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Abstract: A drug’s aqueous solubility is defined as the ability to dissolve in a particular solvent,
and it is currently a major hurdle in bringing new drug molecules to the market. According to
some estimates, up to 40% of commercialized products and 70–90% of drug candidates in the
development stage are poorly soluble, which results in low bioavailability, diminished therapeutic
effects, and dosage escalation. Because of this, solubility must be taken into consideration when
developing and fabricating pharmaceutical products. To date, a number of approaches have been
investigated to address the problem of poor solubility. This review article attempts to summarize
several conventional methods utilized to increase the solubility of poorly soluble drugs. These
methods include the principles of physical and chemical approaches such as particle size reduction,
solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation
techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation,
co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and
pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers,
micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes,
and so forth have also been widely investigated for solubility enhancement. All these approaches have
brought forward the enhancement of the bioavailability of orally administered drugs by improving
the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely
resolved, owing to several challenges associated with current approaches, such as reproducibility in
large scale production. Considering that there is no universal approach for solving solubility issues,
more research is needed to simplify the existing technologies, which could increase the number of
commercially available products employing these techniques.

Keywords: solubility; bioavailability; prodrug; oral drug delivery; nanotechnology; solid dispersion;
supercritical fluid technology; liposomes; dendrimer; micelles; polymeric micelles; MOFs; carbon
nanotubes; nanogels; nanoemulsions; mesoporous silica nanoparticles

1. Introduction

Solubility is the phenomenon of dissolving a solute in a solvent, which is essential
to produce a homogenous system. In quantitative terms, solubility may be defined as the
required strength of the solute dissolved in a solution at a given pH, temperature, and
pressure [1]. In contrast, in qualitative terms, solubility is the material’s ability to be melted
in a saturated solution at a specific temperature [2,3]. Solubility is presented with numerous
terminologies such as molality, volume fraction, parts of solvent, percentage, molarity, mole
fraction, and so forth [4]. US Pharmacopoeias define solubility as the milliliters of solvent
necessary to dissolve one gram of solute [5]. Solubility is standardly determined using
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two approaches: thermodynamic solubility and kinetic solubility. The main distinction
between the two methods is that the solid compound is added to the aqueous medium
to determine thermodynamic solubility, whereas the pre-dissolved compound is used as
the initial substance to determine kinetic solubility. Thermodynamic solubility provides a
response to the question: “How much does the substance dissolve?” Conversely, kinetic
solubility answers: “How much does the molecule precipitate?” [6]. It is obvious that
thermodynamic solubility plays a vital role in the solubility determination of poorly soluble
drugs. In addition, dissolution is dependent on thermodynamic solubility. Notably, one
should distinguish between the terms ‘dissolution’ and ‘solubility’. When a solute in any
phase, either the gaseous, liquid, or solid phase, dissolves in a solvent to create a solution,
the term “dissolution” is used. In contrast, the term “solubility” refers to the highest
concentration of a solute that may dissolve in a solvent at a specific temperature [7].

