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Historical Perspective 

Sizing and packing of particles – Characterization of mono-, di- and 
trimodal particle assemblies 

Jarl B. Rosenholm * 

Physical Chemistry, Laboratory of Molecular Science and Engineering, Aurum, Åbo Akademi University, Henriksgatan 2, 20500 Åbo (Turku), Finland   

A R T I C L E  I N F O   
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A B S T R A C T   

The influence of particle size and shape on the properties of mono-, di- and trimodal particle assemblies is 
evaluated. The relative increase of surface area over bulk when particle size is reduced renders particles in the 
colloid (10–100 nm) and nano (1–10 nm) ranges extraordinary properties. Asymmetric particle shapes are 
characterized by sphericity and represented by equivalent spheres. The average diameter of particle size classes 
(size ranges) of powders are dependent on two experimentally determined properties. Average particle sizes 
(median, mean and mode) for each size class are extracted from size distributions of powders. Mono-, di- and 
trimodal particle packing efficiency is expressed as volume fractions and inverted volume fractions of close- 
packed hard spheres and related to standard cubic, orthoromic, tetragonal-sphenoidal and rombohedral- 
hexagonal packing properties. Simple models are presented to reveal the relative influence of fine, medium, 
and coarse particles and their ratios on powder properties. Experimental challenges relate to the influence of test 
compartment size and shape on particle layering and of particle shape on packing density. Particle asymmetry 
induces preferential aggregation through bond and site percolation resulting in dense closed or loose open cluster 
structures relating to particle segregation. Clusters may be characterized by structural fractals while textural 
fractals identify the particles involved. A modified Flory-Huggins lattice model for macromolecular solutions 
enables determination of combinatory entropy for cluster formation. A model is presented which relates time 
dependent volume fraction to logarithmic time dependence of compaction. This review concerns mixing of dry 
particles which corresponds to molecular processes at the gaseous (continuum, vacuum) reference state.   

1. Introduction 

Recently, enhanced interest has been focused on the extraordinary 
properties of particles in μm (10− 6 m) – nm (10− 9 m) size range. In early 
1900 the first sets of nearly monodispersed nanometer sized sols were 
prepared (Zsigmondy, von Weymarn, etc.) with an average radius in 
nanometer range. Numerous Nobel prizes were since awarded in physics 
and in chemistry to surface- and colloid researchers [1]. In 1959 Feyn-
man drew attention of physics community to the vast technological 
opportunities of fine particles [2]. This led to the foundation of nano size 
particle technology and later much of surface and colloid science was 
“reinvented” as nanoscience. Therefore, a particular attention is paid to 
the properties of fine particles alone and of mixed with coarse particles. 
Models for packing of mono- and multimodal particles are based on hard 
spheres. It was deemed necessary to shortly review the properties of 
particle size rages (classes) as well as the influence of asymmetry in 
terms of three-dimensional sphericity and projected two-dimensional 

circularity on packing efficiency. Particle size classes are extracted 
from size distribution (median, mean and mode) of powders and the 
average size of each size range (particle class) is characterized by two 
experimentally available properties. 

A proper definition of particle size and shape enables an analysis of 
packing mono-, bi- and tri-modal particle powders with reference to 
standard cubic, orthorhombic, tetragonal-sphenoidal and rombohedral- 
hexagonal closepacking of hard spheres. The rather confusing proced-
ures applied within “particle community” are replaced by straightfor-
ward representtation of particle packing in terms of volume fractions. 
The obscure dimensionless “apparent volume” is replaced by proper 
inverse volume fraction. Simple models to reveal the relative influence 
of amount and size of particles are presented and evaluated. The influ-
ence of each particle size on powder compaction is exhibited and 
quantified. 

Challenges related to experimental conditions are discussed. Such 
factors are enhanced particle layering at extended walls creating 
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excluded volumes and dependence on number of layers. The depen-
dence on wall curvature reveals a dependence of packing on test 
container size and shape. The particle asymmetry has a strong influence 
on powder compaction. Asymmetric particles form “bonds” at the edges 
which results in bond and site percolation to macroscopic particle gels. 
Models have been designed to evaluate probabilities for closed and open 
cluster structures. Open structures allow small particles to segregate 
from the gel (cluster) matrix. Fractal dimension analysis enables char-
acterization of one, − two- and three-dimensional structural fractals and 
textural fractals which represent macroscopic clusters and particles 
being a part of the network. Flory-Huggins lattice model modified to 
apply for dry particle systems enables calculation of an combinatory 
entropy for the cluster networks. A model is presented which relates 
time dependent volume fraction to logarithmic time dependence of 
compaction. 

Mixing of dry particles corresponds to molecular processes at 
gaseous (continuum, vacuum) reference state. Since wet conditions, 
including particle synthesis and dissolution involve additional strong 
interactions such systems are excluded from this review. 

2. Characterization of particles 

Little attention is usually paid on the detailed nature of particles. 
They are generally considered (nearly) spherical and of almost equal size 
(monodisperse). It is therefore necessary to recall the real properties of 
single particles and particle size fractions. Particularly interesting is to 
reveal why particle powders change from extremely cohesive to dry 
fluids (dust) as the particle size is reduced. Moreover, it seems necessary 
to introduce proper definitions of micro-, colloid- and nanoparticles. 

2.1. Classification of particle sizes 

Particle sizes are reported as average diameters of equivalent 
spheres. When the composition of molecular particles is known the 
molecular (monomer, υ1) volume and size is readily computed as: 

υ1 =
M1

ρ1 NA
=

π
6

d3
υ = kυd3

υ ⇔ dυ = 2rυ = 2
̅̅̅̅̅̅̅̅
3υ1

4 π
3

√

(1)  

where kυ = shape coefficient, M = molar mass (molecular weight), ρ  =
density and NA = Avogadro’s number. The average monomer equivalent 
surface area is available as: 

a1 = 4π r2
υ = π d2

a ⇔ da =

̅̅̅̅̅
a1

π

√

(2a) 

The corresponding area per unit volume is defined as: 

aυ =
a1

υ1
=

6d2
a

d3
υ

(2b) 

The projected (two-dimensional) area is: 

a2D = π r2
2D =

π
4

d2
2D = k2Dd2

2D ⇔ d2D =

̅̅̅̅̅̅̅̅̅̅
4a2D

π

√

(3)  

where k2D = shape coefficient. When averaged over all possible orien-
tations d2D = da for convex particles. The perimeter (p2D, circular length) 
of the corresponding projected circle having same a2D is: 

p2D = 2π r2D = π d2D = k2D d2D (4) 

The equivalent size, area and volume of some typical liquid, polymer 
and mineral samples are listed in Table 1. 

The size properties listed in Table 1 are based on the monomer 
diameter defined in Eq. (1). The monomer Gibbs free energy g1 = ΔfoGm/ 
NA aJ (aJ = 10− 18 J, ΔfoGm = molar Gibbs formation energy) and the 
dispersive (D) surface tension/energy has been calculated as σS

D =

4.87.1020 HSS mJ/m2 (HSS = Hamaker constant) [6]. As shown by water, 
the dispersive surface tension is only a part of the experimental (total) 
surface tension/energy. 

Considering available experimental methods, volumes (gravimetry), 
areas (gas adsorption) and perimeters (microscopy) of particles (Vp = Np 
υ1, Ap = Np a1, Np = number of monomers in particle) can be experi-
mentally determined and individual property dependent non-equal sizes 
calculated using Eqs. (1) to (4). Molecules in the surface layer possess 
extra ordinary electronic properties (surface states) due to broken bonds 
which result in extended distances from equilibrium position. The total 
energy of a unit volume is the sum of Gibbs free energy of the bulk 
particle and its surface energy: 

Gp = Gb
p +Gs

p = Gb
p +Ap σS (5) 

The contribution of abnormal surface electronic and catalytic prop-
erties is enhanced when particle size is reduced. To illustrate the relative 
contributions of bulk energy and energy of the surface layer we choose a 
cube with 1 mm side length (Vp = 1 mm3 = 10− 9 m, Ap = 6 mm2 =

6.10− 6 m). This cube is divided into an increasing number (Nc) of smaller 
cubes maintaining the initial total volume (Vp) constant. The surface 
layer is chosen to be 1 nm thick, which according to Table 1 encompass 
one-to-three molecular layers. Alternatively, the surface layer could be 
chosen as a monomolecular layer, but then the thickness would vary for 
each substance. The overall Gibbs (free) energy of each cube volume is 
written as: 

Table 1 
Monomer molar mass (M1/(g/mol)), density (ρ1/(g/cm3)), diameter (d1/nm), area (a1/nm2), projected area (a2D/nm2), perimeter length (p2D/nm), and volume (υ1/ 
nm3) of some typical liquid monomers, polymers, and mineral molecules; n-C6 = hexane, n-C16 = hexadecane, PS = polystyrene, PVC = polyvinylchloride, PTFE =
Teflon. Gibbs free energy of formation of molecules (− g/aJ, aJ = 10− 18 J), calculated and experimental dispersive surface tension/energy (σS

D/(mJ/m2)) [3–5].   

M1 ρ1 υ1 d1 a1 a2D p2D –g1 σS
D σS

exp  

g/mol g/cm3 nm3 nm nm2 nm2 nm aJ mJ/m2 mJ/m2 

H2O 18.015 0.997 0.0300 0.385 0.467 0.117 0.606 0.394 18.02 72.8 
n-C6 114.23 0.703 0.2698 0.802 2.019 0.505 1.259 0.011 21.92 21.6 
n-C16 226.41 0.770 0.4882 0.977 2.998 0.750 1.535 0.018 25.32 27.5 
PS 104.10 1.04 0.1662 0.682 1.462 0.365 1.071 0.007 32.14 33.0 
PVC 62.50 1.38 0.0752 0.524 0.862 0.215 0.823  37.99 39.0 
PTFE 100.02 2.20 0.0755 0.524 0.864 0.216 0.824  18.51 18.3 
SiO2 60.08 2.65 0.0376 0.416 0.543 0.136 0.653 1.422 31.90  
CaCO3 100.09 2.71 0.0613 0.489 0.752 0.188 0.768 1.874 49.19  
CaF2 78.075 3.18 0.0408 0.427 0.573 0.143 0.671 1.938 35.06  
SiC 40.11 3.21 0.0207 0.341 0.365 0.091 0.535  214.3  
Al2O3 101.96 3.95 0.0429 0.434 0.592 0.148 0.682 2.627 68.18  
TiO2 79.87 4.23 0.0313 0.391 0.481 0.120 0.614  209.4  
Fe2O3 159.69 5.24 0.0506 0.459 0.662 0.165 0.721 1.232   
Fe3O4 231.53 5.17 0.0744 0.522 0.855 0.214 0.819 1.686 102.3  
ZrO2 123.22 5.68 0.0360 0.410 0.527 0.132 0.644  131.5   
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gN =
Gp

Nc
=

Npg1

Nc
⇔ gυ =

gN

υN
=

gb
N

υb
N
+

gs
N

υs
N
= gb

υ +
aN

υs
N

σS (6)  

where the surface volume of each cube is υN
s = υN – υN

b . The volume of 
each cube is related to equivalent spheres (dN = 2rN) as: 

l3
N = υN =

π
6

d3
N ⇔ l3

N = 0.5236d3
N (7a)  

(
lb
N

)3
= (lN − 2nm)

3
= υb

N =
π
6
(
db

N

)3 ⇔
(
lb
N

)3
= 0.5236

(
db

N

)3 (7b) 

The relationship between the area of each cube and the area of 
corresponding sphere is: 

6 l2
N = aN = πd2

N ⇔ l2
N = 0.5236d2

N (8) 

The initial volume remains constant Vp = Nc
.υN = (1 mm)3 = 10− 9 m3 

but the surface area increases Ap = Nc
. aN. (Fig. 1). Therefore, the total 

area per constant volume, Ap/Vp = aN/υN = N1
. a1/ N1

. υ1 = a1/υ1 
increases. 

The general properties of particles in mm (10− 3 m) to nm (10− 9 m) 
size range are listed in Table 2. The area-to-volume ratio and the per cent 
surface volume serves as a measure of exceptional colloid and/or nano 
properties. 

As shown by Ap/Vp = aN/υN = a1/υ1 ratio and by per cent surface 
volume (υ1

s ) the contribution of surface energy (Eq. (6)) is increasing as 
compared to bulk energy when particle sizes decreases. This is partic-
ularly apparent in the 100 nm – 1 nm range. In the nano-size range 
(1–10 nm) the surface volume (Nc

.υN
s ) exceeds the bulk volume (Nc

.υ Nb ). 

2.2. Classification of particle shapes 

Particles are seldom spheres or cubes but have irregular shapes. 
When investigating them a common practice is to lay particles on their 
widest (most stable) surface. Heywood characterized (irregular) parti-
cles based on mutually perpendicular maximum length (l), maximum 
width (w) and maximum height (h) [7,8]. He assumed that l < w < h. 
Cubes are then characterized by l = w = h, platelets by l = w > > h and 
needles by l > > w = h. In general flatness ratio was expressed as (w/h) 
and as elongation ratio as (l/w). The particle volume and surface area can 
be expressed in terms of these parameters as: 

Vp = kυd3
υ = l⋅w⋅h (9a)  

Ap = ka d2
a = 2(l⋅w+w⋅h+ l⋅h) (9b) 

Based on Heywood parameters particles can be identified as (spheric, 
cubic, tetrahedral) geometric shape groups and as non-geometrical 
(rounded, sub-angular, prismatic angular, tetrahedral angular) shape 
groups. 

