated NIB models there is typically an excess
of the cavity atoms that decrease their ability to find active ligands in docking rescoring
usage (Figure 2). In BR-NiB, the effect of each cavity atom forming the NIB model, whether
charged (N/O) or neutral (C), is subjected to systematic evaluation and editing in an
automated greedy search [13]. The effect of each cavity atom or point in the NIB model is
analyzed by removing them one by one and then testing the docking rescoring ability of
each new model variant. This iterative process continues from generation to generation
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until the enrichment evaluation of the model does not show improvement. The numerical
analysis of each model was done using Boltzmann-Enhanced Discrimination of Receiver
Operating Characteristic with alpha value 20 (BEDROC20) [15,43] as the target metric.

In theory, the optimized NIB models include key features from both the active ligands
included in the training set and the inverted cavity itself. Moreover, the optimized NIB
models should perform better in recognizing active ligands from inactive decoys than
the non-optimized NIB models as suggested by the training set performance. However,
because the training set composition affects the model optimization, both a full set and
a subset containing only the lowest-ranked active RORγt compounds from the ChEMBL
database [44–46] were used in the NIB model optimization. This dual approach was done
to potentially avoid limiting the ability of the optimized models to recognize chemically
diverse RORγt inhibitors in docking-based VS.

The BR-NiB processing significantly improved the effectiveness of the NIB models in
docking rescoring usage (Figure 3). The BR-NiB-optimized models, describing the optimal
shape/ESP features for filtering active RORγt ligands, were used to rescore the flexible
docking poses of SPECS compounds. In practical terms, the docked SPECS compounds
play a dual role in this study, first, they act as the decoy molecules in the NIB model
optimization, and, second, the best ranked compounds were considered VS hits.
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Figure 3. BR-NiB optimization of the original NIB models improved the identification of the active
compounds. The semilogarithmic receiver operating characteristics curves show the following
enrichments: PDB:5NTW models Ia and Ib with the complete set of active compounds (A), PDB:5NTW
models Ia and Ic with the lowest-ranked active compounds (B), PDB:5VB6 models IIa and IIb with
the complete set of active compounds (C), and PDB:5VB6 models IIa and IIc with the lowest-ranked
active compounds (D). The blue graphs present the enrichment of the active compounds based on the
original NIB models, while the red graphs present the enrichment based on the BR-NiB-optimized
models. True positives are presented in the Y-axis, while false positives are shown in the X-axis [15,47].
The grey dotted line represents random classification of the compounds.

3. Pharmacophore Filtering Focuses Compound Selection to Inverse Agonists

Five important binding regions in the LBD of RORγt were identified (Figure 4) based
on a literature search [30,32] and visualization of available ligand-bound RORγt X-ray
crystal structures.

The first two regions are important for the stabilization of inverse agonist-binding
conformation: (1) Two PHA points were defined at sites occupied by His479 and Tyr502,
which can act as either H-bond acceptors or donors, and accordingly, non-hydrogen atoms
(N, O, S, F, Cl, Br, or I) were sought; (2) Leu324 and Phe388 are important for forming
hydrophobic or stacking effects with the binding ligand [30], and therefore, compounds not
possessing any aromatic atom within 4.5 Å of Leu324 or Phe388 were excluded. Similarly,
the third region (3) included Phe378 and compounds not possessing any aromatic atom
within 5.2 Å of the residue were excluded. The fourth region (4) included His323 and the
structural water molecule (Wat770), which can be either H-bond acceptors or donors [32,48].
Hence, the PHA filter points to exclude the compounds that did not show a possible
H-bonding atom (simplified as N, O, S, F, Cl, Br, or I) within 4.0 Å of His323 or Wat770
were generated. Additionally, hydrophobic Phe377 sterically limits the fourth region. The
fifth region (5) included Arg367, which acts as an H-bond donor. Therefore, a PHA filter
point requiring an H-bond acceptor (demonstrated as heavy atoms N, O, S, F, Cl, Br, or I)
was used.