Drugs administered via the oral route in a solid dosage form are first disintegrated
into smaller parts or even primary particles, from which the drug molecules are freer to
dissolve in the gastrointestinal tract (GIT) fluids than from an intact tablet; the molecular
dissolution of the drug is then followed by its penetration through the intestinal barrier, as
displayed in Figure 1 [8]. Given that all bodily fluids are water-based solutions, aqueous
solubility is an essential criterion to achieve the appropriate concentrations of the drug
molecules in the systemic circulation to elicit the required therapeutic efficacy. If a drug
molecule has very low solubility, it cannot be dissolved in the GIT fluids, which hinders its
permeability and, thus, bioavailability because it is directly related to the drug solubility.
Low bioavailability observed with poorly soluble drugs make the final formulation expen-
sive because high doses are needed to obtain therapeutic benefits and, sometimes, they
might cause toxicity [9,10].
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Depending on the solubility and permeability in the GIT, drug substances are catego-
rized in four BCS classes (biopharmaceutical classification system, as listed in Table 1) [10,11].
Because of low solubility, despite high permeability, BCS class II drugs are associated with a
slower dissolution rate in the GI tract, leading to low bioavailability. Owing to low aqueous
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solubility, a small concentration gradient between the intestine and the bloodstream results
in restricted transport across biological membranes and, consequently, poor absorption
is often reported. In contrast, in addition to low aqueous solubility, BCS-class IV drugs
also have low permeability, which reduces their ability to be absorbed. However, BCS class
IV drugs sometimes make poor drug development candidates due to limited membrane
permeability since solubility and dissolution augmentation may not be sufficient to increase
their bioavailability. However, these types of compounds cannot be neglected only because
of their permeability difficulties. Therefore, class IV compounds may be developed via the
current methods utilized for BCS class II drugs along with absorption enhancers. In the lead
optimization stage, choosing a better drug candidate with more suitable physiochemical
characteristics is another formulation development strategy for class IV drugs [12]. The
development of various techniques to address unsatisfactory biopharmaceutical properties
and the advancement of knowledge in the field of drug delivery systems for oral adminis-
tration were both influenced by the need for efficient formulations for BCS-classes II and
IV drugs. It has even been estimated that up to 90% of new molecular entities fall in BCS
classes II and IV. It has been reported that only eight percent of novel drug candidates
currently exhibit excellent permeability and solubility. Water-insoluble or poorly water-
soluble medications account for more than 1/3 of the pharmaceuticals classified in the
US Pharmacopeia [13]. Recently, it was claimed that around half of all drug molecules
failed during the development stage due to poor aqueous solubility. Lead compounds with
poor solubility characteristics resulted in inefficient absorption from the administration site,
resulting in a higher rate of therapeutic loss due to poor pharmacokinetics [14].

Table 1. BCS Classification.

BCS Class Solubility Permeability Drug Molecule Examples

I High High Mefoquine hydrochloride, Nelfnavir mesylate, Quinine
sulfate, Clomiphene citrate

II Low High Ibuprofen, Nifedipine, Carbamazepine,
Diazepam, Efavirenz

III High Low Amiloride hydrochloride, Amoxicillin, Ethosuximide,
Fluconazole, Isoniazid, Salbutamol

IV Low Low Acetazolamide, Dapsone, Doxycycline, Nalidixic
acid, Theophylline

The primary goal of the formulating R&D divisions of a pharmaceutical company is to
make the medication accessible at the correct place within the body for its foreseen activity
and in the most effective dosage [14]. The most challenging attribute in the field of drug
discovery is improving drug solubility. For the goal of improving the solubility of poorly
water-soluble drugs, a number of strategies have been described in the literature. These
methods are preferred based on particular characteristics, such as the properties of the
drug under consideration, intended dosage form types, and excipient properties [15,16].
In light of this, we aim to focus on the numerous techniques utilized to increase the
solubility and, ultimately, bioavailability of poorly water-soluble drugs in this review.
The various conventional methods for solubility enhancement, such as inclusion complex
formation techniques, supercritical fluid technology (SCF), cryogenic technology, particle
size reduction, and solid dispersion, are discussed. The conventional approaches include
micronization, the use of penetration enhancers or co-solvents, the surfactant dispersion
method, salt formation, precipitation, and other methods. However, the effectiveness of
these methods in improving the solubility of poorly soluble drugs is still limited. Other
methods include vesicular systems such as solid dispersion and cyclodextrin inclusion
complexes, which have shown promise as drug delivery systems but have the significant
drawbacks including the inability to be applied on all drugs [17,18]. Simultaneously,
different nanotechnological approaches for solubility enhancement are also discussed in
detail, which include dendrimers [19–21], micelles [22–25], solid lipid nanoparticles [26,27],
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liposomes [28,29], and polymeric nanoparticles [30]. For almost 30 years, nanotechnological
products have been in clinical use within the healthcare industry.