Feret and Martin have classified irregular particles and developed 
methods to extract equivalent spherical diameters for them (Fig. 2) [9]. 
Feret’s diameter is defined as the mean value between pairs of parallel 

tangents to projected outline of particles. Martin’s diameter is the mean 
chord length of projected outline of particles which divides the particle 
projection area in two equal parts. When the volume, surface area and 
projected area or perimeter length are experimentally determined, Eqs. 
(1) to (4) may be used to establish an equivalent sphere or circle of 
irregular particles. The size of these circles is obviously very dependent 
on the used experimental method. 

Viewed from the top, packing of layered mono-sized equivalent 
spheres may be characterized either by triangles or squares. The angle 
between adjoining spheres is π/3 or π/2, respectively. Increasing the 
number of spheres in the layers the triangles expand to a hexagonal 
pattern and the squares to a symmetrical grid (Fig. 3). 

Only four three-dimensional arrangements are possible for close- 
packed monomodal equivalent spheres; cubic, orthorhombic, tetrag-
onal and rombohedral. Fig. 4 illustrates the triangular pyramid and 
cuboid unit cells connecting the centers of these spheres. 

Cubic packing has three equal perpendicular unit cell side lengths, 
orthorombic packing has two equal and one inequal perpendicular unit 
cell side lengths, tetragonal and rombohedral packing has three inequal 
perpendicular unit cell side lengths and rombohedral (triangular) 
packing have two tilted equal perpendicular unit cell side lengths. The 
unit cell dimensions are listed in Table 3. 

The volumes may be calculated according to Heywood’s procedure 
(Eq. (9a)) and relate the volumes to equivalent spherical arrangements 
through their radii (see later). 

Based on equivalent spheres, Wadell’s (true) sphericity index is 
defined as the ratio of the surface area of a sphere having the same 
volume as the particle to its actual area (Ap) [10,11]: 

ψ =
Aυ

Ap
≈

(
dυ

dA

)2

⇔ ψ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
36π V2

p
3
√

Ap
(10a) 

Assuming that the asymmetric particle may be represented by an 
equivalent ellipsoid the sphericity index may be expressed [12] as: 

ψ =

̅̅̅̅̅̅̅̅̅

d2
s

dldm

3

√

⇔ exy =
dm

dl
, exz =

ds

dl
, eyz =

ds

dm
(10b)  

where the elongations (e) may be expressed by the shortest (ds), medium 
(dm) and longest (dl) particle diameters. Table 4 relates sphericity to 
some symmetric angular objects. 

Note that tetra- to icosahedrons have, opposite to the triangular 
pyramid and cuboid objects listed in Table 3, an increasing number of 
symmetric side planes. Tetrahedrons have four equal side planes of 
length l. Their width (w) is, (3)1/2l/2 and their height (h) is, 2(2)1/2w/3 
= (2)1/2/2, which results in the volume and surface area given in 
Table 4. 

The two-dimensional outline of a sphere, a circle, is defined (Eqs. (3), 
(4)) by Sneed’s circularity [9,12,13]: 

Fig. 1. Division of a 1mm3 cube into a growing number of smaller cubes keeping the total volume constant. A 1 nm thick surface layer increases the fraction 
(percentage) of surface volume. 
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ω =
p2

2D

4π a2D
≈

1
π d2D

(11) 

Circularity may also be expressed as the ratio of the perimeter of a 
circle having the same area as the projected area of the particle to its 
actual perimeter. Diameters will vary according to employed sphericity 
units and type of measurement dependent diameter. 

2.3. Characterization of particle size classes - powders 

In accordance to Table 2 particles with relative diameters (spheres or 
cubes) 1:2:3:4:5:6:7:8:9:10 represent ten size classes for which their 
number (N = 10), length (L), volume (V), surface area (A) and moment 
(M) can be determined. To condense the mathematical expression 

Table 2 
Side length (diameter, lN) of cubic unit particles, their unit volume (NcυN), number of cubes (Nc), unit area (NcaN), area-to-volume ratio (aN/υN), reduced bulk unit 
volume (υN

b 
= υN – υN

s ) and per cent units in surface layer υN
s (%).  

lN lN υN Nc aN aN/υN υN
b υN

s υN
s  

m m3  m2  m3 m3 % 

1 mm 1.10− 3 1.10− 9 1 6.10− 6 6.103 1.10− 9 6.10− 15 6.10− 4 

100 μm 1.10− 4 1.10− 12 1.103 6.10− 8 6.104 1.10− 12 6.10− 17 6.10− 3 

10 μm 1.10− 5 1.10− 15 1.106 6.10− 10 6.105 1.10− 15 6.10− 19 6.10− 2 

1 μm 1.10− 6 1.10− 18 1.109 6.10− 12 6.106 1.10− 18 5.99.10− 21 0.6 
100 nm 1.10− 7 1.10− 21 1.1012 6.10− 14 6.107 9.41.10− 22 5.88.10− 23 5.9 
90 nm 9.10− 8 7.29.10− 22 1.37.1012 8.10.10− 15 1.11.107 6.81.10− 22 4.75.10− 23 6.5 
80 nm 8.10− 8 5.12.10− 22 1.95.1012 6.40.10− 15 1.25.107 4.75.10− 22 3.74.10− 23 7.3 
70 nm 7.10− 8 3.43.10− 22 2.92.1012 4.90.10− 15 1.43.107 3.14.10− 22 2.86.10− 23 8.3 
60 nm 6.10− 8 2.16.10− 22 4.63.1012 3.60.10− 15 1.67.107 1.95.10− 22 2.09.10− 23 9.7 
50 nm 5.10− 8 1.25.10− 22 8.00.1012 2.50.10− 15 2.00.107 1.11.10− 22 1.44.10− 23 11.5 
40 nm 4.10− 8 6.40.10− 23 1.56.1013 1.60.10− 15 2.50.107 5.49.10− 23 9.13.10− 24 14.3 
30 nm 3.10− 8 2.70.10− 23 3.70.1013 9.00.10− 16 3.33.107 2.19.10− 23 5.05.10− 24 18.7 
20 nm 2.10− 8 8.00.10− 24 1.25.1014 4.00.10− 16 5.00.107 5.83.10− 24 2.17.10− 24 27.1 
10 nm 1.10− 8 1.00.10− 24 1.00.1015 1.00.10− 16 1.00.108 5.12.10− 25 4.88.10− 25 48.8 
9 nm 9.10− 9 7.29.10− 25 1.37.1015 8.10.10− 17 1.11.108 3.43.10− 25 3.86.10− 25 52.9 
8 nm 8.10− 9 5.29.10− 25 1.95.1015 6.40.10− 17 1.25.108 2.16.10− 25 3.13.10− 25 59.2 
7 nm 7.10− 9 3.43.10− 25 2.91.1015 4.90.10− 17 1.43.108 1.25.10− 25 2.18.10− 25 63.6 
6 nm 6.10− 9 2.16.10− 25 4.63.1015 3.60.10− 17 1.67.108 6.40.10− 26 1.52.10− 25 70.4 
5 nm 5.10− 9 1.25.10− 25 8.00.1015 2.50.10− 17 2.00.108 2.70.10− 26 9.80.10− 26 78.4 
4 nm 4.10− 9 6.40.10− 26 1.56.1016 1.60.10− 17 2.50.108 8.00.10− 27 5.60.10− 26 87.5 
3 nm 3.10− 9 2.70.10− 26 3.70.1016 9.00.10− 18 3.33.108 1.00.10− 27 2.60.10− 26 96.3 
2 nm 2.10− 9 8.00.10− 27 1.25.1017 4.00.10− 18 5.00.108    

1 nm 1.10− 9 1.00.10− 27 1.00.1018 1.00.10− 18 1.00.109     

dF
dM

l w

h

Fig. 2. Schematic side projection of maximum of an irregular particle with base length (l), base width (w), height (h), Feret’s diameter (dF) and corresponding 
Martin’s diameter (dM). Equivalent circle with equal projected surface area (d2D). Note that at proper projection, l > w > h. 

Fig. 3. Layered mono-sized equivalent spheres may be characterized either by 
triangles or squares. 

l
ll

l
l l l

l

l

l l

l

l
l

www

w w w

hh

h h

Fig. 4. Schematic illustration of unit cells of monomodal packing formations 
(side length l (= 2r = d), width w, height h); cubic (first figure from left), 
orthorhombic (second figure from left), tetragonal (third figure from left) and 
rombohedral (figure to right). The length of unmarked sides varies. 
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particle sizes (s) are related to diameters in the following way: 
Volume: 

Vp =
π
6

d3
V = kV d3

V = s3
V ⇔ dVp = s3

V dN (12a) 

Surface area: 

Ap = π d2
A = kAd2

A = s2
A ⇔ dAp = s2

A dN (12b)  

where coefficients k express the geometrical shape and N the number of 
particles. The averages using two of particle class properties are shown 
in Table 5. 

The volume moment mean equals the the mean of a typical size 
distribution (discussed later). As shown, the average diameter of size 
classes varies considerably depending on which properties are com-
bined. The overall properties of each size class are illustrated in Fig. 5. 

Mineral particles in 0.1–10 mm range can be mechanically produced 
and possess considerable fluidity due to sufficient mass (gravity) and 
small interparticle cohesion. In 1–100 μm ranges (microparticles) the 
increased number of broken lattice surfaces increases attraction (cata-
lytic activity) between crystal planes resulting in enhanced interparticle 
cohesion. The mechanical processing of such particles become difficult 
and need space or a polar solvent to reduce attraction. The thermal 
movement of colloid particles in 10 nm – 1 μm range results in enhanced 
repulsion and fluidity which overcomes gravitation. In a closed system 

the cohesion simultaneously increases. Such particles can be produced 
only by controlled synthesis. Due to gas/liquid-like behavior of colloid 
particles their (gas/liquid) suspensions are modeled as molecular as-
semblies (discussed later). The exceptional surface properties of nano 
particles in 1–10 nm range dominates over bulk properties and results in 
abnormal chemical and physical effects. 

2.4. Particle size (class) – distributions 

A proper sampling of powders is a difficult task since particles of 
different sizes segregate at standstill. Therefore, samples should be taken 
from mobile powders (conveyer belts) at different locations and at 
different times. For fine powders in air borne streams the sampling rate 
must be same as the feeding speed. The size distribution of nearly 
monodisperse powders is usually presented as fraction (per cent) of 
particles with a particular size of the total number of particles (Fig. 6) 
[5,9]. The most frequent particle size is denoted the mode. The 50% limit 
of cumulative particle size average is denoted median. It splits the dis-
tribution into two equal parts. The mean (̄s) characterizes the center of 
gravity of the distribution. The average sizes can be related by moment 
mean as: 

(mean–mode) = 3.(mean–median) (13) 

Eq. (13) does not apply for strongly asymmetric particle 
distributions. 

Some relative particle sizes were defined in Table 5. As discussed, the 
distribution mean corresponds to the volume moment size (̄s = sVM). 
There are a vast number of methods developed to characterize multi-
modal size distributions [9]. A few methods to plot a tetramodal size 
distribution are illustrated in Fig. 7. 

The Phi or TP size scale is mainly used in geology where each particle 
size segment is in one-fourth phi units: 

sTP = − log2si ⇔ si = 2− sTP (14)  

where the relative size sTP is a dimensionless particle size ratio between 
given and standard particle sizes. On arithmetic normal (AN) distribution 
scale all segments (expressed as s) are equally wide. The normal or bell- 

Table 3 
Length (l = 2r = d), width (w), height (h), coordination number (NC) and volume 
(υC) of pyramidial and cuboid unit cells in terms of radii (r) of close-packed 
spheres arranged in cubic (Cu), orthorhombic (Or), tetragonal (Te) and rom-
bohedral (Rh) order.   

Cu Or Te Rh 

Coord. nr. NC 6 8 10 12 
Length, l 2r 2r 2r 2r 
Widht, w 2r (3)1/2r (3)1/2r (3)1/2r 
Height, h 2r 2r (3)1/2r 2(6)1/2r/3 
Volume, υC 8 r3 4(3)1/2 r3 6 r3 4(2)1/2 r3  

Table 4 
Comparison of volume, surface area and sphericity of some reference solid 
shapes to approximate sphericity of few particles (l = 2r = d) side of unit cells): 
kdh(Vp) = (15 + 7(5)1/2)/4, kih(Vp) = 5(3 + (5)1/2)/12, kdh(Ap) = (25 + 10(5)1/ 

2)1/3 [12].  

Shape Figure Vp Ap ψ Example ψ 

Tetrahedron (2)1/2 

l3/12 
(3)1/2 

l2 
0.671 crushed 

glass 
0.65 

Cube (hexah.) l3 6 l2 0.806 sandstone 0.80- 

Octahedron (2)1/2 

l3/3 
2(3)1/ 

2 l2 
0.846 norm. salt 0.84 

Dodecahedron kdh l3 kdh l2 0.910 round sand 0.92- 

Icosahedron kih l3 5(3)1/2 0.939 round sand − 0.98  

Table 5 
Mean average sizes (s) of ten particle classes for which diameter of equivalent 
spheres are 1:2:3:4:5:6: 7:8:9:10 (N = 10). Input data, length L = Σs dL = 55, 
surface area A = Σs2dN = 385, volume V = Σs3dN = 3025, moment M = Σs4dN =
25,333. [9].  