The PHA filtering, performed with SDFCONF [49], was fine-tuned by adjusting the
optimal radii for the PHA points, which would discard as many decoy compounds as
possible with a relatively low number of active compounds being discarded. Eventually,
PHA filtering radii were determined to be 4.0 Å for region 1, 4.5 Å for region 2, 5.2 Å for
region 3, 4.0 Å for region 4, and 4.0 Å for region 5. With these optimized settings (Figure 4),
the PHA filtering excluded 83% of the SPECS compounds (with unknown activity) while
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only 37% of known active compounds were discarded. The discarded active compounds
were mostly of low activity, suggesting that the combined BR-NiB and PHA filtering could
assist in discovering compounds with a RORγt inverse agonism profile.
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Figure 4. Pharmacophore point model used in SDFCONF filtering. On the top, 2D representation of
the pharmacophore point model. Five important binding regions in the LBD of RORγt were identified.
Two different combinations of the criteria were used in the final SDFCONF screening. Red circles
demonstrate radiuses for hydrophilic groups and green circles radiuses for hydrophobic groups in
respect to the selected residues. Below, the pharmacophore points depicted in the RORγt binding
cavity (PDB: 5NTW). The protein is shown in cyan cartoon representation, important residues are
shown in sticks with orange C, blue N, and red O atoms. The spheres indicating the positions of the
pharmacophore points are colored as in the top figure. Note that the sphere sizes are not scaled to
represent the used atom selection radii.

4. Selecting Compounds for Experimental Testing

First, the top 1% of the best-ranked SPECS compounds from BR-NiB (Models Ib, c and
IIb, c; Figure 2) were selected for further consideration. Next, the molecules were screened
with the PHA points defined from the RORγt ligand binding site using SDFCONF [49]
(Figure 4). Third, the compounds were filtered by logP (< 5.5), and to avoid unspecific
binding, the potential PAINS compounds were filtered out using Canvas. Fourth, Gibb’s
free energy of binding was estimated with MM/GBSA calculations for the remaining
compounds, discarding compounds with predicted binding energy > −95 kcal/mol. Finally,
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the binding complexes were evaluated visually to choose the most promising molecules for
in vitro testing. In the manual selection of the compounds, special attention was paid to
the diversity of their scaffold or core structures. Favorable steric packing at the binding
cavity, as well as the number and quality of the formed interactions, were regarded to be
vital. In particular, the disruption of the H-bond formation between His479 and Tyr502 was
considered important, as this is favorable for inverse agonism [30]. Altogether, twenty-eight
compounds were selected for experimental testing (Figure 5).
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SPECS 10 mg compound library set, which is composed of one hundred sixty-nine thousand and
one hundred compounds, was flexibly docked and generated one million eight hundred seventy
thousand and seventy entries for both protein structures. This number includes alternative tautomers,
enantiomers, and ten docking poses for each compound referred here as duplicates (*). (2) After
BR-NiB processing, one thousand six hundred and ninety-one top-ranked SPECS compounds were
extracted for each optimized model (4 × 1691), yielding six thousand seven hundred and sixty-four
entries. This number again includes duplicates. (3) Point-based pharmacophore and PAINS filtering
was performed for the remaining compounds and, furthermore, logP filtering was done for the
remaining compounds, yielding one thousand and seventy-nine entries with duplicates. (4) Next,
one hundred top-ranked compounds were obtained based on the binding free energy calculations
for all remaining compounds. (5) Twenty-eight compounds were selected for purchase after visual
inspection. (6) Eight of the in vitro tested compounds were determined active at the low-micromolar
range, yielding a hit rate of 29%.
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5. Novel Virtual Screening Strategy Yielded an Effective Hit Rate of 29%

The full RORγt inverse agonists appear to provide the most significant anti-inflammatory
effect [27–29], and therefore, the discovery focused on finding potent novel full RORγt
inverse agonists. A total of ten compounds (9, 10, 13–15, 19, 21, and 24–26; Figures 6 and 7)
were identified to inhibit RORγt at some level. The estimated IC50 values ranged from
1.1 µM to 10.7 µM (Table 1; Figure 6). Compounds 19 and 9 were the most potent inverse
agonists of RORγt with an IC50 of 1.1 µM and 1.7 µM, respectively (Table 1). For com-
pounds 10 and 21, the reported IC50 values should be considered only rough estimates, as
the minimum signal intensity was not properly reached within the measured concentration
range. Compounds 2 and 17 were non-soluble despite their predicted logP values indicat-
ing sufficient solubility (1.69 and 3.22 for compound 2 and 2.93 and 4.75 for compound 17,
as reported by the vendor or predicted by QikProp, respectively). The IC50 value of ursolic
acid (positive control) was 185 nM, which was determined as an average of four duplicate
measurements. Omitting one duplicate measurement with a high error provided an IC50
value of 157 nM, which is similar to previously reported values (Figure 6) [36,37].
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Figure 6. IC50 plots for the RORγt inverse agonists tested in this study. The IC50 plots are shown
for the active compounds: 9, 10, 13–15, 19, 21, 24–26, and the control ursolic acid. For ursolic acid,
the plot was formed by an average of three duplicate repeat measurements. A fourth duplicate
measurement was omitted due to high measurement error at several ursolic acid concentrations.