In 2000, the US FDA authorized the first medication that increases solubility using
nanotechnology. Elan created a nanoparticulate version of Wyeth’s Rapamune (sirolimus
Wyeth-Ayerst, Philadelphia, PA, USA), an immunosuppressive medication used to prevent
organ transplant rejection, and it has since become the fastest-selling medication in the
transplant market [31]. Similarly, numerous clinical products, such as Doxil®, Ambisome®,
and DepoDurTM, are examples of how liposomes have had a substantial impact on drug
delivery systems in the healthcare industry [32]. During the COVID-19 outbreak, the ad-
vantage of nanotechnological approaches became more widely evident for the public. The
first two COVID-19 messenger RNA (mRNA) vaccines by Pfizer/BioNTech and Moderna,
approved in December 2020, were developed with unmatched speed and perhaps received
the most positive media coverage out of all the COVID-19 vaccines to date. Undoubtedly,
they have demonstrated notable effectiveness in disease prevention and represent the most
recent successful application of lipidic nanoparticles as a delivery system [33]. Despite not
being examples of solubility enhancement, similar approaches can be utilized for these
purposes as well. The various types of solubility enhancement strategies are summarized
in Figures 2 and 3, and Table 2 presents the factors affecting solubilization.
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Review Highlights

• The aqueous solubility of a drug plays a crucial role in drug dissolution and release,
absorption, and, consequently, bioavailability.

• Conventional approaches, which include particle size reduction, solid dispersion,
co-crystallization, prodrug approach, supercritical fluid technology, and inclusion
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complex, have been in use for decades for the enhancement of the aqueous solubility
of poorly soluble drugs.

• Nanotechnology has the potential to revive poorly performing marketed drugs and
many of those pre-clinically promising candidates that were “shelved” due to inade-
quate water-solubility.

• A variety of nanocarriers have been utilized and are still at the development stage.
These include the dendrimers, micelles, SLNs, MOFs, CNTs, nanogels, and meso-
porous silica nanoparticles used to increase the bioavailability of poorly soluble drugs;
they could be useful for the future formulation of development research.
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Table 2. Factors affecting solubility.

S. No Factors Affecting Solubility Details References

1. Particle size
As particle size is reduced, the surface area will increase, and the larger

surface area will provide a greater interaction of the solute molecules with
the solvent.

[34]

2. Temperature
Solubility will be increased when the temperature rises and the solution

process absorbs energy; if the solution process generates energy, then
solubility will decrease with an increase in temperature.

[35]

3. Pressure

Pressure will only affect the solubility of gaseous solutes and have no effect
on solid and liquid solutes. A decrease in pressure causes a decrease in

solubility, and an increase in pressure causes an increase in the solubility of
gaseous solutes.

[35]

4. Nature of solute and solvent Properties of solute, as well as the solvent, have drastic effects on solubility. [36]

5. Polarity

Substances with the same type of polarity will be soluble in one another,
“similia similibus solvuntur”. Polar solute molecules or ions will dissolve

in polar solvents, while non-polar solute molecules will dissolve in
non-polar solvents.

[37]

6. Polymorphism Polymorphs differ in melting points. Different polymorphs have different
solubilities as solubility and melting point are linked. [38]

7. Stirring Stirring ensures that new solvent components come into contact with the
solid and liquid solutes, resulting in increasing solubility. [39]
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2. Conventional Approaches

Conventional approaches have been in use for decades for the enhancement of the
aqueous solubility of poorly soluble drugs. Micronization, solid dispersion, prodrug,
cyclodextrin inclusion complexes, supercritical fluid technology, and cryogenic technology
are strategies that fall under the category of conventional approaches (Figure 2).

2.1. Particle Size Reduction

The primary molecular size of the drug powder has a direct impact on the bioavailabil-
ity of poorly soluble drugs. The reduction in particle size leads to an increase in surface area,
which further improves the dissolution properties due to the increased contact area with
the solvent. In addition, particle size reduction allows the rapid diffusion of the solvent.
Milling techniques, such as, jet mills, rotor-stator colloid mills, and other types of mills,
reduce the particle size of drug raw materials [12,40]. However, thermal stress should be
considered when using spray drying for thermosensitive substances [41]. Micronization
techniques can convert particles into sizes of less than 5 µm in diameter and yield uniform
particle sizes. Various types of micronization techniques, such as milling, supercritical fluid
technology, microprecipitation and microcrystallization, and spray freezing into liquid,
affect the characteristics of the micronized drug substance [42].