Number, length mean sNL = ΣdL/ΣdN = Σs dN/ΣdN sNL = 5.50 

Number, area mean sNA =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΣdA/ΣdN

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σs2dN/ΣdN

√ sNA = 6.20 
Number, volume mean sNV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΣdV/ΣdN3

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σs3dN/ΣdN3

√ sNV = 6.71 
Length, surface mean sLA = ΣdA/ΣdL = Σs2dN/Σs dN sLA = 7.00 
Length, volume mean sLV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ΣdV/dL

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Σs3dN/Σs dN

√ sLV = 7.42 
Surface, volume mean sAV = ΣdV/ΣdA = Σs3dN/Σs2dN sAV = 7.86 
Volume, moment mean sVM = ΣdM/ΣdV = Σs4dN/Σs3dN sVM = 8.37  

Fig. 5. Schematic illustration of average surface and colloid properties of 
particle classes in the 10 mm – 10 nm range. Note that nano particle class 1 nm 
– 10 nm is excluded, since particles have abnormal properties. 
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shaped Gaussian frequency distribution is characterized by a symmetric 
distribution of sizes around the mode. Assume a frequency of particle 
sizes where the cumulative results of small fractions, each contributing 
in the same degree to final distribution. Then particle size data would 
conform to the Gaussian distribution [9,14] as: 

fN =
1
̅̅̅̅̅̅
2π

√
σN

e− (s− sN )
2/2σ2

N (15)  

where fN = probability density, s = particle size, sN = arithmetic mean of 
particle diameters and σN = standard deviation. The mean diameter for 
Gaussian distribution corresponds to the mode (Fig. 6, Table 5) and the 
size around which the distribution is centered. 

Eq. (15) results in a straight line when plotted linearly as a function 
of particle diameter. In Fig. 8 the fN -axis represents a cumulative 

quantity (Eq. (15)). The scale of fN -axis is spaced corresponding to a 
normal distribution about the mode value [9,14]. Fig. 8 illustrates that a 
real normal distribution produces a straight line. 

The slope of the straight line is related to the standard deviation 
(spread) of the distribution. Positions along the s-axis correspond to the 
mean and mode diameters and indicate the beginning and ending di-
ameters of the distribution. 

On logarithmic normal (LN) scale each size segment corresponds to 
logs. Attributing the source of particle creation to ratios of effects and 
not merely differences in excess or divergency from a mean value lead 
[14] to: 

fG =
1

̅̅̅̅̅̅
2π

√
logσG

e− (logs− logsG)
2/2log2σG (16)  

where sG = geometric mean size and σG = geometric standard deviation. 
Many plots of particle mass distribution by size (nearly) produce a 
Gaussian-shaped curve only when plotted on a logarithmic diameter 
axis. It is then informative to have particle size data presented as a log- 

Fig. 6. Schematic illustration of cumulative particle size (Σs, left diagram) and of most frequent particle size (fs, right diagram) plotted as a function of particle size. 
The mode, median and mean sizes are identified [9]. 

E

E

E

E

Fig. 7. Alternative methods to divide an arbitrary tetra-modal size distribution 
as phi (TP), arithmetic-normal (AN), logarithmic-normal (LN), zeta score (ZS) 
and maximum information entropy (ME) size segments [9]. The relative 
negentropy (E, Eq. (17)) value is indicated. 

s m

fN

Fig. 8. Cumulative normal particle size distribution and normal probability 
density (fN, Eq. (15)) plotted as a function of evenly distributed particle sizes (s) 
[14]. For details, consult [9]. 
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probability plot where the probability function is derived from binomial 
theory [9,14]. Fig. 9 is an example of a log-probability plot overlaid onto 
a differential mass plot of the same data. 

As with normal probability plot (Fig. 8), the log probability plot scale 
conforms to a normal distribution plotted as a function of logarithmic 
equivalent sphere size (s). If the measured particle diameters are log- 
normally distributed, the plot is linear. As shown, bimodal log-normal 
distributions produce two segments. Deviation from linearity in a 
particular range indicates deviation from a normal distribution in that 
range. The geometric mean diameter relates to Phi method representing 
the frequency of particles (mode) plotted against logs – normal (mass or 
number) distribution. 

Zeta Score method is based on a maximum normal Gaussian proba-
bility distribution around the mean value. The distribution segments are 
therefore narrower when particle size density is largest. Log-normal 
methods are special cases of Zero Score (ZS) method. In the maximal 
information entropy (ME) method the information density is analyzed as 
negative product of probability (p) to find a particle size within segment 
i. The natural logarithm of probability is related to negentropy (E) as: 

E = − Σipilnpi (17) 

Summation is executed over all particle segments. Due to different 
number of particle sizes in each segment the average sizes vary 
accordingly. As shown in Fig. 7 the largest information density 
(negentropy) is achieved by maximum entropy size class distribution. 

2.5. Summary 

Division of a reference particle into an increased number of smaller 
sizes enhances the accumulated surface area as compared to the constant 
total volume. For mineral particles within 1–100 μm (micro-particle) 
size range the increased number of broken lattice surfaces increases 
attraction (catalytic activity) between crystal planes resulting in 
enhanced interparticle cohesion. Particles in 10 nm – 1 μm size range 
poses gas/liquid-like behavior and therefore colloid particle (gas/liquid) 
suspensions are modeled as molecular assemblies. The exceptional sur-
face properties of nano particles in 1–10 nm size range dominates over 
bulk properties (if any) and results in abnormal chemical and physical 
effects. 

Equivalent speres can be derived for molecular species as well as for 
non-uniform model particles. Irregular particles may be represented by 
equivalent spheres. The degree of asymmetry is characterized by three- 
dimensional sphericity and projected on a plane by two-dimensional 
circularity. Depending on which property is experimentally deter-
mined the equivalent particle diameter differ considerably. Considering 
particle size classes two of their properties may be combined to deter-
mine rather different average diameters. 

Most frequent particle size (mode) and 50% average (median) 

cumulative particle sizes can be related by calculated moment mean 
particle sizes for small particle distributions. Normal probability of 
mono- and multi-mode distributions may be characterized using Phi or 
TP, normal arithmetic (NA), logarithmic normal (LN), zeta score (ZS) 
and maximum information entropy (ME) particle size segments. 
Maximal information entropy (ME) of probability to find a particle size 
within a particular size segment may be applied to all size scales. 

3. Packing of particles 

In this section the attention is focused on packing of mono-, di- and 
tri-modal particles. Particles are considered as hard spheres without 
mutual interaction. Denotations and models used by “particle commu-
nity” is rather confusing [15]. Therefore, their expressions and models 
are replaced by a straightforward physico-chemical framework. This 
provides improved opportunities for future modeling. 

3.1. Packing of monodisperse hard spheres – porosity 

Packing pattern are characterized by particle arrangements 
involving coordination (nearest neighbor) numbers (NC) and particle 
volume fractions (ϕp). There are only four different basic packing ar-
rangements based on square and simple rhombic or triangular unit cells 
(Fig. 10); cubic, orthorhombic, tetragonal–sphenoidal, and 
rhombohedral–hexagonal. 

For any particular orientation, two successive layers of particle 
spheres will be a fixed distance apart (layer spacing) defined by particle 
radius or diameter (Figs.3 and 4). Unit cells are the smallest portion of 
the system that gives complete representation of packing arrangements 
and of the distribution of voids. Some alternative stackings (not dis-
cussed further) are moreover possible within the imposed conditions 
[15]. Key characteristics of basic particle packings are listed in Table 6. 

Depending on mixing procedure there are additional experimentally 
determined packing densities:  

• Very loose packing formed during settling, ϕVLP = 0.56 (ϕVLP
− 1 = 1.79)  

• Random loose packing mixed by hand, 0.59 < ϕRLP < 0.60 (1.67 <
ϕRLP
− 1 < 1.69)  

• Dense random close packing formed by pouring, 0.63 < ϕRCP < 0.64 
(1.56 < ϕRCP

− 1 < 1.60) 

Hydrodynamic radii (rh = πra
2/2πr2D = ra/2, ra = pore radius) can be 

assigned for fictive capillaries (pores) through the packed particle ma-
trix. The particle radius can be related to particle density and their 
specific surface area as: ρp Asp = 4πrh

2/(4πrυ
3/3) = 3/rp). The fictive pore 

diameter may be calculated [16,17] as: 

dυ = 4rh = 4
1 − ϕp

ρpAspϕp
=

2
3
dp

(
1 − ϕp

ϕp

)

=
2
3
dp

(
εv

ϕp

)

= kpdp (18)  

where ϕp = Vp/Vt and εv = Vv/Vt = 1 – ϕp. As shown in Eq. (18) the pore 
diameter in a regular particle matrix is only slightly smaller than the 
particle diameters. For irregular particles, the packing features may 
differ considerably. With this information at hand the nomenclature 
used by researchers investigating porous materials is rather contradic-
tory. According to IUPAC [18]:  

• Micropores, dv < 2 nm  
• Mesopores, 2 < dv < 50 nm  
• Macropores, dv > 50 nm 

Moreover, denotations as ultra-micropores, dv < 0.7 nm and sec-
ondary micropores, 0.7 < dv < 2 nm are used. Fortunately, micropores 
have recently been renamed nanopores. 

s m

fG

Fig. 9. Differential mass plots and geometric probability density (fG, Eq. (16)) 
plotted as a function of logarithmic equivalent sphere diameter (s) [14]. For 
details, consult [9]. 
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3.2. Bimodal particle mixing and packing 

To visualize the influence of packing, different sized particles indi-
vidual partial properties are introduced. The deviation from their 
monomodal ideal packing is expressed as partial mixing functions. The 
maximum packing density is modeled separately for large (coarse), 

medium and small (fine) particles. The deviation of experimental 
packing from the modeled maximum packing is expressed by excess 
values. The dependence of ultimate packing density on particle size ratio 
and composition is evaluated. 

3.2.1. Partial properties 
When mixing reasonably spherical particles, their mass (mp/g) and 

density (ρp/(g/cm3)) are usually known. This allows definition of total 
(mass dependent) binary particle volume (cm3) in terms of partial spe-
cific volumes (vi/(cm3/g)) as: 

Vp = mpvp =
m1

ρ1
+

m2

ρ2
= m1v1 +m2v2 ⇔ vi =

(
∂Vp

∂mi

)

mj

(19)  

where vi ∕= vi
•. The latter specific partial volume represents single (pure) 

particles. It is more convenient to express specific particle volume in 
terms of weight fractions (wi) as: 

vp = w1v1 +w2v2 = v1 +w2(v2 − v1) ⇔ wi =
mi

m1 + m2
(20)  

where w1 = 1 – w2. Since dw1 = − dw2: 

Fig. 10. Upper doublet: Hard spheres in square (left) and simple rhombic (right) arrangements. Lower figures: Cubic, orthorhombic, tetragonal(− sphenoidal), and 
rhombohedral(− hexagonal) stacking of hard spheres [15]. 

Table 6 
Coordination numbers (NC), unit cell volumes (υc) expressed as sphere radius 
(υc(r)), particle fraction (ϕp), void fraction (porosity, εv), void/particle ratio (εv 
/ϕp), layer spacing (lr) and numerical layer spacing per diameter (lr/2r) [15].  

Packing NC υc ϕp εv εv /ϕp lr lr/2r 

Cubic 6 8r3 0.5236 0.4764 0.9098 2r 1.000 
Orto- 8 4(3)1/ 

2r3 
0.6046 0.3954 0.6540 2r 1.000 

rombic 8 4(3)1/ 

2r3 
0.6046 0.3954 0.6540 (3)1/2r 0.866 

Tetragonal 10 6r3 0.6981 0.3019 0.4325 (3)1/2r 0.866 
Rhombo- 12 4(2)1/ 

2r3 
0.7405 0.2595 0.3504 (2)1/2r 0.708 

hedral 12 4(2)1/ 

2r3 
0.7405 0.2595 0.3504 2(2/3)1/ 

2r 
0.816  
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dvp = dw1v1 + dw2v2 = dw2(v2 − v1) ⇔
(

∂vp

∂w2

)

= (v2 − v1) (21a) 

Alternatively (Eq. (20)): 
(

∂vp

∂w2

)

= (v2 − v1)+

[

w1

(
∂v1

∂w2

)

+w2

(
∂v2

∂w2

)]

= (v2 − v1) (21b) 

Inserted into Eq. (20) we may extract v1 as: 

v1 = vp − w2

(
∂vp

∂w2

)

= vp − w2(v2 − v1) (22a) 

From Eq. (21a) v2 may be extracted as: 

v2 = v1 +

(
∂vp

∂w2

)

⇔ v2 = vp +(1 − w2)

(
∂vp

∂w2

)

= vp +w1(v2 − v1)

(22b) 

As illustrated in Fig. 11 and in Eq. (22a) the tangent of vp at w2 =

0 equals v1 and at w2 = 1 vp equals v2. In absence of particle mass data, 
water (MW = 18.015 g/mol, ρW

25 = 0.99705 g/cm3, vW
• = 1.00296 cm3/g, 

υW
• = 300,012.10− 29 m3, dW

25 = 0,3855 nm) – ethanol (ME = 46,068 g/ 
mol, ρE

25 = 0.78504 g/cm3, vE
• = 1.27382 cm3/g, υE

• = 9.74382.10− 29 m3, 
dW

25 = 0,5709 nm) mixtures are used as example. Their volume ratio is 
3.245 and their diameter ratio is 1.482. 

One may define a mixing function (M) with reference to limiting 
(pure, vi

•) specific volumes as: 

vM
p = w1

(
v1 − v•1

)
+w2

(
v2 − v•2

)
= w1vM

1 +w2vM
2 (23) 

The partial specific volumes of mixing are presented in right diagram 
of Fig. 11. A negative contribution (reduced volume from ideality) 
characterizes improved water – ethanol interaction in excess over water 
– water or ethanol – ethanol interactions. This is indeed realized for both 
components, particularly for ethanol at small wE and increasingly for 
water when wE increases. 

It has become a practice to characterize particle mixtures in terms of 
particle volume fractions (ϕp). Since mi/ρi = mivi

• = υi
• (Eq. (19)) we may 

write for particle volume Vp (cm3): 

Vp = φ1Vp +φ2Vp =

(
υ•

1

υ•
1 + υ•

2

)

Vp +

(
υ•

2

υ•
1 + υ•

2

)

Vp (24) 

The reduced volume fractions (φi) are expressed only in terms of 
particle volumes excluding contribution of voids. Considering particles 
embedded in a cylinder (total Vt = π r2h) the sum of volume fractions of 
voids (ϕv = Vv/Vt) and particles (ϕp = Vp/Vt) equals unity. Considering 
volume fraction of particles (Eq. (20)): 

1 − ϕv = ϕp = φ1ϕ1 +φ2ϕ2 (25)  

where ϕi are partial volume fractions (∕= ϕi
•, single (pure) particles). 