Structural similarities between the active hit compounds and previously known
RORγt inverse agonists or antagonists were studied by 2D molecular fingerprint com-
parisons (Table 1). Compound 24 was the only compound with a maximum Tanimoto
coefficient > 0.2 due to the (7-methyl-3-oxo-5H-[1,3] thiazolo[3,2-a] pyrimidin-2(3H)-
ylidene)methyl core that was also present within known ligands. Compound 19 contains
a 4-(sulfonyl-phenyl)-quinolinecarboxamide, which was also detected in the set of known
ligands, resulting in a slightly elevated maximum Tanimoto coefficient (0.171) for the
most active VS hit. No close matches were found for compound 9, which was the second
most potent VS hit, although the 3-[(2-chlorobenzyl)oxy] benzaldehyde moiety of 9 had
structural analogs among known ligands. Overall, most novel hit compounds had low
Tanimoto coefficients (<0.15) compared to known RORγt ligands, indicating low structural
similarity with previously known RORγt modulators.
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Figure 7. 2D figures for the RORγt inverse agonists tested in this study. Figures are shown for the
active compounds: 9, 10, 13–15, 19, 21, and 24–26.

Physicochemical and ADMET properties were calculated for the eight compounds that
had well-defined experimental IC50 values (Table 2). Generally, the active hit compounds
displayed drug-like properties as evaluated by the Lipinski’s rule of five [50]. All of the
compounds had a single violation of the rule of five due to molecular weight moderately ex-
ceeding 500 Da. A second violation was caused by predicted logP > 5.0 for four compounds.
For compounds 13 and 14, QikProp predicted slightly higher logP values than Canvas.
Compounds 9 and 19, the two most active VS hits, contained no potentially reactive groups
that could cause toxicity in vivo, and displayed sufficient properties related to human oral
absorption and cell permeability. The ADMET predictions together with the molecular
similarity analysis encourages the use of these compounds as starting points for the design
of structurally novel and potent RORγt inverse agonists.
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Table 1. The experimental results, binding energy predictions, and similarities with known RORγt
inverse agonists or antagonists for virtual screening hit compounds.

Compound Compound Name
or SPECS ID IC50 (µM) 1

MM/GBSA
Energy

(kcal/mol)

Max Tanimoto
Similarity 3

Control Ursolic acid 0.2 - -
1 AE-641/30156032 Nb −102.79 -
2 AF-399/15599217 NS −98.34 -
3 AF-399/41318865 Nb −115.72 -
4 AF-399/41895766 Nb −102.31 -
5 AF-399/42017292 Nb −103.83 -
6 AF-399/42017398 Nb −98.77 -
7 AF-399/42017933 Nb −107.31 -
8 AG-205/33688028 Nb −100.63 -
9 AG-205/36940103 1.7 −105.53 0.149

10 AG-219/11789371 9.7 2 −106.91 0.093
11 AG-219/12748006 Nb −99.60 -
12 AG-690/11570086 Nb −114.9 -
13 AG-690/40752975 2.6 −98.67 0.127
14 AG-690/40753951 2.3 −99.59 0.121
15 AH-487/40936254 7.3 −110.82 0.140
16 AH-487/41654264 Nb −112.1 -
17 AK-918/11909161 NS −102.78 -
18 AK-968/12162001 Nb −93.12 -
19 AK-968/15253414 1.1 −97.45 0.171
20 AK-968/15359742 Nb −98.30 -
21 AK-968/15607331 10.7 2 −117.16 0.131
22 AK-968/15608930 Nb −99.75 -
23 AK-968/41022069 Nb −104.65 -
24 AN-648/15596220 3.8 −110.34 0.462
25 AN-989/41838307 2.4 −108.44 0.109
26 AN-989/41838397 3.2 −113.62 0.114
27 AO-081/15386326 Nb −107.94 -
28 AO-081/15386957 Nb −103.42 -

1 Experimentally determined IC50 values. Nb = No detectable binding at 5 µM concentration; NS = Non-soluble.
2 Minimum signal was not reached with the measured concentrations in IC50 determination. 3 Maximum value of
Tanimoto coefficient compared to all molecules obtained from the ChEMBL database.