2.2. Cyclodextrin Inclusion Complexes

Inclusion complexes are formed by inserting a non-polar molecule (guest molecule)
into the cavity of another molecule or group of molecules (host molecule). The inclusion
complex creation approach has been used more accurately than any other solubility en-
hancement method to increase the aqueous solubility, dissolution rate, and bioavailability
of the drugs. Here, cyclodextrins (CDs) have been used as the most common host molecule.
Poorly soluble therapeutics can have their physicochemical and biological characteristics
changed with CDs by having drug molecules included in the cavity of the disc. CDs can
attach lipophilic compounds via a variety of intermolecular interactions because of the hol-
low, lipophilic core cavity [43]. The kneading method, physical mixing, the co-precipitation
method, and the solvent evaporation method are widely used for the preparation of inclu-
sion complexes [44]. Rivaroxaban (RIV), an oral anticoagulant, is a poorly soluble drug
having a solubility of 0.005 and 0.006 mg/mL in water and acetate buffer of pH 4.5, re-
spectively. Sherje et al. formulated rivaroxaban-loaded β-Cyclodextrin-based inclusion
complexes. They have developed RIV inclusion complexes via the kneading method, spray
drying, and physical mixing, which showed an increased solubility in water by 3.36-,
2.34-, and 4.02-fold; increments of 1.88-, 3.68-, and 1.78-fold were obtained in the acetate
buffer [43].

2.3. Solid Dispersions

For oral dosage forms, solid dispersions (SD) have been a good technique for en-
hancing drug solubility, absorption, and therapeutic efficacy [45]. SD is a group of solid
materials with at least two distinct components: a hydrophilic matrix and a hydrophobic
drug. The molecular dispersion of one or more hydrophobic drugs in a hydrophilic carrier
matrix is referred to as solid dispersion [46,47]. Formulating solid dispersions is a method
of choice within pharmaceutical industries for improving drug solubility in the dosage
form. Some hydrophilic carriers used to create solid dispersions are polyvinylpyrrolidone
(povidone, PVP), polyethylene glycols (PEGs), hydroxy propyl methyl cellulose (HPMC),
and Plasdone-S630. Surfactants such as sodium lauryl sulphate (SLS), docusate sodium,
Pluronic-F68, Myrj-52, and Tween-80 are used in solid dispersion formulation. Sekiguchi
and Obi explored the manufacturing or dissolution properties of eutectic melts containing
a sulphonamide drug and a water-soluble carrier in the mid-1960s [48]. Solid dispersion us-
ing appropriate hydrophilic carriers has been shown to improve the solubility of celecoxib,
halofantrine, and ritonavir. Hydrophobic drugs could be formulated into solid dispersions
using many methods to increase their water solubility [49]. There are many commercialized
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products available in the market that are based on solid dispersions for delivering poorly
soluble drugs; some examples are listed in Table 3.

Table 3. A list of several commercial solid dispersion products of poorly soluble drugs.

S. No Trade Name Therapeutic
Agent Manufacturer Polymer Used in

Formulation Indication

1. Certican Everolimus Novartis HPMC Anti-cancer

2. Cesamet Nabilone Valeant Pharmaceuticals PVP Chemotherapy-induced
nausea

3. Gris-PEG Griseofulvin Pedinol Pharmacal Inc. PEG6000 Antifungal
4. Intelence Etravirin Tibotec HPMC Antiviral (HIV infection)
5. Isoptin SR-E Verapamil Abbott HPMC/HPC Anti-Hypertensive

6. Nivadil Nivalidipine Fujisawa Pharmaceutical Co.,
Ltd. HPMC Anti-Hypertensive

7. Prograf Tacrolimus Fujisawa Pharmaceutical Co.,
Ltd. HPMC Immunosuppressant

8. Rezulin Troglitazone Pfizer, Inc. PVP Antihyperglycemic
9. Sporanox Itraconazole Jansen Pharmaceuticals, Inc. HPMC Antifungal

In a study by Muniandy et al., hyper-branched poly (glycerol ester amide) (HPGEA)
with an average molecular weight of 5000–12,000 Da and a degree of branching of approx.
60% was used as a drug carrier in the fusion–solvent process to formulate lovastatin solid
dispersions (LOV SD). SD having LOV:HPGEA = 5:95% w/w demonstrated significant
improvement in in vitro dissolution, and the same formulation achieved a more than 2-fold
increase in cumulative drug release and a more than 3-fold increase in solubility over pure
LOV [50]. Various methods for preparing solid dispersions are discussed below:

Hot melt method (fusion method): A drug and a water-soluble carrier are heated until
they melt. Under vigorous stirring, the liquefied fluid is quickly cooled and hardened on an
ice bath. The resulting solid bulk is crushed, pulverized, and sieved, and tableting agents
are then used to compress these into tablets [51]. One major limitation is that many drug
molecules may degrade under elevated temperatures [41].

Hot-melt extrusion: Hot-melt extrusion is similar to fusion except that the extruder
causes a strong mixing of the components. The miscibility of medicines and the matrix
can be an issue in the classic fusion method, leading to the non-uniform distribution of the
drug. High shear forces in the extruder cause a rise in local temperature, which is an issue
for heat-sensitive materials. Nevertheless, opposed to the old fusion approach, this method
enables continuous production, making it suitable for large-scale manufacturing [15]. To
improve the dissolution and oral bioavailability of oleanolic acid, a solid dispersion of
oleanolic acid with a carrier consisting of PVP VA 64 polymer was developed, and it was
found that the drug dissolution of prepared SD was better (i.e., approx. 90% of drug
released in 10 min) compared to the free drug (i.e., 37% in 2 h) and the physical mixture
(i.e., 45% in 2 h) [52].

Solvent evaporation method: The solvent evaporation method is the foremost appli-
cable method for improving the solubility of poorly water-soluble drugs, especially for
thermolabile components. Unlike the melting method, where heat is used for the mixing of
the drug and carrier, this method allows the mixing of the drug and carrier with the aid of
a solvent, which also provides an advantage for using carriers with extremely high melting
points. In order to achieve homogeneous mixing, the drug, as well as the carrier, are both
dissolved in a volatile solvent, followed by the formation of solid dispersions after evapo-
rating the solvent via constant stirring. The solubility of various poorly soluble anti-cancer
drugs, such as paclitaxel, docetaxel, everolimus, and exemestane, has been increased by
this method [53]. Chen and his colleagues found in their studies that both the solubility
and dissolution of docetaxel had improved in solid dispersion formulation. They found
that, in comparison to the free drug, the dissolution and solubility of docetaxel-loaded
emulsified solid dispersion improved 12.7-fold and 34.2-fold, respectively at 2 h [54].
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Spray drying: The spray drying technique for the development of solid dispersions
involves the preparation of a feed solution in which the carrier has to be dissolved in
water, while the drug molecule has to be dissolved in the required solvent, followed by
sonication. Afterwards, fine droplets of drug molecules are formed through a nozzle using
high pressure in a drying chamber. Herbrink et al. developed a solid dispersion of nilotinib
with the aid of the spray drying technique to improve solubility, and the results showed
that, compared to free nilotinib, the solubility of spray dried nilotinib SD had improved by
630 times at a drug: Soluplus® (BASF SE-Ludwigshafen, Germany) ratio of 1:7 [55].

Owing to several benefits, solid dispersions were frequently used to improve the drug’s
water solubility. Drugs interacting with hydrophilic carriers can reduce agglomeration and
release in a supersaturation state, resulting in quick absorption and improved bioavailability.
This is one of the most significant benefits of solid dispersion. Further, when compared to
other forms, such as liquid products, solid dispersion can be created as a solid oral dosage
form, which is more feasible for patients [53]. Despite having a number of advantages, solid
dispersions exhibit physical instability, vary in crystallinity with time, and are sensitive
to temperature and humidity on storage due to their thermodynamic instability. These
substances can hasten the phase separation and crystallization of solid dispersions by
increasing molecular mobility generally, lowering the glass transition temperature (Tg),
or interfering with interactions between the drug and carrier, which decreases the drug’s
solubility and rate of dissolution. The effectiveness of the therapy and the quality of the
medications may be affected by the stability of solid dispersions during storage [53,56,57].