Table 7 lists the volume fractions of pores (porosity, εv) and of mono-
modal particles of a wide size range. 

As shown the packing (volume fraction) is nearly independent of 
particle sizes (except for fine sand) and remain between orthorhombic 

and tetragonal packing (Table 4). It has been observed that the prefer-
ential packing is horizontally tetragonal and vertically cubic (ϕv  =

0.395, ϕp  = 0.605, 1/ϕp = 1.653) [15]. 
Since φM + φF = 1 Eq. (25) may for mixing of medium-fine particles 

be rewritten (Eq. (20)) as: 

ϕp = ϕM +φF(ϕF − ϕM) ⇔
(∂ϕp

∂φF

)

= (ϕF − ϕM) (26) 

According to Eqs. (22a) and (22b) we may write for their partial 
derivatives: 

ϕM = ϕp − φF

(∂ϕp

∂φF

)

= ϕp − φF(ϕF − ϕM) (27a)  

ϕF = ϕp +(1 − φF)

(∂ϕp

∂φF

)

= ϕp +φM(ϕF − ϕM) (27b) 

Alike in Fig. 11, extraction of partial (inverse) particle volume 
fraction (ϕp, ϕp

− 1) contributions of a binary mixture of medium (dM =

0.711 mm) and fine (dF = 0,089 mm) roughly spherical sand particles 
(Table 7) at φF = 0.25 is presented in Fig. 12. 

Partial particle volume fractions (ϕp) is plotted in Fig. 13 as a func-
tion of reduced volume fraction (φF) of fine particles. 

Alternatively, the model may be based on inverse particle volume 
fractions (Eq. (25)) as: 

1
/

ϕp = ϕ− 1
p = φM ϕ− 1

M +φF ϕ− 1
F (28)  

where 1/ϕiare partial inverse partial volumes (∕= 1/ϕi
•, Table 7). The 

unconventional approach used within “particle community” to denote 
inverted volume fractions dimensionless apparent volumes (Va) [15] is 
confusing. Written in terms of partial contributions (Eqs. (27a),(27b)) 
we find that: 

ϕ− 1
M = ϕ− 1

p − φF

(
∂ϕ− 1

p

∂φF

)

= ϕ− 1
p − φF

(
ϕ− 1

F − ϕ− 1
M

)
(29a)  
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Fig. 11. Left diagram: Specific volume (vsp/(cm3/g), 
filled circles) and partial specific volumes of water 
(triangles) – ethanol (squares) mixtures plotted as a 
function of weight fraction ethanol (wE). Ideal mixing is 
indicated as a dashed line between end points. The 
partial contributions (open circles) are extracted using 
the slope, dvmix/dwE = 0.295 at wE = 0.6 (dotted line). 
According to Eq. (22a) vW = 0.950 at wE = 0 and Eq. 
(22b) vE = 1.246 at wE = 1 [3]. Right diagram: Corre-
sponding partial specific volume of mixing (deviation 
from ideality, Eq. (23)).   

Table 7 
Porosity (εv) and volume fraction of monomodal particles (ϕp = ϕi*, single (pure) 
particles) of a wide range of densities (ρp/(g/cm3)) and sizes (dp/mm) packed in 
a cylinder of unit volume [19].  

Particles ρp dp εv ϕp 1/ϕp 

Lead shots 11.25 4.826 0.369 0.631 1.585 
Lead shots 11.25 3.810 0.369 0.631 1.585 
Lead shots 11.25 2.794 0.370 0.630 1.587 
Lead shots 11.25 1.778 0.369 0.631 1.585 
Steal bearings 7.87 7925 0.392 0.608 1.645 
Coarse sand 2.69 4.47 0.377 0.623 1.605 
Medium sand 2.76 0.711 0.382 0.618 1.618 
Fine sand 2.75 0.089 0.425 0.575 1.739  
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ϕ− 1
F = ϕ− 1

p +(1 − φF)

(
∂ϕ− 1

p

∂φF

)

= ϕ− 1
p +φM

(
ϕ− 1

F − ϕ− 1
M

)
(29b) 

Partial inverse particle volume fractions (ϕi
− 1) are plotted in Fig. 13 

as a function of reduced volume fraction (φF) of fine particles. 
Volume fractions reach a maximum (ϕmax) or minimum (ϕmin

− 1 ) when 
0.25 < φF < 0.45. The partial packing contribution of fine particles is 
greatest when φF < 0.3 and is thereafter reduced to nearly ideal inverse 
volume fractions. The partial packing contribution of medium particles 
is initially nearly on ideal level but is enhanced when φF > 0.2. 

The ideal mixing of medium and fine particles may be used as a 
reference for evaluations: 

ϕid
p = (1 − φF)ϕ

•
M +φF ϕ•

F (30)  

where ϕM
• , ϕF

• represent volume fractions of each single particle type 
(Table 7). The straight-line (diamonds) connecting intercept values in 
Fig. 13 represents ideal mixing. The degree of compression due to 
enhanced mixing may be expressed as the deviation from single particle 
packing values (ϕM

• , ϕF
•) as mixing (M) functions: 

ϕM
p = (1 − φF)

(
ϕM − ϕ•

M

)
+ φF

(
ϕF − ϕ•

F

)
=

= (1 − φF)ϕ
M
M + φFϕM

F = ϕp(φF) − ϕid
p (φF)

(31) 

Volume fractions of mixing and partial volume fractions of mixing 
are illustrated in Fig. 14. As shown, the observations made in Fig. 13 are 
confirmed and quantified on an expanded scale. As shown, the total 
volume fraction of mixing is characterized by increased packing effi-
ciency (positive ϕp deviation). Optimal mixing conditions appear at 
0.25 < φF < 0.45 (location of ϕp

M maximum). Obviously, mutual mixing 
(M F packing) is at all proportions more favourable than fractional 
contribution of individual particle (M M, F F) packing. As shown 
in left diagrams of Fig. 14 packing contribution of medium particles is 
enhanced by the presence of fine particles when φF > 2.5. This limit 
corresponds probably to fine particles filling the voids between medium 
particle clusters. When φF > 4.5 medium particles become immersed in 
fine particles the partial volume fraction of mixing is stabilized at a 
rather constant ϕM

M value. The opposite applies for fine particles for 
which mutual effective void packing is successively reduced within 0 <
φF < 0.45 to the ideal level. Thereafter immersion of medium particles 
does not influence markedly the packing efficiency of fine paticles. 

The corresponding ideal mixing of medium and fine particles as a 
function of reduced volume fraction of fine particles (φF) may be used as 
a reference: 
(

ϕ− 1
p

)id
= (1 − φF)

(
ϕ•

M

)− 1
+φF

(
ϕ•

F

)− 1 (32)  

where ((ϕM
• )− 1, (ϕF

•)− 1) represent inverse volume fractions of each single 
particle type (Table 7). The straight-line connecting intercept values 
(diamonds) in Fig. 13 represents ideal mixing. The degree of shrinking 
due to mixing (M) may be expressed as the deviation of experimental 
values from this ideal mixing as: 

F

p

p

Fig. 12. Volume fractions (ϕp, circles) and inverted volume fractions (1/ϕp =

ϕp
− 1, triangles) of mixtures of medium (dM = 0.711 mm) and fine (dF = 0.089 

mm) particles plotted against reduced n volume fraction of fine particles (φF). 
Partial contributions are extracted at φF = 0.25 (open symbols, dotted lines) 
using the slope dϕp/dφF = 0.23 and dϕp

− 1/dφF = − 0.44, respectively. According 
to Eq. (27a) ϕM = 0.664 at φF = 0 and Eq. (27b) ϕF = 0.894 at φF = 1. According 
to Eq. (29a) 1/ϕM = 1496 at φF = 0 and Eq. (29b) 1/ϕF = 1056 at φF = 1. 

Fig. 13. Left diagrams: Porosity (εv, asterisks) and volume fractions (ϕp, circles) of mixed medium and fine particles. Partial volume fractions (medium ϕM triangles, 
fine ϕF squares) and ideal volume fraction of mixing (diamonds) plotted as a function of reduced volume fraction of fine particles (φF). Right diagrams: Corresponding 
dependencies of inverse volume fractions (ϕp

− 1). Upper diagrams: Volume fraction scale expanded. 
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(
ϕ− 1

p

)M
= (1 − φF)

[
ϕ− 1

M −
(
ϕ•

M

)− 1
]
+ φF

[
ϕ− 1

F −
(
ϕ•

F

)− 1
]
=

= (1 − φF)
(
ϕ− 1

M

)M
+ φF

(
ϕ− 1

F

)M
=
(

ϕ− 1
p

)exp
(φF) −

(
ϕ− 1

p

)id
(φF)

(33) 

Experimental inverse mixing volume fractions and ideal inverse 
volume fractions are illustrated in Fig. 14. The interpretation of volume 
fractions of mixing seems more straightforward as compared to inverse 
functions characterized by negative deviations. 

3.2.2. Models for binary particle mixing 
Packing models assume that smaller particles are filling the voids 

between larger particles (Fig. 15). Alternatively large particles are 
immersed in smaller particles. This results in loss of one dimension of 
packing freedom (excluded volume). 

When large (coarse, medium) particles dominate for small (medium, 
fine) φS one finds that [20–22]: 

(
ϕp
)N

L =
ϕ•

L

1 − φS
(34a) 

For large particles ϕL
• = ϕC

•= 0.623 or ϕL
• = ϕM

• = 0.618 (Table 7). 
When small particles dominate for large φS one finds that [20–22]: 

(
ϕp
)N

S =
ϕ•

S

φS + ϕ•
S(1 − φS)

(34b) 

For small particles ϕS
• = ϕM

• = 0.618 or ϕS
• = ϕF

•= 0.575 (Table 7). 
These nonlinear (N) models are fitted to experimental results in Fig. 16. 

The nonlinear models predict the changes of volume fraction quite 
accurately and cross each other around a maximum (ϕmax) at 2.7 < φS <

3.0, which agrees roughly with experimentally observed ϕp values but 
the overall fit depends on dL/dS. The fit of measured ϕp curve as function 
of φS (S = M, F) seems to be optimal close to ϕp saturation at dL/dS = 50, 
as judged from non-existent wedging (void contribution). The two 
models thus explain the enhanced packing enhancement due to mixing 
large and small particles. The larger the particle size difference is, the 
larger is packing efficiency and the better is predictivity of the models. It 
is quite remarkable that the packing density of large particles alone (ϕL

•, 
L = M, C) can predict the enhanced packing at low φS (S = M, F). The 
packing density of small particles alone (ϕS

•, S = M, F) can, on the other 
hand successfully explain the increased packing density at large φS. 

The predicted cross-point can be evaluated using Eqs. (34a) and 

F

F

p
M

p
M

p
M

p
M

Fig. 14. Left diagrams: Volume fraction of mixing medium and fine particles (ϕp
M, circles, Eq. (31)) and partial volume fractions of mixing (medium ϕM

M, triangles, fine 
ϕF

M, squares) particles plotted as a function of reduced volume fraction of fine particles (φF). Right diagrams: Corresponding dependencies of inverse volume fractions 
of mixing ((ϕp

M)− 1, circles, Eq. (33) medium (ϕM
M)− 1, triangles, fine (ϕF

M)− 1, squares). Upper diagrams: Volume fraction scale expanded. 

Fig. 15. When small particles fill the voids between large particles (left) and large particles replace small particles (middle) a wall effect appear due to the loss of one 
degree of packing freedom (right). 
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(34b) since both ϕp and φS equal at this point. By eliminating φS we find 
that: 

ϕN
max = 2ϕ•

p −
(

ϕ•
p

)2
(35a)  

where ϕp
• is given by the system investigated. By eliminating ϕp we find 

that: 

φN
max =

ϕ•
p −

(
ϕ•

p

)2

2ϕ•
p −

(
ϕ•

p

)2 (35b) 

The results for model systems are;  

• For the coarse – medium system (dC/dM = 6.3) the model predicts 
that ϕC

N = 0.858 (Eq. (35a)) at φM
N = 0.274 (Eq. (35b)) and that ϕM

N =

0.854 (Eq. (35a)) at φM
N = 0.276 (Eq. (35b). The highest experimental 

point found is ϕp = 0.738 at φM = 0.3.  
• For the medium – fine system (dM/dF = 8.0) the model predicts that 

that ϕM
N = 0.854 (Eq. (35a)) at φF

N = 0.276 (Eq. (31b) and that ϕF
N =

0.819 (Eq. (35a)) at φF
N = 0.298 (Eq. (35b)). The highest experi-

mental point found is ϕp = 0.733 at φF = 0.3.  
• For the coarse – fine system (dC/dF = 50) the model predicts thatϕC

N =

0.858 (Eq. (35a)) at φF
N = 0.274 (Eq. (35b)) and that ϕF

N = 0.819 (Eq. 
(35a)) at φF

N = 0.298 (Eq. (35b). The highest experimental point 
found is ϕp = 0.815 at φM = 0.3. 

Although model fits are very good, the highest experimental point is 
slightly off the location of maximum cross-over point. 