Table 2. Calculated physicochemical and ADMET properties of the active virtual screening
hit compounds.

Compound MW 1 QPlogKhsa
2

% Human Oral
Absorption 3 HBD 4 HBA 5 QPPCaco

6 AlogP 7 RO5 8 #rtvFG 9

9 509.994 0.297 100 1 10.65 2766.242 4.894 1 0
13 547.647 1.63 93.086 1 6.5 991.865 4.795 2 1
14 517.621 1.597 90.076 1 5.75 819.461 4.812 2 1
15 614.842 0.686 40.411 1 10 4.28 2.823 1 0
19 528.581 0.432 78.699 2 10.25 220.29 4.802 1 0
24 587.773 0.277 46.497 1 11.7 17.451 1.776 1 1
25 538.62 1.131 87.639 3 7 859.654 5.444 2 1
26 520.63 1.116 86.241 3 7 804.649 5.239 2 1

1 Molecular weight (Da). 2 Binding to human serum albumin (Acceptable values: −1.5–1.5). 3 >80% high, <25%
poor. 4 Estimated number of hydrogen bonds donated by the solute to water molecules in an aqueous solution.
Values are averages taken over a number of configurations. 5 Estimated number of hydrogen bonds accepted by
the solute from water molecules in an aqueous solution. Values are averages taken over a number of configurations.
6 Predicted Caco-2 cell permeability in nm/sec. <25 poor, >500 great. 7 AlogP obtained from Canvas. 8 Number
of Lipinski’s rule of five violations. 9 Number of reactive groups that could cause decomposition, reactivity or
toxicity problems in vivo. Recommended value: 0–2.
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Both structure-based and ligand-based VS approaches have been successfully em-
ployed to identify novel compounds for RORγt [33–39]. For example, we have screened
RORγt using molecular docking and NIB screening [37]. Both VS techniques mostly sug-
gested the same compounds for experimental testing, supporting the viability of the in silico
methods in molecular discovery. In Rauhamäki et al. eleven of the thirty-four experimen-
tally tested molecules were verified as RORγt inverse agonists, yielding an effective hit rate
of 32% [37], matching the results of this study. One of the first studies to use VS to find novel
RORγt modulators was performed by Damm-Ganamet et al. using homology models of the
LBD of RORγt in VS, and RORα co-crystal structures in recognizing important interactions
across various chemical series. Of the one thousand seven hundred and fifty-seven hits
prioritized by the VS, sixty-five diverse hits were active in experimental testing, resulting
in a hit rate of 4.1% [39]. Zhang et al. used molecular docking to identify novel RORγt
compounds and demonstrated that thirteen of the twenty-four tested molecules showed
inhibitory activity [36]. Similarly, Song et al. utilized molecular docking and 3D shape
similarity searching and identified eight of the twenty-eight tested compounds as RORγt
inverse agonists [35]. In both studies, a relatively high concentration of 50 µM was used in
the AlphaScreen assay, and the activity limit was set to 50% [36] or 35% [35] inhibition. In
the study by Tan et al. two of the fifteen compounds suggested by molecular docking had
therapeutic effects as shown in experimental studies [34]. Lugar et al. used VS to identify
a promising scaffold for a starting point for the design of potent RORγ inhibitors [33].
Recently, Wu et al. utilized a new type of network-based VS to study RORγt modulators.
Seven of the seventy-two compounds were confirmed to be low micromolar (IC50 from
0.1 µM to 4.97 µM) RORγt inverse agonists by in vitro experiments, resulting in a hit rate
of 9.7% [38]. These studies show that VS can be used both successfully and diversely to
identify novel RORγt compounds. Furthermore, a comparison to other VS studies using
RORγt as a target shows that our methodology yields excellent hit rates.