2.4. Prodrugs

A prodrug is an inactive, chemically modified parent drug that has enhanced aqueous
solubility and can be converted into the active parent drug via rapid biotransformation.
The use of prodrugs can also enhance pharmaceutical qualities such as odor, taste, and
chemical stability and alleviate the irritation and pain associated with pharmaceuticals and
problems in the preparation or manufacture of the API. In addition, such prodrugs can lead
to pharmacokinetic profile optimization and decrease or remove the first-pass effect [58].
The two major prodrug formulation groups to consider are: (i) carrier-linked prodrugs, in
which the parent drug is chemically connected to a prodrug molecule, and (ii) bio precursor
prodrugs. Carrier-linked prodrugs were classified as bipartite prodrugs because the carrier
is attached to the parent drug directly, or tripartite prodrugs, wherein the carrier is linked
to the parent drug by a spacer, as presented in Figure 4 [59,60].

Classic prodrugs are described as carrier-linked prodrugs. Mixed prodrugs, as in
traditional prodrugs, are latent forms in which the carrier has bioprecursor properties and
is linked to a drug. The drug is released after the bond has been cleaved via an enzymatic
reaction. This prodrug form is also known as a CDS (chemical delivery system). Mutual
prodrugs, such as classic prodrugs, contain a pharmacologically active carrier, enabling the
development of a prodrug either with different or similar therapeutic activities, operating
via distinct and similar mechanisms of action [60].

Some prodrugs do not have an apparent carrier or promoter but instead reemerge
out of a molecular change in the actual prodrug, resulting in a novel active molecule.
According to US-FDA, among all new drug molecules approved, 12.4% were prodrugs
between 2008 and 2017 [61]. To tackle the poor oral bioavailability of a poorly soluble
but highly permeable HCV NS5B polymerase inhibitor, a prodrug methodology was in-
troduced. Microsomes from the liver or the intestinal tissues, plasma, simulated gastric
fluids, and simulated intestinal fluids were used in a series of in vitro assays to assess the
bioconversion rates of structurally diverse prodrug derivatives. The prospective candidates’
in vivo bioconversion was evaluated after orally administering them to rats. The original
medication’s carboxylic acid component might have been converted to glycolic amide es-
ters, which would have boosted solubility in the lipid-based self-emulsifying drug delivery
system (SEDDS). When compared to parent and cross-species bioconversions, the crys-
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talline prodrug counterpart displayed preferable solubility in certain SEDDS components,
which matched the in vitro stability in liver microsomes [62].
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2.5. Co-Crystallization

A co-crystal is a crystalline structure wherein specific stoichiometric amounts of
noncovalent forces hold two or more electrically neutral substances together [63]. The
co-crystallization of two active drug products, aspirin and acetaminophen, was already
recorded [64]. It is similar to salt production, especially in the case of neutral substances,
and can be produced via evaporation, sublimation, melt growth, and slurry prepara-
tion [40]. In one study, the formation and characterization of three different ezetimibe
crystals (utilizing methylparaben as a conformator via three different processes: solution
crystallization, liquid-assisted crushing, and reaction crystallization) has been reported.
Differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), Raman spec-
troscopy, and powder X-ray diffraction (PXRD) studies show that different peak melting
temperatures were observed in the three co-crystals, suggesting the development of a
new solid phase. The recent substantial form is caused by a low electrostatic interaction
mediating the medicine and the co-former. The crystal habituation of both the drug and
the co-former has been changed, respectively. The equilibrium solubility and dissolution
studies of the co-crystals show that the co-crystals of ezetimibe and methylparaben could
be a possible and potential alternative and effective strategy for increasing solubility [65].