Linear dependencies of inverse volume fraction (ϕp
− 1, representing 

apparent volume, Va) models are based on mixtures of monodisperse 
spherical particles but serves as a reference for polydisperse non- 
spherical particle mixtures. Initially the dL/dS ratio is unity and ϕp

− 1 =

(ϕL
•)− 1= 1 at φS = 0 [15]. It is assumed small particles fill the voids 

between large particles (onward direction) and ϕp
− 1 = (ϕS

•)− 1 = 0 at φS =

1. For mixtures of large (L) and small (S) particles (Table 7) the equation 
for straight lines gives for the onward direction: 

ϕ− 1
p = ϕ− 1

p,0 +

(
ϕ− 1

p,0 − ϕ− 1
p,1

φS,0 − φS,1

)
(
φS − φS,0

)
= ϕ− 1

p,0 − ϕ− 1
p,0φS (36a)  

and: 

ϕ− 1
p = ϕ− 1

p,1 +

(
ϕ− 1

p,1 − ϕ− 1
p,0

φS,1 − φS,0

)
(
φS − φS,1

)
= ϕ− 1

p,1 +
(

ϕ− 1
p,1 − 1

)
(φS − 1) (36b)  

in reversed direction. Introducing volume fractions for coarse and me-
dium (dC/dM = 6.3) sand fractions we find for the linear (L) model that: 

(
ϕ− 1

p

)L

C
=
(
ϕ•

C

)− 1
− φM

(
ϕ•

C

)− 1 (37a)  

(
ϕ− 1

p

)L

F
=
(
ϕ•

M

)− 1
+(φM − 1)

[(
ϕ•

M

)− 1
− 1

]
= 1+φM

[(
ϕ•

M

)− 1
− 1

]
(37b) 

Introducing volume fractions for medium and fine (dM/dF = 8.0) 
sand fractions we find for the linear (L) model that: 
(

ϕ− 1
p

)L

M
=
(
ϕ•

M

)− 1
− φF

(
ϕ•

M

)− 1 (38a)  

(
ϕ− 1

p

)L

F
=
(
ϕ•

F

)− 1
+(φF − 1)

[(
ϕ•

F

)− 1
− 1

]
= 1+φF

[(
ϕ•

F

)− 1
− 1

]
(38b) 

Introducing volume fractions for coarse and fine (dC/dF = 50) sand 
fractions we find for the linear (L) model that: 
(

ϕ− 1
p

)L

C
=
(
ϕ•

C

)− 1
− φF

(
ϕ•

C

)− 1 (39a)  

(
ϕ− 1

p

)L

F
=
(
ϕ•

F

)− 1
+(φF − 1)

[(
ϕ•

F

)− 1
− 1

]
= 1+φF

[(
ϕ•

F

)− 1
− 1

]
(39b) 

Note that these dual inverse volume fractions are total, but not 
partial properties. Model plots are presented in Fig. 17. 

The linear models predict the changes of inverse volume fraction 
quite accurately and cross each other around a minimum (ϕmin

− 1 ) at 2.5 <
φS < 2.8, which agrees roughly with experimentally observed ϕpvalues 
but the overall fit depends on dL/dS (Fig. 17). The fit of measured ϕp

− 1 

curve as function of φS seems to be optimal close to saturation (ϕsat
− 1) at 

dL/dS = 50, as judged from non-existent wedging (void contribution). 
The two models thus explain successfully the enhanced packing ef-

ficiency caused by mixing large and small particles. The larger the 
particle size difference is, the larger is packing density and the better is 
predictivity of the models. It is quite remarkable that the packing density 
of large particles alone, (ϕL

•)− 1 can predict the enhanced packing 
disturbance at low φS. The packing density of small particles alone, 
(ϕS

•)− 1 can on the other hand successfully explain the increased packing 
density at large φS (small φL). The deviation of experimental inverse 
partial volume of mixing from model predictions (voids contribution) 
may be expressed as excess functions. For mixtures of medium and fine 
particles the excess (E) functions may be written as: 
(

ϕ− 1
p

)E

L
=
(

ϕ− 1
p

)L

L
(φS) − ϕ− 1

p (φS) (40a)  

(
ϕ− 1

p

)E

S
=
(

ϕ− 1
p

)L

S
(φS) − ϕ− 1

p (φS) (40b) 

Excess functions for medium and fine particle system are plotted in 
Fig. 18 as a function of reduced volume fraction of fine particles. 

The larger particle size ratio is, the better is the model fit and the 
smaller is the excluded volume correction. The excess (deviation) needs 
only to be recorded until crossing point of linear medium (large, L) and 

Fig. 16. Fit of non-linear models ((ϕp)N, Eqs. (34a) left, (34b) right, small symbols) to volume fractions (ϕp) of course – medium (circles, dC/dM = 6.3, left diagram), 
medium – fine (triangles, dC/dM = 8.0 middle diagram) and coarse – fine (squares, dC/dM = 50 right diagram) particle mixtures. 
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fine (small, S) particle branches. The crossing point of model fits (φmin) 
gives the reduced volume fraction of the optimal (densest packed, ϕmin

− 1 ) 
particle mix. Eqs. (37a)-(39b) can be generalized as: 
(

ϕ− 1
p

)L

L
=
(
ϕ•

L

)− 1
− φS

(
ϕ•

L

)− 1 (41a)  

(
ϕ− 1

p

)L

S
=
(
ϕ•

S

)− 1
+(φS − 1)

[(
ϕ•

S

)− 1
− 1

]
= 1+φS

[(
ϕ•

S

)− 1
− 1

]
(41b)  

where larger particles (C, M) are denoted L and smaller (M, F) particles 
are denoted S. Eliminating φS, we recover the minimum inverse volume 
fraction as: 

ϕ− 1
p,min =

(
ϕ•

L

)− 1( ϕ•
S

)− 1

(
ϕ•

L

)− 1
+
(
ϕ•

S

)− 1
− 1

(42a) 

Eliminating ϕp
− 1, we find the coordinate of this minimum as: 

φS,min =

(
ϕ•

L

)− 1
− 1

(
ϕ•

L

)− 1
+
(
ϕ•

S

)− 1
− 1

(42b) 

We may now compare the model prediction with the experimentally 
found minimum values in Fig. 17:  

• Coarse–medium model (dM/dM = 6.3) ϕp, min
− 1 = 1.168 at φM = 0.272 

and experimentally ϕp, min
− 1 = 1.355 at φM = 0.3.  

• Medium – fine model (dM/dF = 8.0) ϕp, min
− 1 = 1.194 at φF = 0.262 and 

experimentally ϕp, min
− 1 = 1.364 at φF = 0.3 (Fig. 13).  

• Coarse – fine model (dM/dF = 50) ϕp, min
− 1 = 1.191 at φF = 0.258 and 

experimentally ϕp, min
− 1 = 1.227 at φF = 0.3. 

3.2.3. Dependence on particle size ratios 
Fig. 19 shows the dependence of (inverted) volume fraction (ϕp, ϕp

− 1) 
plotted as a function of dL/dS where dL = 3.15 mm and 0.04 < dS/mm <
1.55 (metal shots, triangles and squares) or dL = 4.47 mm (sand 

particles, circles) and 0.09 < dS/mm < 7.92 [15,19,23,24]. The levels 
for random loose packing (0.59 < ϕRLP < 0.60, 1.67 < ϕRLP

− 1 < 1.70) and 
random close packing (0.63 < ϕRCP < 0.64, 1.56 < ϕRLP

− 1 < 1.57) of 
monodisperse spheres are indicated. 

Increasing particle size ratio (dL/dS) the packing densities of binary 
systems exceed by far the maximum packing density of single particle 
systems (ϕp,max = 0.741 ϕp,max

− 1 = 1.35). The less the diameter of small 
particles as compared to large particles is, the greater is ϕp and the 
smaller is wedging (pore volume). The break point between fast and 
slow change of (inverted) volume fraction is located at 6.5 < dL/dS < 7.0 
which corresponds to triangular pores between three large particles. The 
limiting condition for dense packing is that voids between large particles 
are sufficient for small particles to migrate to equilibrium positions. 
Above break point (dL/dS > 7) the migration of small particles become 
free and therefore volume fractions become nearly independent on dL/ 
dS. Note that one model system (Table 7) is below or at this break point 
(dC/dM = 6.29), one is slightly above break point (dM/dF = 7.99), and 
one is close to saturation point (dC/dF = 50.2). The hydrodynamic model 
(Eq. (18)) predicted that this limit is reached at: 

F FM

p

Fig. 17. Inverse volume fraction (ϕp
− 1) of coarse and medium (circles, dC/dM = 6.3, left diagram), medium and fine (triangles, dC/dM = 8.0, middle diagram), coarse 

and fine (squares, dC/dF = 50, right diagram) particle mixtures plotted as a function of reduced medium (left, diagram) and of fine (middle and right diagram) particle 
fractions. Model fits: Eqs. (37a)-(37b)) small spheres, Eqs. (38a)-(38b)) small triangles, Eqs. (39a)-(39b)) small squares. 

p

F

Fp
E

Fig. 18. Left diagram: Experimental inverse volume fraction of medium and 
fine particle mixtures (circles, Fig. 17). Linear model prediction medium par-
ticle branch (triangles, Eq. (38a)) and linear prediction of fine particle branch 
(squares, Eq. (38b)). Right diagram: Excess (deviation) of predicted inverse 
volume fractions from experimental medium (triangles, Eq. (40a)) and fine 
(squares, Eq. (40b)) particle branches. 

dL/dS dL/dS

dL/dS dL/dS

p

p

Fig. 19. Single (circles [15,19]), binary experimental (triangles [15,23]), cor-
rected (squares [15,24]) and hydrodynamic (diamonds, Eq. (43)) particle vol-
ume fractions (ϕp, upper diagrams) and inverse volume fractions (ϕp

− 1, lower 
diagrams) of packed steel metal shots and sand plotted as a function of the ratio 
between large and small particle diameters (dL/dS). Levels of random loose 
packing (ϕRLP = 0.595, ϕRLP

− 1 = 1.68) and random close packing (ϕRLP = 0.65 
ϕRLP
− 1 = 1.58) indicated. 
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dv =
2
3

(
1

ϕp
− 1

)

dp ⇔
dL

dS
≈

dp

dv
=

3
2

(
ϕp

1 − ϕp

)

⇔ ϕp =
(dL/dS)

1.5+(dL/dS)
(43) 

For cubic dense packing of single particles dL/dS = 1.649, for 
orthorhombic packing dL/dS = 2.294, for tetragonal packing dL/dS =

3.469 and for rhombohedral packing dL/dS = 4.280. The dependence of 
(inverted) volume fraction on dL/dS is inserted in Fig. 19. The agreement 
with experimental values is particularly good within 3 < dL/dS < 7. 
Depending on mixing method there are additional experimentally 
determined packing densities. Limiting values for dense packing may 
also be deduced on geometric grounds. Assuming a square between four 
large particles (Fig. 3) the critical ratio of entrance of small particles 
[23] is: 

dv =
( ̅̅̅

2
√

− 1
)

dp = 0.414dp ⇔
dL

dS
≈

dp

dv
= 2.414 (44a) 

Assuming a triangle between three large particles (Fig. 3) the critical 
ratio of entrance [23] is: 

dv =

(
2̅
̅̅
3

√ − 1
)

dp = 0.155dp ⇔
dL

dS
≈

dp

dv
= 6.414 (44b) 

During (mechanical) densification of particle mixtures the larger 
particles are somewhat mobile and therefore small particles may 
migrate through pores that are smaller at equilibrium. If large particles 
were added simultaneously with small particles the latter may get 
trapped (jammed) in the voids being unable to migrate. For undisturbed 
packing of large particles, a critical ratio of occupation may be defined. 
For the loose cubic (quadratic, Fig. 10) arrangement the pore diameter 
[23] is: 

dv = 0.732dp ⇔
dL

dS
≈

dp

dv
= 1.366 (45a) 

The tightest packing is achieved for two rhombohedral (Fig. 10) 
particle arrangements: 

dv = 0.414dp ⇔
dL

dS
≈

dp

dv
= 2.414 (45b)  

dv = 0.225dp ⇔
dL

dS
≈

dp

dv
= 4.444 (45c) 

It is interesting that small particles (dS) which just enter the square 
pore (Eq. (44a)) also just occupy the void of the tightest packing (Eq. 
(45b)) without disturbing the arrangement of large particles. It appears 
that packing ratios are rather independent on the absolute particle size 
and particle density, but mainly on the size ratio. Note that all critical 
size dependent ratios remain within the steep change of (inverted) 
volume fraction range (dL/dS < 6.5). 

3.3. Trimodal particle packing 

The influence of packing of different sized particles may be evaluated 
individually for each component by applying partial properties [25,26]. 
The maximum packing is modeled for coarse (C), medium (M), and fine 
(F) particles. 