6. Possible Binding Modes of the Most Active Inverse Agonists 9 and 19

The predicted binding modes of the active compounds suggest many common features
among them. Both compounds 9 and 19 bind across the entire cavity of the ligand-binding
pocket (Figure 8). Morpholine groups of 9 accept H-bonds from Arg367 and Glu379.
Similarly, a methoxy group of 19 accepts an H-bond from Arg367 and in the middle of
19 the amide group donates an H-bond to the main chain carbonyl oxygen of Phe377.
Likewise, both form an H-bond with His479; in 9 an ether group accepts an H-bond from
the epsilon position nitrogen of His479 and in 19 an isoxazole accepts an H-bond from
the delta position nitrogen of His479. Thus, the length of the whole cavity is covered by
H-bonds that stabilize the compounds to their places.

There are several favorable hydrophobic interactions between the amino acids lin-
ing the binding cavity and the active compounds. The two aromatic ring systems of 9
are packed against several residues: Trp317, Cys320, Leu324, Met365, Phe378, Phe388,
Leu391, Leu396, Ile397, Ile400, Leu483, and Tyr502. In 19, the aromatic ring is packed
with Leu324, Met365, Val376, Phe378, Phe388, and Phe401. Additionally, the anisole and
3-methylquinoline are surrounded by Leu287, Leu292, Ala327, Val361, Met365, Ala368, and
Phe377. Furthermore, the 5-methyl in the isoxazole group contributes to the binding by
interacting with Trp317, Cys393, Leu396, and Ile397.

Furthermore, the shape of compounds 9 and 19 matches closely the reciprocal shape of
the RORγt binding cavity (Figure 8). However, there are no obvious H-bonding partners for
the nitrogen-rich system at the core of 9 and the sulfonamide group of 19 in the predicted
binding pose. It is possible that careful modification in these areas could improve their
binding with RORγt even further. Amino acids surrounding the nitrogen linker in 9 and
the sulfonamide in 19 are hydrophobic, and thus, the introduction of hydrophobic moieties
at these positions may be worthwhile.
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Figure 8. The proposed binding modes of compounds 9 and 19 with RORγt. On the top, both
compounds 9 and 19 (ball-and-stick model with magenta/green carbons) show a high level of shape
similarity with the BR-NiB-optimized Model Ib (transparent surface with electrostatic potential).
Below, both of these compounds (gray shape-filling surface shown in the background) are also
predicted to form H-bonds (orange dotted lines) with the key residues lining the RORγt binding
cavity. For clarity, all hydrogens are omitted except for non-polar hydrogens of the compounds. See
Figure 2 for further interpretation.

The notable difference between compounds 9 and 19 is that the chlorophenyl ring in
9 protrudes between the His479–Tyr502 pair and disrupts their H-bonding. The His479 is
forced to adopt a different side chain conformation, which is stabilized by the formation
of either an H-bond with the ether group of 9 or the backbone carbonyl of Leu475. The
disruption of the His479–Tyr502 interaction and loss of the aromatic ring stacking of His479
with Phe506 could decrease the stability of the helix 12 active conformation. However,
the energy loss of losing the aromatic ring stacking can be at least partly covered by
hydrophobic interactions formed when the His479 packs between Met358 and Leu396. The
predicted binding mode of 19 showed a smaller conformational change in contrast to the
complete re-orientation of His479 with 9. Nevertheless, with 19, the His479 side chain
adopted a flipped orientation that was less optimal for the formation of the His479–Tyr502
H-bond (Figure 1).

7. Materials and Methods
7.1. Protein Structures and Preparation

RORγt structures with a full orthosteric inverse agonist bound were obtained from
the Protein Data Bank (PDB; https://www.rcsb.org/; obtained 1 June 2019) [51,52]. The

https://www.rcsb.org/
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structures were superimposed using VERTAA in the BODIL molecular modeling envi-
ronment [53], and the validity of side-chain conformations in the ligand-binding site was
checked against the electron densities with COOT (version 0.8.9.1) [48]. Two protein 3D
structures were selected for VS (PDB IDs: 5NTW [32] and 5VB6 [42]). While 5NTW is
a good representative of most inverse agonist bound RORγt structures, 5VB6 presents
an exceptional conformation state of the LBD. This unique state is explained by the crys-
tallization process, during which RORγt was covalently tethered to a cofactor peptide
stabilizing its structure thermodynamically, which in turn provides higher conformational
flexibility. Hence, focusing on 5VB6 may provide new atomic insight into the RORγt
inverse agonism [42]. The two structures were prepared with Protein Preparation Wizard
in Maestro (Schrödinger Release 2018-2; Schrödinger, LLC, New York, NY, USA, 2018;
https://www.schrodinger.com) for molecular docking and NIB modeling. Protonation
states were assigned using PROPKA with pH 7.4 ± 0.0, and added hydrogens were opti-
mized with the OPLS3 force field [54].