2.6. Supercritical Fluid Technology (SCF)

Being non-toxic, non-reactive, non-flammable, and non-polluting, the implementation
of SCF technology has garnered the attention of many researchers. This green technology
approach has the potential to make a significant difference in the pharmaceutical industry
by overcoming the limitations of several conventional processes, such as spray drying and
others [66,67]. The US-FDA recognizes CO2 as a safe supercritical solvent and the most used
supercritical solvent in the pharmaceutical manufacturing industry [68,69]. Most of the
solvents employed in the preparation of the soluble versions of drugs are toxic; supercritical
fluid technology can be employed to avoid this disadvantage [70]. The supercritical
solution process and the residue with the compression antisolvent precipitation (PCA)
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are two techniques that may be used. Based on particle generation conditions (i.e., solute
and solvent), there are various methods for enhancing the solubility by SCF. For solvent
molecules, the rapid expansion of a supercritical solution (RESS), the rapid expansion of a
supercritical solution into a liquid solvent (RESOLV), the rapid expansion of a supercritical
solution into an aqueous solution (RESS-AS), and the rapid expansion of a supercritical
solution with a non-solvent (RESS-N) are the various processes; gas-saturated solutions
(PGSS) and the depressurization of an expanded liquid organic solution (DELOS) are the
processes for solute molecules under SCF for improving solubility [71]. Jia et al. developed
aescin nanoparticles with SCF using a solution-enhanced dispersion method, and they
found that, compared to raw aescin, the dissolution of aescin nanoparticles was amplified
approx. 5.5-fold [72]. Similar to this, resveratrol’s solubility was increased by around
2.8 times and its dissolution rate by about 1.8 times using solution-enhanced dispersion via
supercritical fluids micronization [73]

A brief assessment of the advantages and disadvantages of various conventional and
nanotechnological solubility enhancement techniques has been elaborated in Table 4.

Table 4. An assessment of advantages and disadvantages of various conventional and nanotechno-
logical solubility enhancement techniques.

S. No Techniques Advantages Disadvantages References

1. Particle Size Reduction Increases surface area volume ratio

Due to the high surface charge on
discrete small particles, there is a

strong tendency for
particle agglomeration.

Thermal stress may occur, which
harms thermosensitive or unstable

active compound.

[74]

2. Cyclodextrin Inclusion
Complex

Cyclodextrin has high aqueous
solubility and commensurately low

viscosity.
High API concentrations are

achievable.
Additionally, facilitates chemical

stability.

Cyclodextrins demonstrates renal
toxicity in most species, limiting

their use in pre-clinical
toxicology assessments.

[75,76]

3. Solid Dispersion
Dissolution rate and bioavailability
are enhanced by keeping drug in
more soluble amorphous state.

Not commonly used as a commercial
product because of the conversion of

the amorphous drug into the less
soluble crystalline form on

long-term storage and, consequently,
increased drug mobility can lead to

phase separation and instability.
Large-scale production is limited

due to expensive
preparation methods.

[75]

4. Prodrug approach

Higher solubility in lipid
membranes and improved oral or

local absorption.
Reduced toxicity and local irritation.

Increases chemical or
metabolic stability.

Not feasible for all drug formulation. [74]

5. Supercritical fluid
technology

Free from organic solvents and
heavy metals.

Green extraction techniques.

Expensive and complex equipment,
operating at elevated pressure.

High power consumption.
[68]
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Table 4. Cont.

S. No Techniques Advantages Disadvantages References

6. Polymeric Micelles

Ease of fabrication and chemical
modification. Suitable for numerous

hydrophobic drug candidates.
Control and targeted drug release

is possible.

The disintegration of micelles due to
their dilution after oral

administration, in vivo instability
below the critical

micellar concentration.
Low drug loading.

[77]

7. Polymeric Nanoparticles

Enhanced drug stability, sustained
drug delivery, shielding of the drug

cargo from enzymatic activity,
prolonged retention in the GI tract,
and improved mucoadhesiveness.

Challenges in biocompatibility and
safety of polymeric carriers.

Toxicity is a result of the high tissue
accumulation of

non-biodegradable NPs.
Difficulties in optimizing the process

parameters and scaling up the
production into a

pharmaceutical product.

[78]

8. Liposomes

Non-immunogenic, biocompatible,
and biodegradable.

Ability to carry both hydrophilic as
well as hydrophobic drugs.

Poor stability and short shelf life. [79]

9. Solid lipid nanoparticles
(SLNs)

Biocompatible.
Easy scale-up.

Protects drug against harsh
environmental conditions.

Because of crystalline structure, low
drug-loading efficacy and chance of

drug expulsion during storage.
[80]

10. Dendrimers

Drug encapsulation and conjugation
is possible.