3.3.1. Partial properties 
The total particle volume (cm3) is expressed in terms of specific 

volumes (vp/(cm3/g), Eq. (19)) as: 

Vp = m1v1 +m2v2 +m3v3 ⇔ vi =

(
∂Vp

∂mi

)

vj

(46a)  

or in terms of weight fractions (Eq. (20)) as: 

vp =
Vp

mp
= w1v1 +w2v2 +w3v3 (46b) 

Introducing w3 = 1 – w1 – w2 we find that: 

vp =
Vp

mp
= v3 +w1(v1 − v3)+w2(v2 − v3) (46c) 

Partial differentiation with respect to w1 yields [25,26]: 
(

∂vp

∂w1

)

w2

=

(
∂v3

∂w1

)

+ (v1 − v3) + w1

[
∂(v1 − v3)

∂w1

]

+ w2

[
∂(v2 − v3)

dw1

]

=

= (v1 − v3) +

[

w1

(
∂v1

∂w1

)

+ w2

(
∂v2

∂w1

)

+ w3

(
∂v3

∂w1

)]

w2

= (v1 − v3)

(47a) 

Partial differentiation with respect to w2 yields [25,26]: 
(

∂vp

∂w2

)

w1

=

(
∂v3

∂w2

)

+ (v2 − v3) + w1

[
∂(v2 − v3)

∂w2

]

+ w2

[
∂(v2 − v3)

dw2

]

=

= (v2 − v3) +

[

w1

(
∂v1

∂w2

)

+ w2

(
∂v2

∂w2

)

+ w3

(
∂v3

∂w2

)]

w1

= (v2 − v3)

(47b) 

Rewriting Eq. (46c) yields [25,26]: 

v3 = vp − w1(v1 − v3) − w2(v2 − v3) = vp − w1

(
∂vp

∂w1

)

w2

− w2

(
∂vp

∂w2

)

w1

(48a) 

Rewriting Eq. (47a) yields [25,26]: 

v1 =

(
∂vp

∂w1

)

w2

+ v3 = vp + (1 − w1)

(
∂vp

∂w1

)

w2

− w2

(
∂vp

∂w2

)

w1

=

= vp + (1 − w1)(v1 − v3) − w2(v2 − v3)

(48b) 

Rewriting Eq. (46b) yields [25,26]: 

v2 =

(
∂vp

∂w2

)

w1

+ v3 = vp − w1

(
∂vp

∂w1

)

w2

+ (1 − w2)

(
∂vp

∂w2

)

w1

=

= vp − w1(v1 − v3) + (1 − w2)(v2 − v3)

(48c) 

Partial differentiation of specific particle volume with respect to 
weight fraction of component 1 and component 2, respectively keeping 
the other weight fraction constant gives the slopes needed to calculate 
partial specific volumes of all components. Recalling Eq. (25): 

1 − ϕv = ϕp = φ1 ϕ1 +φ2 ϕ2 +φ3 ϕ3 = ϕ3 +φ1(ϕ1 − ϕ3)+φ2(ϕ2 − ϕ3)

(49) 

Applying same procedure as before we may extract the partial vol-
ume fractions as: 

ϕ1 = ϕp +(1 − φ1)

(∂ϕp

∂φ1

)

φ2

− φ2

(∂ϕp

∂φ2

)

φ1

= ϕp +(1 − φ1)(ϕ1 − ϕ3) − φ2(ϕ2 − ϕ3) (50a)  

ϕ2 = ϕp +φ1

(∂ϕp

∂φ1

)

φ2

+(1 − φ2)

(∂ϕp

∂φ2

)

φ1

= ϕp − φ1(ϕ1 − ϕ3)+ (1 − φ2)(ϕ2 − ϕ3) (50b)  

ϕ3 = ϕp − φ1

(∂ϕp

∂φ1

)

φ2

− φ2

(∂ϕp

∂φ2

)

φ1

= ϕp − φ1(ϕ1 − ϕ3) − φ2(ϕ2 − ϕ3)

(50c) 

The options to plot experimental results becomes challenging when 
the number of components is increased. In Fig. 20 the (inverse) volume 
fraction (ϕp, ϕp

− 1) of mixtures of course and medium particles are plotted 
as a function of reduced volume fraction of medium (φM, top diagram) 
and of coarse particles (φC, bottom diagram) at different levels of con-
stant fine φF. The diameter ratio is dC/dM = 6.3 and reduced volume 
fractions are related as (φC + φM + φF = 1). 

In Fig. 21 the (inverse) volume fraction (ϕp, ϕp
− 1) of mixtures of 
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medium and fine particles are plotted as a function of reduced volume 
fraction of fine (φF, top diagram) and of medium particles (φM, bottom 
diagram) at different levels of constant coarse φC. The diameter ratio is 
dC/dM = 8.0 and reduced volume fractions are related as (φC + φM + φF 
= 1). 

In Fig. 22 the (inverse) volume fraction (ϕp, ϕp
− 1) of mixtures of 

course and fine particles is plotted as a function of reduced volume 
fraction of fine (φF, top diagram) and of coarse particles (φM, bottom 

diagram) at different levels of constant medium φM. The diameter ratio 
is dC/dF = 50 and reduced volume fractions are related as (φC + φM + φF 
= 1). 

In summary it appears that the content of fine particles is most 
important. In Fig. 21 the different constant levels of coarse particles and 
in Fig. 22 the different constant levels of medium size particles have very 
little influence on (inverse) volume fraction when φF > 0.3. In those 
Figures the increase of constant fraction of φM and φC result only in 

Fig. 20. Left diagrams: Volume fraction (ϕp) of course and medium sand particle mixture (dC/dM = 6.3) plotted as a function of reduced volume fraction of medium 
(φM, top diagram) and coarse (φC, bottom diagram) particles [19]. Right diagrams corresponding inverse volume fractions. Symbols: φF is kept constant at 
0 (asterixis), 0.1 (circles), 0.2 (triangles), 0.3 (squares), 0.4 (diamonds), 0.5 (patterned circles), 0.6 (patterned triangles), 0.7 (patterned squares) (φF + φC + φM = 1). 

Fig. 21. Left diagrams: Volume fraction (ϕp) of fine 
and medium sand particle mixtures (dM/dF = 8.0) 
plotted as a function of reduced volume fraction of 
fine (φF, top diagram) and medium (φM, bottom dia-
gram) particles [19]. Right diagrams corresponding 
inverse volume fractions. Symbols: φC is kept con-
stant at 0 (asterixis), 0.1 (circles), 0.2 (triangles), 0.3 
(squares), 0.4 (diamonds), 0.5 (patterned circles), 0.6 
(patterned triangles), 0.7 (patterned squares), 0.8 
(patterned diamonds (φF + φC + φM = 1).   
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parallel linear displacements when plotted as a function of low φC (φM 
constant) and low φM (φC constant). The interrelationships are more 
complicated in Fig. 20 when φF is kept constant. The parallel displace-
ments of linear dependencies on φM and φM remain to some degree, but 
the number of linear segments seem to increase. The dependencies of 
volume fractions (ϕp) on composition appear generally just as linear as 
ϕp
− 1, except for binary non-linear systems. Note that ϕp for three- 

component mixes exceeds rhombohedral packing ϕp = 0.704 (ϕp
− 1 =

1.42) for single particles (Table 6). Recalling Eq. (28): 

1
/

ϕp=ϕ− 1
p =φ1ϕ− 1

1,p+φ2ϕ− 1
2,0+φ3ϕ− 1

3 =ϕ− 1
3 +φ1

(
ϕ− 1

1 − ϕ− 1
3

)
+φ2

(
ϕ− 1

2 − ϕ− 1
3

)

(51) 

Applying same procedure as before (Eqs. (50a)-(50c)) we may 
extract the partial volume fractions as: 

ϕ− 1
1 = ϕ− 1

p +(1 − φ1)

(
∂ϕ− 1

p

∂φ1

)

φ2

− φ2

(
∂ϕ− 1

p
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)

φ1

= ϕ− 1
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(
ϕ− 1

1 − ϕ− 1
3

)
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(
ϕ− 1

2 − ϕ− 1
3

)
(52a)  
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(
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)
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= ϕ− 1
p − φ1

(
ϕ− 1

1 − ϕ− 1
3

)
+(1 − φ2)

(
ϕ− 1

2 − ϕ− 1
3

)
(52b)  

ϕ− 1
3 = ϕ− 1

p − φ1

(
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p
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)
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− φ2

(
∂ϕ− 1

p

∂φ2

)
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= ϕ− 1
p − φ1

(
ϕ− 1

1 − ϕ− 1
3

)
− φ2

(
ϕ− 1

2 − ϕ− 1
3
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(52c) 

The inverted (total) volume fraction of particles (1/ϕp = ϕp
− 1) is 

plotted as a function of reduced volume fraction of medium (φM) and 
coarse (φC) particles keeping φF constant in Fig. 20. The inverted (total) 
volume fraction of particles (1/ϕp = ϕp

− 1) is plotted as a function of 
reduced volume fraction of fine (φF) and medium (φM) particles keeping 
φC constant in Fig. 21. The inverted (total) volume fraction of particles 
(1/ϕp = ϕp

− 1) is plotted as a function of reduced volume fraction of fine 
(φF) and coarse (φC) particles keeping φM constant in Fig. 22. The 

reduced volume fractions are related as, 1 = φF + φM + φC. 
For ideal mixing inverse volume fraction, a plane is drawn between 

coarse (C), medium (M) and fine (F) particle corners. 
(

ϕ− 1
p

)id
= φC

(
ϕ•

C

)− 1
+φM

(
ϕ•

M

)− 1
+φF

(
ϕ•

F

)− 1 (53)  

where (ϕi
•)− 1 are listed in Table 7. Alternatively, coarse particles are 

considered very large as compared to medium or fine particles and 
medium particles are very large as compared to fine particles. The ideal 
and particle mix models for three component system is illustrated in 
Fig. 23. At the corners the inverted volume fraction equals those of 
coarse ((ϕC

•)− 1 = 1.605 at φC = 1), medium ((ϕM
• )− 1 = 1.618 at φM = 1) 

and fine ((ϕF
•)− 1 = 1.739 at φF = 1). 

The case when diameter ratios between small and large particles tend 
towards infinity is represented by shaded surfaces. Each side (binary 

Fig. 22. Left diagrams: Volume fraction (ϕp) of fine 
and coarse sand particle mixture (dC/dF = 50) plotted 
as a function of reduced volume fraction of fine (φF, 
top diagram) and coarse (φC, bottom diagram) par-
ticles [13]. Right diagrams corresponding inverse 
volume fractions. Symbols: φM is kept constant at 
0 (asterixis), 0.1 (circles), 0.2 (triangles), 0.3 
(squares), 0.4 (diamonds), 0.5 (patterned circles), 0.6 
(patterned triangles), 0.7 (patterned squares), 0.8 
(patterned diamonds) (φF + φC + φM = 1).   

Fig. 23. Idealized packing model for a three (coarse, medium, fine) particle 
system with very large diameter ratios. The limiting values of ϕp

− 1 = 0 and ϕp
− 1 

= 1 are indicated [15,19]. 
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systems) of the triangular prism was characterized in Fig. 17 identifying 
the ϕp

− 1 = 0 and ϕp
− 1 = 1 model levels. The three planes can be obtained 

graphically and give the binary minimum (optimal packing) crossing 
points N, O and R. A line is drawn from O to ϕp

− 1 = 1 at the coarse corner 
and from N to ϕp

− 1 = 0 at the fine corner. Finally, a line is drawn from R 
to the intersection between previous lines. The intersection coincides 
with the crossing of a line drawn from R to the intersection between a 
line from C to ϕp

− 1 = 0 at φM = 1 and the constant ϕp
− 1 = 1 line (point Q). 

This defines the minimum (min = optimal packing) of the three- 
component particle system. The planar representtation in Fig. 23 is 
quantified by the parallel displacements of and minima between linear 
segments (for each constant φi) in Figs. 20-22. Partial derivation of 
volume fractions to obtain three individual components (ϕi (φF, φM, φC)) 
for multiple lines within each plane illustrated in Fig. 23 is possible (Eqs. 
(52a).(52c), [25,26]), but would expand the analysis too much for 
present purposes. 

3.3.2. Model for three-component particle mixing 
Westman and Hugill provided analytical expressions for three- 

component particle mixtures [19]. If the three planes are labeled C, M 
and F in correspondence to the points through which they pass, then 
their equations are: 

ϕ− 1
p,C = φC

(
ϕ•

C

)− 1 (54a)  

ϕ− 1
p,M = φC +φM

(
ϕ•

M

)− 1 (54b)  

ϕ− 1
p,F = φC +φM +φF

(
ϕ•

F

)− 1 (54c)  

where ϕp, C
− 1 , ϕp, M

− 1 , ϕp, F
− 1 are the ordinates values on C, M and F planes, 

respectively. The minimum ϕp, min
− 1 value obtained at the junction of the 

three planes is given [19] by: 

ϕ− 1
p,min =

ϕ•,− 1
C ϕ•,− 1

M ϕ•,− 1
F

ϕ•,− 1
C ϕ•,− 1

M + ϕ•,− 1
M ϕ•,− 1

F + ϕ•,− 1
C ϕ•,− 1

F −
(
ϕ•,− 1

C + ϕ•,− 1
M + ϕ•,− 1

F

)
+ 1
(55a)  

where ϕi
•, − 1 is a short-hand expression for (ϕi

•)− 1. If the course, medium 
and fine particles themselves have the same ϕp

− 1 value, then ϕp, C
− 1 = ϕp, M

− 1 

= ϕp, F
− 1 and the minimum inversed volume fraction is given [19] by: 

ϕ− 1
p,min =

(
ϕ•,− 1

C
)3

(
1 − ϕ•,− 1

C
)3

+
(
ϕ•,− 1

C
)3 =

[(
ϕ•

C

)− 1
]3

[
1 −

(
ϕ•

C

)− 1
]3

+
[(

ϕ•
C

)− 1
]3 (55b) 

For (ϕC
•)− 1 = 1.605 it was found that ϕp, min

− 1 = 1.057 [19]. This value 
may be obtained by mixing course, medium and fine particles in the 
proportion φC = 0.66, φM = 0.25 and φF = 0.09. This nearly corresponds 
to the experimentally observed minimum, ϕp, min

− 1 = 1.202 at φC = 0.7, 
φM = 0.2 and φF = 0.1. The experimental location of minimum ϕp, min

− 1 =

1.183 is, however found at φC = 0.7, φM = 0.1 and φF = 0.2. Although 
predicted ϕp, min

− 1 is somewhat off experimentally found value it is quite 
remarkable that it was derived based on (ϕC

•)− 1 alone. In Figs. 20-22 ϕp 
appeared equally linearly dependent on φC, φM and φF as ϕp

− 1. Therefore 
ϕC
• = 0.623 was inserted into Eq. (55b). Then ϕp, max = 0.819, which is 

just as close to experimentally found ϕp, max = 0.845 at φC = 0.7, φM =

0.1 and φF = 0.2 as model predicted ϕp, min
− 1 . The model packing density 

(particle volume fraction) exceeds the densest rhombohedral single 
particle packing (ϕp= 0.7405, Table 6), but it is in the range of maximum 
model packing densities (ϕp, max = 0.856 for coarse-medium, ϕp, max =

0.838 for medium-fine and ϕp, max = 0.840 for coarse-fine) for two- 
component mixtures. Again, the three-component packing was pre-
dicted using only volume fraction of single coarse system. 