7.2. Ligand Structures and Preparation

RORγt inverse agonists used in the NIB model training with BR-NiB were acquired
from the ChEMBL database [46] (obtained 10 June 2019; http://dude.docking.org). Only
those full orthosteric inverse agonists with reported IC50 values of traceable data origin
were included. If several activity measurements existed for the same compound, the most
potent IC50 value was selected. The set comprised 191 active compounds. The SPECS
10 mg compound library, consisting of approximately 170,000 compounds (SPECS, The
Netherlands; www.specs.net; obtained 28 June 2019), was used as decoy compounds in
VS model optimization (25%) and in actual VS to identify RORγt inverse agonists (100%).
This SPECS library was selected for VS due to its suitable size for testing various methods,
reasonable pricing, and variability of chemistry. Both ChEMBL and SPECS molecules were
processed with LIGPREP (Schrödinger Release 2018-2: LigPrep, Schrödinger, LLC, New
York, NY, 2018) to generate possible tautomers and enantiomers with OPLS3 charges [54]
at pH 7.4 ± 0.0.

7.3. Nib Models

NIB models of the LBD for 5NTW (Model Ia) and 5VB6 (Model IIa) were constructed
with PANTHER [5] (version 0.18.19; http://www.medchem.fi/panther/). NIB models
were generated as described earlier [55]. Here, the FCC packing method with a filler radius
of 0.85 Å and box radius of 20 Å was used. All cavity points that were positioned further
than 4.5 Å from the protein were automatically removed. These NIB models served as
input models for the greedy search optimization done with BR-NiB (see below).

7.4. Molecular Docking and Rescoring

A set of molecular docking and scoring methods were compared to discover the most
optimal way of identifying active ligands in VS. The best result was acquired when the
ChEMBL compounds were docked with PLANTS [56] (version 1.2; http://www.tcd.uni-
konstanz.de/plants_download/) and rescored (–noOptimization) with ShaEP [6] (ver-
sion 1.3.0) utilizing a NIB model. In PLANTS, the binding site radius was set to 12 Å,
and the output docking conformations were clustered with a root-mean-square deviation
(RMSD) of 2 Å. The utilized scoring function was ChemPLP, and the search speed was set
to speed1. The selected docking and scoring methods did not yield a high correlation coef-
ficient, which can be explained by the heterogeneous nature of the dataset originating from
different studies. Consequently, there was broad dispersion among the IC50 values of the
RORγt inverse agonists as the values typically varied multi-fold for the same compound.
Like the ChEMBL compounds, the SPECS compounds were also docked with PLANTS and
rescored with ShaEP using the NIB models.

https://www.schrodinger.com
http://dude.docking.org
www.specs.net
http://www.medchem.fi/panther/
http://www.tcd.uni-konstanz.de/plants_download/
http://www.tcd.uni-konstanz.de/plants_download/
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7.5. Optimization of Nib Models

The original PANTHER-generated NIB models were optimized using the BR-NiB
method [13], ShaEP [6], and ROCKER [15]. The BR-NiB code is available online via GitHub
free-of-charge (https://github.com/jvlehtonen/brutenib). In BR-NiB, BEDROC20 [43]
was used as the target metric. Randomly selected one-fourth of the SPECS compounds
(~50,000) were used as decoy compounds, and all RORγt inverse agonists from ChEMBL
(191 compounds) were utilized as active compounds. The optimization was performed for
Models Ia and IIa, which, in turn, generated Models Ib and IIb, respectively (Figure 2).