3.4. Summary 

The maximum packing density of monomodal, bimodal and trimodal 
spherical particle mixtures were evaluated. Bimodal particle systems 
were characterized by partial volumes, partial volume fractions and by 
partial inverse volume fractions. Additionally, models were introduced 
which predicted the enhanced packing in terms of volume fractions and 
inverted volume fractions based on monomodal volume fractions and 
inverse volume fractions of large and small particles, respectively. 
Mixing and excess functions were introduced to quantify the change 
from ideal mixing properties. Experimentally it was observed that both 
particle size ratio (dL/dS) and mixture composition (reduced volume 
fraction of small (φF), medium (φM) or large (φC) particles) have sig-
nificant influence on volume fraction. Fig. 24 illustrates the mutual 
dependence of volume fraction on particle size ratio (dL/dS) and on 
reduced volume fraction of small particles (φS). 

Binary particle mixtures characterized by 1.0 < dL/dS < 1.4 are 
commonly used for modeling purposes to avoid crystallization phe-
nomena (cluster formation). However, for larger size ratios these mix-
tures were found to reach higher volume fractions than single particle 
beds. In Fig. 19 ϕp increased as a function of dL/dS with a break (critical) 
point at 6.5 < dL/dS < 7.0 after which the dependence levels off towards 
a final saturation value (ϕsat). The break point corresponds to triangular 
pores between three larger particles (dL/dS = 6.414, Eq. (44b)). The 
limiting condition for dense packing is that voids between large particles 
are sufficient for small particles to migrate to equilibrium positions. It 
appears that packing ratios are rather independent on the absolute 
particle size and its density, but mainly on the size ratio. For high dL/dS 
the volume fraction may reach ϕp = 0.85. 

The volume fraction (ϕp) increases also with φS, reaches a maximum 
(ϕmax) at 0.25 < φS < 0.45 after which it is reduced to a value corre-
sponding to random close packing (0.63 < ϕRCP < 0.64) or random loose 
packing (0.59 < ϕRCP < 0.60). It was, however experimentally shown 
that ϕp < ϕRLP < ϕRCP at φF = 0 (ϕL

•) and at φF = 1 (ϕS
•). The volume 

fraction of models and particles were: ϕC
• = 0.623, ϕM

• = 0.618 and ϕF
• =

0.575 (Table 7). Fig. 25 illustrates the change in packing when dL/dS is 
varied as 2.5, 5 and 9 at φS= 0.2 and φS= 0.8. 

The presence of large particles affects only locally the random 
packing of small ones on its surface (excluded volume). The upper row 
illustrates packing when φF is low (0.2) and small particles fill the voids 
between large particles. When dL/dS are reduced (fraction of large par-
ticles become larger) small particles get jammed between large ones. As 
a result, the packing of large particles is disrupted by small ones. A 
random jammed close packing reach maximum at 0.63 < ϕRCP < 0.64. 

Fig. 24. Particle volume fraction (ϕp) plotted as a function of particle size ratio 
(dL/dS, Fig. 19) and of reduced volume fraction of small particles (φS). Insert 
diagram at constant dL/dS = 4 (Identified by ϕmax, (Fig. 16): Left branch, binary 
systems of small φS (Eq. (34b)). Right branch, binary system of large φS 
(Eq. (34a)). 
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The lowest volume fraction of a mechanically stable particle assembly is 
represented by random loose packing 0.59 < ϕRLP < 0.60. Both bimodal 
and trimodal packing models are based on monomodal packing densities 
when the reduced volume fraction of them is high. Denotations for 
different deficient packings are illustrated in Fig. 26. 

Three-modal mixing was represented by three planes (Fig. 23) which 
deviate considerably from the single plane representing ideal mixing. 
The three planes can be obtained graphically by extrapolation from 
corresponding binary systems. The crossing of each two planes repre-
sents linear optimal bimodal packings (ϕmin

− 1 ) and the crossing point of all 
three planes the ultimate minimum of trimodal packing. A simple model 
is presented by which the ultimate packing minimum and its coordinates 
can be successfully estimated. 

4. Experimental challenges 

In first section the aim was to identify methods to determine the 
diameter of equivalent spheres characterizing average particle proper-
ties for single particles and particle size classes as well as for particle size 
segments of powders. In second section the dependence of packing 
density expressed as (partial) specific volumes, volume fractions and 
inverse volume fractions (apparent volumes) on reduced particle vol-
ume fractions in binary and ternary systems were evaluated. Reference 
models to determine maximum packing based on (inverted) volume 
fractions (ϕp,max, ϕp,min

− 1 ) were introduced. The packing of bimodal and 
trimodal particle mixtures was achieved by careful and thorough mix-
ing. In this section the influence of experimental procedures to maintain 
homogeneity of particle mixtures is shortly evaluated. Segregation of 
different particle size classes may occur spontaneously, which makes 
sampling and mixing very difficult. Segregation leads to clustering 

(wedge effects) and to excluded volume contributions, where small 
particles assemble around large particles due to loss of mobility 
freedom. Particles may also form local clusters through percolation 
which seriously distort original packing structures. 

4.1. Particle assembly at macroscopic interfaces – excluded void fraction 

At large interfaces small particles loose one dimension of mobility 
freedom which results in spontaneous assembly as particle layers at 
interfaces (Fig. 27). 

The void fraction is least at macroscopic test compartment planes as 
compared to curved walls (test cylinders). At the corners of a quadratic 
container the void fraction is greatest. For a minimum void fraction 
cylindrical test compartments are to prefer. Wall effects at test cylinder 
surfaces should be considered when particle size is large (dp > 5 mm). It 
can be of 10–15% magnitude for 10–12 mm particles is a 100 mm test 
cylinder. The results are valid only for comparable test cylinders. 

4.2. Particle layering 

As shown in Table 6 monomodal packing formations of close-packed 
spheres consist of four basic types of unit cells. The packing density (ρc) 
can be calculated by dividing the volume of spheres (4πr3/3) by the unit 
cell volume of each formation. The resulting packing densities are; ρc =

π/6 (cubes), ρc = π/3(3)1/2 (orthorhombic), ρc = 2π/9 (tetragonal) and 
ρc = π/3(2)1/2 (rombohedral). The volume fraction is improved for an 
increased number of layers only for NC = 10 and NC = 12 packings 
(Fig. 28). 

Note that volume fractions of model NC = 10 and NC = 12 (two 
highest lines) model packings exceed for small Nl tetragonal (ϕp =

0.6981, NC = 10) and rhombohedral (ϕp = 0.7405, NC = 12) packing 
densities for single particle beds (Table 6, Fig. 19). 

Two, four, eight and twenty flat layers of 0.5–1.0 mm sand and 9.0 
mm bearing balls of stainless steel were introduced into a test cylinder. It 
was found that particles could reasonably easily be mixed to a homo-
geneous mixture. Fig. 29 illustrates the dependence of inverse volume 
fraction and its deviation (δ = 2/Np) of 70% coarse particle mixture on 
inverse number of initial layers (1/Nl). 

Linear extrapolation yields ϕp
− 1 = 1.27 which is very close to the 

predicted value ϕp
− 1 = 1.285. The shrinkage (δ = 2/Np) is thus initially a 

linear function of 1/Nl (up to 20 layers). A difference between experi-
mental and deviation (δ) occurs, since a small demixed zone between the 
layers could not be avoided. This is thus a direct proof of degree of 
dispersion during mixing. 

4.3. Particle packing in test cylinders 

McGeary investigated the packing efficiency of particles in test cyl-
inders of different diameter by forming particle layers [23]. He observed 
that neither particle density or size influenced significantly the final 

Fig. 25. Schematic illustration of the influence size ratio (dL/dS = 9 (left), dL/dS = 5 (middle) and dL/dS = 2.5 (right)) on small particles around large ones (upper 
row, φF = 0.2) and on pore size formed between large molecules (lower row, φF = 0.8) [22]. 

Fig. 26. Common denotation of packing deficiencies, disruption (loosening) 
effect, wall (excluded volume) effect and wedging effect. 
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volume fraction. However, both the size and shape of test container 
influence the type and density of particle packing. In general, cylindrical 
containers caused almost complete orthorhombic pattern. Simple cubic 
(quadratic) arrangements were found to be unstable and was not 
observed experimentally. Moreover, rhombohedral packing did not 
occur in mechanical packing because the used vertical compression 
force enforced rhombohedral arrangements. The dependence of (in-
verse) volume fraction (ϕp, ϕp

− 1) on test cylinder diameter (Dc) to particle 
diameter (dp) is shown in Fig. 30. 

When monodispersed spheres were fitted into test cylinders of 
increasing diameter the packing first decreased, but started to increase 
as 2, 3 or 4 spheres formed a layer (only integral numbers are consid-
ered). Seven spheres produced the familiar hexagonal layer pattern 
which is associated with efficient packing. A ring was formed around a 
center of three spheres for 9, 10 and 12 spheres in a layer. At 14 spheres 
per layer, the orthorhombic ring pattern appears were particles formed a 
ring around a center of four spheres. These filled rings did not, however 
cause a tight or locked (jammed) arrangement. At Dc/dp = 200 there 
were about 33,000 particles per layer and then ϕp = 0.625 which agreed 
very closely with experi-mental values. In summary, a maximum 
experimental packing density can be obtained only if the test cylinder 
diameter is at least an order of magnitude larger than particle diameter. 

4.4. Particle asymmetry 

Wadell’s spericity of irregular particles (Eq. (10a)) was specified as 
the ratio of surface area of a sphere with the same volume as the particle 
to the actual surface area of the particle [10,11]. For spherical particles 
the sphericity was defined as: 

ψ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
36π V2

p
3
√

Ap
= 4.836

(
V2/3

p

Ap

)

(56) 

For spheres ψ = 1. Sphericity is sometimes referred to as shape factor 
and then its inverse is denoted the area-volume shape factor (1/ψ). 
Porosity of randomly packed irregular particle beds is closely related to 
sphericity. In Fig. 31 the volume fraction of randomly packed uniform- 
sized particle beds are plotted as a function of their sphericity (ψ). 

Sphericity may be averaged over the number of particles contained 
in the bed and hence be used for characterizing average particle shapes. 
Particle asymmetry has, indeed a profound influence on packing density 
(ϕp). As particle diameter decreases surface forces resulting in adhesion 

Fig. 27. Left diagram: Schematic presentation of 
small particle assembly at large surfaces. Void frac-
tion (εv = 1 – ϕp) is lowest at the center of particle 
layers. Right diagram [27]: Dependence of void 
fraction (εv) on the distance from surface expressed as 
number of large particle diameters (Nd). Assuming 
contact between large particles and surface (dotted 
circles), the void fraction is smallest at the center of 
particles (radial distances, rp = dp/2). Left curve and 
bottom void fraction scale, radial distribution for 
cylinder diameter/particle size ratio = 20.3. Right 
curve and top void fraction scale, radial distribution 
for cylinder diameter/particle size ratio = 14.1.   

c

ll
Fig. 28. Change in packing density (ρc) of single spherical particles when the 
number of layers (Nl) increases. Top line represents NC = 12, next NC = 10, next 
NC = 8 and lowest NC = 6 packing, where coordination number NC identifies 
number of nearest neighbors [28]. 

Fig. 29. Inverse volume fraction (1/ϕp = ϕp
− 1) and deviation (δ = 2/Np) of a 70% mix of coarse 9.0/(0.5–1.0) size particle mix plotted as a function of inverse number 

of initial layers (1/Nl). Solid line experimental results, dotted line = model fit [28]. 
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increase, since Ap/Vp ratio is enhanced (Table 2). Deformation of par-
ticles results in bridging, arching and percolation. 

4.5. Particle percolation and segregation 

Asymmetric particles self-assemble in structures which deviate from 
ideal packing of hard spheres. When the size ratio (dL/dS) of binary and 
ternary mixtures is large enough small particles may enter and pass 
through these voids. When size ratio is higher than dL/dS > [3 + 2(3)1/2] 
= 6.46 (Fig. 19), small particles naturally segregate (flow through pores 
in particle bed) forming a separate phase at the bottom due to gravity, 
while large particles are still mixed with the rest of small particles. 
Segregation of small particles through pores occurs when additional 
mechanical impacts (tapping, vibration) are introduced. Particle mix-
tures are rarely homogeneous which leads to cluster formation (perco-
lation) and particle segregation. For disordered packing this threshold is 
significantly smaller. Flow of small molecules through particle beds 
happens even for smaller dL/dS, because the random structure leads to 
larger pores than expected. For this reason, one can observe small par-
ticle segregation also for dL/dS < 5. 

Deformed particles form preferential undefined “bonds” at their 
edges. Bond percolation theory describes the behavior of assembled 
networks when the number of “nodes” or “links” increases. This is a 
geometric type of particle phase transition, since at a critical fraction of 
small clusters they merge into significantly larger connected spanning 
clusters (gels). The edges or bonds between each two neighbors (coor-
dination number, NC = 2) may be open allowing small particles to pass 
freely (f) through the network with probability pf or blocked (no pas-
sages) with probability 1-pf. The focus is on whether small particles can 
penetrate through the percolated network or not. Site percolation 

considers whether sites are occupied (probability po) or empty with 
probability 1-po. In addition to the question whether small particles can 
pass the network or not, the interest is on what fraction of bonds will be 
disconnected. The system may be normalized by a critical probability pc, 
below which probability is always zero and above which probability is 
always unity. In practice, this criticality is easy to observe. Even for 
small number of particles the probability of an open path network in-
creases sharply from very close to zero to unity in a short span of po- 
values. 