Two additional BR-NiB-optimized NIB models were generated using training sets
in which the best-ranked ChEMBL molecules from the first round of optimization were
excluded. In other words, those ChEMBL compounds ranked among the best 1% of decoy
compounds for Models Ib and IIb were removed. Finally, the original NIB models (Models
Ia and IIa) were optimized a second time utilizing the new sets of active compounds
yielding Model Ic and Model IIc, respectively (Figure 2).

7.6. Pharmacophore Point Filtering

PHA point-based filtering or screening was executed using SDFCONF [49]; (https://sites.
utu.fi/sdfconf/) for the top 1% best SPECS compounds pushed forward by each optimized
NIB model (Models Ib, c and IIb, c) to obtain a set of potentially active compounds. In
SDFCONF, the screening was performed using five important binding regions of the RORγt-
LBD (Figure 4). During screening, a compound passed the PHA filter if it overlapped or
fitted into regions 1, 2, 3, and 4 or fitted regions 2, 3, 4, and 5. In addition, the compound
had to contain a heavy atom within a 4 Å radius from either Tyr502 or His479. The PHA
filtering was performed separately for all four groups of SPECS compounds that were
ranked among the best 1% based on the ShaEP rescoring.

7.7. Compound Selection

ALogP values were calculated with Canvas [57,58] (Schrödinger Release: 2018-2:
Schrödinger, LLC, New York, NY, USA, 2018) for compounds that passed both the BR-NiB
and SDFCONF screens. Those compounds with an estimated logP > 5.5 were excluded.
The RORγt-LBD is very lipophilic as reflected by the neutrality of NIB models (Figure 2),
and thus, lipophilicity may be essential for binding. This observation justified the selection
of a relatively high logP threshold value. Potential PAINS compounds were removed with
PAINS-filtering (PAINS1-3) in the Canvas program.

Binding free energy was calculated for the remaining compounds using PRIME [59]
MM/GBSA (Schrödinger Release: 2018-2: Prime, Schrödinger, LLC, New York, NY, USA,
2018) to exclude the compounds presenting weak predicted binding energies. The pre-
dictions were done individually to the docked compounds in complex with either 5NTW
or 5VB6 protein structures. The following options were used: (1) VSGB solvation model
and OPLS3 (Optimized Potentials for Liquid Simulations) force field were applied, (2) use
input partial charges ON, use implicit membrane OFF, and (3) distance from ligand = 4 Å,
sampling method: minimize. The compounds presenting binding energies > −95 were
excluded. The remaining molecules were visually evaluated, considering the energy-
minimized complexes provided by PRIME MM/GBSA. As a result, after careful visual
inspection with preference to core diversity, 28 compounds were selected for experimen-
tal testing.

7.8. Experimental Testing

The activity of the 28 selected molecules was determined at 5 µM concentration using
the Human RAR-related Orphan Receptor Gamma Reporter Assay System in a 96-well
format (Indigo Biosciences, State College, PA, USA). The assay utilizes human reporter
cells designed to express high levels of human RORγ hybrids of both isoforms 1 and 2 and
is capable of quantifying inverse agonism and agonism. The assay was performed as a
single data point analysis, and 10 molecules exhibiting the strongest activity were selected

https://github.com/jvlehtonen/brutenib
https://sites.utu.fi/sdfconf/
https://sites.utu.fi/sdfconf/
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for further analysis. The same kit was used for determining the IC50 values for the most
promising molecules. Concentrations of the tested molecules varied from 10 µM to 8 nM,
using 1/3-fold decrements within the range of 6 µM to 8 nM. Otherwise, the kit protocol
was followed, and the analysis was done similarly as in a prior study [37]. The IC50 value
of ursolic acid was determined four times as positive control for the experiments.

7.9. Molecular Similarity Analysis

The structural similarity of the in vitro hits with known active compounds for RORγt
was analyzed to estimate the structural novelty of the VS hits. All compounds having IC50
data for RORγt were downloaded from the ChEMBL database in SMILES format (2587 com-
pounds, obtained 8 February 2023). 64-bit linear molecular fingerprints were generated for
all compounds with Canvas in Maestro (Schrödinger Release: 2022-1: Schrödinger, LLC,
New York, NY, USA, 2022). Daylight invariant atom types were used. The Tanimoto coeffi-
cient, which describes fingerprint overlap, was used as the similarity metric. Completely
different or similar molecules get a Tanimoto coefficient of 0 or 1, respectively. Low values
of the Tanimoto coefficient (0–0.2) were considered to reflect structural novelty.

7.10. Physicochemical and Admet Property Calculations

Physicochemical and ADMET properties were calculated for the active VS hit com-
pounds using QikProp in Maestro (Schrödinger Release: 2018-2, LLC, New York, NY, USA,
2018). The obtained values were evaluated based on the recommended values in QikProp
manual. AlogP values were obtained from the aforementioned calculations performed
with Canvas.

7.11. Figure Preparation

Figures 1, 2 and 8 were prepared using Maestro (Schrödinger Release 2022-3; Schrödinger,
LLC, New York, NY, USA, 2018). Figure 3 was prepared using ROCKER [15] (http://www.
medchem.fi/rocker). Figure 4 (lower panel) was prepared using PyMOL (version 2.5.0,
Schrödinger, LLC). Figure 6 was prepared using GraphPad Prism version 8.4.2 (GraphPad
Software, LLC, Boston, MA, USA). The 2D structures in Figure 7 were prepared with 2D
Sketcher in Maestro (Schrödinger Release 2018-2; Schrödinger, LLC, New York, NY, USA,
USA, 2018).

8. Conclusions

This study implemented a novel VS protocol, innovatively combining the use of
flexible molecular docking with the cavity-based rescoring methodology BR-NiB, PHA
filtering, and MM/GBSA calculations, to discover RORγt inverse agonists. The atomic
compositions of the NIB models, which were used at the initial stage in shape/ESP-based
docking rescoring, were trimmed using the greedy search method BR-NiB. Previously, this
shape-focused PHA modeling technique had only been benchmark tested using multiple
drug targets and datasets with random training/test set divisions. By combining the usage
of BR-NiB with point-based PHA filtering and MM/GBSA calculations, an effective hit-rate
of 29% was achieved with limited experimental testing. In total, eight of the twenty-eight
tested small molecules inhibited RORγt at ≤10 µM level. Importantly, compound 19
inhibited the receptor with an IC50 value of 1.1 µM. The verified hits represent different
structural cores, which show the structural flexibility and diversity of the RORγt inverse
agonism and the ability of the introduced VS protocol to facilitate scaffold hopping in
docking-based VS campaigning. Overall, this work, along with the previous benchmarking
and prospective drug discovery studies, demonstrates that VS protocols built on the NIB
methodology can be readily and effectively utilized with various target proteins.
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40. Karaś, K.; Sałkowska, A.; Walczak-Drzewiecka, A.; Ryba, K.; Dastych, J.; Bachorz, R.A.; Ratajewski, M. The cardenolides strophan-
thidin, digoxigenin and dihydroouabain act as activators of the human RORγ/RORγT receptors. Toxicol. Lett. 2018, 295, 314–324.
[CrossRef]

41. Li, Z.; Liu, T.; He, X.; Bai, C. The evolution paths of some reprehensive scaffolds of RORγt modulators, a perspective from
medicinal chemistry. Eur. J. Med. Chem. 2022, 228, 113962. [CrossRef] [PubMed]

42. Li, X.; Anderson, M.; Collin, D.; Muegge, I.; Wan, J.; Brennan, D.; Kugler, S.; Terenzio, D.; Kennedy, C.; Lin, S.; et al. Structural
studies unravel the active conformation of apo RORγt nuclear receptor and a common inverse agonism of two diverse classes of
RORγt inhibitors. J. Biol. Chem. 2017, 292, 11618–11630. [CrossRef] [PubMed]

43. Truchon, J.F.; Bayly, C.I. Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. J.
Chem. Inf. Model. 2007, 47, 488–508. [CrossRef] [PubMed]

44. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [CrossRef]

45. Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; et al. The
ChEMBL bioactivity database: An update. Nucleic Acids Res. 2014, 42, D1083–D1090. [CrossRef]

46. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte,
E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [CrossRef]

47. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology
1982, 143, 29–36. [CrossRef]

48. Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr.
2010, 66, 486–501. [CrossRef]

49. Lätti, S.T.; Niinivehmas, S.; Pentikäinen, O.T. Sdfconf: A Novel, Flexible, and Robust Molecular Data Management Tool. J. Chem.
Inf. Model. 2022, 62, 9–15. [CrossRef]

50. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and
permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [CrossRef]
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