For most infinite networks pc cannot be calculated exactly. However, 
for two-dimensional square (2D, ND = 2) lattices the bond percolation is 
pc = 0.5. For multiple dimensions the critical threshold is pc = 1/(NC -1) 
[30]. For site percolation the pc value is not known from analytic deri-
vation, but only via simulations of large lattices [31]. Large networks of 
high or low degree of clustering are modeled by various functional de-
pendencies. For a given degree of network distribution, the clustering 
leads to a larger threshold. For a fixed number of links, the clustering 
structure reinforces the core network. As a result, the global connections 
are diminished. 

For probabilities below critical value (pf < pc) phases are denoted 
subcritical. Then the probability that a specific point (the origin) with a 
diameter dp is contained in an open cluster with a maximal number of 
open bonds, decays to zero exponentially in dp. In two dimensions it 
converges to pc = 0.5. Then there is a unique infinite closed cluster with 
maximal number of closed bonds. The subcritical phase may therefore 
be described as finite open associates in an infinite open medium. It 
follows that in two dimensions, the supercritical phase is dual to a 
subcritical percolation process. For supercritical phases (pf > pc > 0.5) 
there is finite closed clusters in a infinite open medium. In three and 
more dimensions (ND > 3) there is coexistence of infinite open and 
closed clusters for pc < pf < (1 - pc). Percolation has a singularity at pf =

pc and many properties behave as of a power law with pf - pc at pc. Scaling 
theory predicts the existence of critical exponents which depend on ND 
determining the class of singularity. 

4.6. Particle clusters – fractal dimensions 

Clusters may be characterized by fractal dimensions (fD). The mass of 
cluster (mC or molar mass MC) scales to its spatial size (d) as mC = dfD. 
When fD = 1 the cluster represents a chain structure, when fD = 2 the 
cluster is planar and when fD = 3 the cluster is three-dimensional. For 
hard sphere clusters the scaling exponent sf is related to fractal dimen-
sion [32] as: 

sf =
ND

fD + 2
(57a)  

where ND denotes space dimension. When the excluded volume effect is 
screened out near the percolation point, the scaling exponent decreases 
[32] as: 

Fig. 30. Dependence of volume fraction (circles, left diagram) and inverse volume fraction (triangles, right diagram) on diameter ratio of test cylinder and particle 
diameter ratio (Dc/dp). Inserted numbers = particles per layer [23]. 

p

Fig. 31. Volume fraction (ϕp) of randomly packed uniform-sized particle beds 
plotted as a function of their sphericity (ψ). Dense (top line), normal (dashed 
middle line) and loose (bottom line) packings are indicated [29]. 
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sf =
ND(ND + 2 − 2fD)

2(ND + 2 − fD)
(57b) 

For a set of particles distributed in space, the fractal dimension can 
be defined according to mC = dfD in a similar manner. In Fig. 32 fractal 
dimensions are derived from measurements of logarithmic normalized 
perimeter as a function of linear of logarithmic step length (λ). 

Two-dimensional fractals may be determined with atomic force or 
visual light microscopy. Three-dimensional fractals may be character-
ized by scattering methods where wavelength serves as step length. The 
relative distance from the critical point is given [32] by: 

lf =
pf − pc

pc
(58)  

where pf and pc refer to probability that any particular bond is formed 
and to the threshold point where all bonds are formed. The average mass 
of the cluster mC (or molecular weight MC) and its correlation (cluster) 
length (lC) are given [32] by: 

mC = l− 1.76
f (59a)  

lC = l− 0.88
f (59b) 

Fractal dimensions characterize the distribution function of perco-
lation models. For clusters of low fractals dimension the mass grows 
slower in diameter (density decreases) than for another cluster having 
large fractal dimension. Clusters having low fractal dimension have 
obviously a more open porous structure as compared to clusters having 
the same diameter. 

4.7. Cluster energy – Flory-Huggins lattice model 

Chain structure clusters are common for gels. At a critical fraction of 
small clusters and experimental conditions they merge into significantly 
larger connected spanning clusters. Since the mass of clusters (mC) scales 
to its spatial size (d) as mC = dfD gels were characterized by fractals (fD) 
[33]. Flory-Huggins lattice model may be used to quantify cluster for-
mation in condensed media. Solvent molecules and each segment of 
cluster chains are assumed to have equal volumes as lattice cell units. 
The interaction is disregarded when deriving the mixing term. For such 

athermal ideal solutions the internal energy, the enthalpy and the volume 
of mixing is zero. The ratio between the volumes of the particle cluster to 
that of the solvent represents the degree of clustering (number of cluster 
segments, Nc ≈ VC

•/VL
•). Since the cluster volume is VC

• ≈ NcVL
• the volume 

fractions may be expressed as [33,34]: 

ϕL =
xLV•

L

xLV•
L + xCV•

C
=

xL

xL + xCNc
=

nL

nL + nCNc
(60a)  

ϕC =
xCV•

C

xLV•
L + xCV•

C
=

xCNc

xL + xCNc
=

nCNc

nL + nCNc
(60b) 

Molar cluster volume is VC
• = MC/ρC, cluster amount is nC = mC/MC 

and cluster mole fraction is xC = nC/(nL + nC). With these pre-set con-
ditions, the molar combinatory (C) Gibbs free energy of mixing is repre-
sented purely by the combinatory entropy of mixing [33,35]: 

GC
m ≈ − TSC

m = RT(xLlnϕL + xClnϕC) (61) 

The chemical potentials of mixing are obtained by partial differen-
tiation [33,35]: 

GC
L = μC

L = RT
[

lnϕL +ϕC

(
Nc − 1

Nc

)]

(62a)  

GC
C = μC

C = RT[lnϕC − ϕL(Nc − 1) ] (62b) 

Flory-Huggins model can be related to previous particle packing 
models by replacing the number of small dispersive liquid molecules or 
rather empty lattice units by number of voids. The cluster is assumed to 
represent an assembly of single particles (VC

• ≈ NcVp
• ≈ NcVc). The suc-

cess of Flory-Huggins model in predicting particle clusters is obviously 
based on the assumption that VL

• ≈ Vp
• ≈ Vc (Vc = lattice cell volume). The 

expressions for particle clusters do not apply for low degree of clustering 
(small Nc). In presence of mutual cluster-liquid interaction it may be 
considered by introducing an enthalpic term [33,35] enabling estima-
tion of cluster solubility (phase transitions) in solvents. 

4.8. Time dependence 

It has been shown that a slow compaction dynamics of particle beds 
can be described [22] by: 

ϕp(t) = ϕf −
ϕf − ϕi

1 + ln(1 + τ) (63)  

where f = final and i = initial values, τ = t/Nm normalized time, t = time 
and Nm = number of mechanical impacts (taps, vibrations, compres-
sions) causing compaction. The logarithmic scale expressing time 
dependence emphasize the slow (glassy like) dynamic behavior. It has 
been shown that Nm is a relevant flowability indicator in that a large 
value corresponds to low flowability. It is exponentially proportional to 
the ratio of energy barrier for the escape of small particles from pore 
sites to the energy injected per mechanical impact [22]. A high ratio 
corresponds to particle jamming and a small ratio to high particle 
mobility. 

4.9. Summary 

Due to loss of mobility freedom at large walls small particles 
assemble in layers which creates fluctuating excluded voids (volumes) as 
a function of the distance from the wall. Porosity is least for particles at 
planes as compared to curved surfaces and corners. This result in 
dependence of packing on the container shape. Both the size and shape 
of test container was, indeed found to influence the type and density of 
particle packing. 

Packing density of cubic and of orthorhombic order remains constant 
as the number of layers increase. Packing density of tetragonal and 
rombohedral order decrease, however, when more particle layers were 

Fig. 32. Fractal dimension of a gel cluster is determined by measuring the slope 
of logarithmic normalized perimeter plotted as a function of linear or loga-
rithmic step length (λ). Both the structural fractal of the cluster (large λ) and the 
textural fractal of the unit particles (small λ) can be distinguished as 
changed slopes. 
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added. 
Average particle shape was characterized by sphericity (3D) and 

circularity (2D). Packing expressed as volume fraction increases rather 
smoothly as a function of enhanced sphericity. Simultaneously a modest 
dependence on packing density increases. 

Particle asymmetry induces preferential aggregation due to bridging, 
arching and percolation which influences segregation of different par-
ticle size classes. Models based on bond and site percolation characterize 
probabilities for loose and dense cluster formation and for particle 
segregation. 

Fractal dimensions characterize the distribution function of perco-
lation models. Textural and structural fractals may be used to charac-
terize particle clusters in one-to-three dimensional open and closed 
structures based on probabilities for bond formation. For clusters of low 
fractal dimension the mass grows slower in diameter (density decreases) 
than for another cluster having large fractal dimension. Clusters having 
low fractal dimension have obviously a more open porous structure as 
compared to clusters having the same diameter. 

Cluster formation energy may be established by modifying Flory- 
Huggins lattice model for polymer solutions. It is based on athermal 
entropy of packing solvent molecules (replaced by voids) and cluster 
units in equally sized lattice cells. The negative molar combinatory en-
tropy is assumed to equal molar combinatory Gibbs free energy of 
mixing non-interactive hard spheres. 

Time dependence of powder compaction is related to ratio of change 
in volume fraction to logarithm of compaction time normalized by 
number of mechanical impacts. It is related to the energy barrier for the 
escape of small particle from pore sites between large particles. 

The enhanced mobility of small particles within large particle 
matrices has some interesting features (cf. Fig. 2). As shown in Fig. 33 
colloidal particles (1 μm < dp < 10 nm) may, due to their increased 
thermal mobility be used to fluidize dry coarse powders. 

Particles with dp > 1 μm are not so useful, since their large number of 
active sites (unsaturated broken bonds) enhances cohesion (formation of 
percolation clusters) which reduces their mobility. Larger particle 
powders have less cohesion and larger fluidity but are restricted by 
unfavorable size ratios (dL/dS). Due to the very large surface to volume 
ratio (ap/υp, Table 2) the need for space or polar liquids to neutralize 
bond formations is very large. 

5. Conclusions 

Particles may be divided into different size ranges (classes) which 
alone and added to powders exhibit particular properties. The 

exceptional properties of colloid (10–100 nm) and nano (1–10 nm) 
particles may be related to their extremely small mass (reduced influ-
ence of gravity) and large surface area-to-volume ratio. 

Particle shapes may be averaged by sphericity (3D) and by circularity 
(projected 2D). For multi-modal powders two of experimentally deter-
mined properties characterizing corresponding equivalent spheres pro-
vide comparable average sizes for each particle size class. Average 
(median, mean, mode) sizes can be extracted from size distributions of 
multimodal powders. 

Mono-, di- and trimodal particle packing efficiency is expressed as 
volume fractions and inverted volume fractions of close-packed hard 
spheres and related to standard cubic, orthoromic, tetragonal and 
rombohedral packing properties. Simple models are presented which 
reveal the relative influence of fine, medium and coarse particles as a 
function of their respective amount and size ratios. 

Experimental challenges relate to the influence of measuring test 
compartment shape on particle layering and of particle shape on packing 
density (volume fraction). Particle asymmetry induces preferential ag-
gregation through bond and site percolation resulting in dense closed or 
loose open structures. Asymmetry induces small particle jamming or 
particle segregation. The cluster structure may be characterized by 
structural fractals of the gel and textural fractals identifying the particles 
involved. A modified Flory-Huggins lattice model enables determination 
of ideal combinatory entropy for the cluster assembly. A model is pre-
sented which relates time dependent volume fraction to logarithmic 
time dependence of compaction. 

Symbols and indices 

A surface area 
E (information) entropy 
G Gibbs (free) energy 
H Hamaker constant 
M molar mass, moment 
N Number 
R gas constant 
S entropy 
T (absolute) temperature 
V volume 

Upper index 

Δ difference 
Σ sum 
δ deviation 
ε porosity, pore fraction 
μ chemical potential 
λ (fractal) step length 
ρ density 
σ surface energy, standard deviation 
τ normalized time 
ϕ volume faction 
φ reduced volume faction 
ψ sphericity 
ω circularity 
C combinatory 
D dispersive 
E excess 
L linear 
M mixing 
N nonlinear 
R residual 
b bulk 
exp experimental 
id ideal 
mix mixing 

Cohesion

Fluidity

Interaction

1mm 1 m 10 nm

Gravity Coll. chem.Capill´y Percol´n

dp
Fig. 33. Schematic illustration of the influence of small particles on the 
properties of dry large particle powders (colloid particle classes in the 10 μm – 
10 nm range). The dominant forces are indicated. 
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s surface, size 
•, * neat pure 

Symbols and indices 

a molecular/monomer area 
d diameter 
e elongation 
f frequency, function, fractal dimension 
g G/N or g/υ 
h height 
k coefficient 
l length, later, distance 
m mass 
n amount, number of moles 
p perimeter, probability 
r radius 
s size, scaling exponent 
t time 
υ fraction of volume 
ν specific or partial volume 
w width, weigh fraction 
x mol fraction 

Lower index 

A Avogadro 
C coarse, coordination, cluster 
D (space) dimension, diameter 
F Feret’s, fine 
G geometric 
L length, liquid, large 
M Martin’s, moment, medium 
N number, normal, Nth unit, nonlinear 
S small, solid 
V volume 
a area, apparent 
c cube, cluster segment, cell, critical 
d diameter 
dh dodekahedron 
f free, formed, final 
fo formation 
h hydrodynamic 
i component, segment, initial 
ih icosahedron 
l longest, layers 
m molar, medium, mechanical 
max maximum 
min minimum 
o occupied 
p particle 
r radius 
s shortest 
sat saturation 
sp specific 
t total 
ν void 

υ volume 
x,y,z Cartesian coordinates (dimensions) 
1,2,3 components 
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