Tunable chemical and
physical properties.

May cause cellular toxicity.
Elimination and metabolism

depending on the generation of
the dendrimers.

High synthetic cost.

[77]

11. Quantum dots Multiple molecular targets
simultaneously. Toxicity effect of metal core. [81]

3. Nanotechnological Approaches for Solubility Enhancement

Nanotechnology has the potential to revitalize both poorly performing marketed drugs
and many of those pre-clinically promising candidates that were “beached” due to inade-
quate water solubility, in addition to novel therapeutic developments using components
in the 1–100 nanometer range [31]. As a result of recent developments in nanotechnol-
ogy, researchers have been tackling this problem by formulating drugs with the aid of
nanocarriers. The most commonly utilized nanotechnology-based approaches for develop-
ing drug delivery systems include nanoemulsions, dendrimers, micelles, liposomes, solid
lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles, carbon nanotubes,
MOFs, and so forth [82]. Numerous studies have demonstrated that, via a variety of meth-
ods, nanoparticles can increase the oral bioavailability of hydrophobic and hydrophilic
drugs [83]. In addition, there are several oral nanosuspension-based products that enhance
drug absorption and dissolution available on the market [84]. A poorly water-soluble
substance is made more soluble by the addition of surface-active agents in the process of
solubilization. The process of solubilization involves adding an extra amphiphilic compo-
nent to a material that is typically insoluble or just sparingly soluble in a particular solvent
to create a thermodynamically stable solution. The dissolution of poorly soluble drugs may
be achieved by the use of micellar solubilization. The inclusion of drug molecules that are
poorly water-soluble is made possible by the micelles’ fluctuating polarity, which leads to
solubilization, or an increase in the drug’s apparent aqueous solubility [85,86].

Nanocarriers have been widely investigated for oral drug delivery because they can
prevent the drug from being enzymatically and hydrolytically degraded in the GI tract,
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increase the duration the drug spends in the gut through mucoadhesion, and significantly
increase the drug’s absorption and bioavailability [9]. As previously stated in the intro-
duction, drug absorption occurs after oral administration when the drug is dissolved from
the formulation into aqueous gastrointestinal fluid and subsequently transported over the
GI epithelium into the bloodstream. An increase in the area under the blood concentra-
tion–time curve (AUC), an increase in the maximum plasma concentration (Cmax), and a
decrease in the time to maximum plasma concentration are just a few examples of how
the formulation of drug nanocarriers can significantly improve the bioavailability of orally
administered poorly soluble drugs (Tmax) [87,88]. Once these drug-entrapped NPs were
administered orally, an increase in bioavailability has been observed. When it comes to
anti-cancer drugs, for instance, it has been reported that the extremely insoluble drug
paclitaxel’s in vivo bioavailability was enhanced 10-fold, when compared to Taxol taken
orally, when delivered in the form of a nanoparticle. This observation indicated that higher
water solubility may have an impact on the effect of enhancing the oral bioavailability of
paclitaxel [89]. Several nanocarriers used for the solubility enhancement of poorly soluble
drugs are briefly described below and in Table 5.

3.1. Liposomes

Liposomes have been demonstrated to be one of the most promising drug delivery
methods. The first liposomal (intravenous) formulation came out on the market in 1995
(Doxil®) and has been researched since then and integrated with various active molecules,
including peptides and proteins [90]. Liposomes are created using amphipathic compounds,
typically lipids; the synthesis process can be tweaked to control their size and form [91].
Liposomes are vesicles surrounded by phospholipid bilayers that can solubilize drugs that
are insoluble in water in the lipid domain of the liposomal membrane [92]. The structural
and compositional similarities of liposomes to biological membranes have encouraged their
usage for the non-invasive oral delivery of weakly permeable drugs aided by their dis-
solving capability and biocompatibility [93,94]. Because liposomes may solubilize weakly
water-soluble pharmaceuticals, safeguard the drug from GI tract degradation, and improve
permeability across the epithelial cell membrane (boosting oral bioavailability), liposomal
administration appears promising for the oral delivery of hydrophobic drugs [94]. For
oral administration, liposomal membrane formulation can delay or regulate the drug’s
release from the liposomes, resulting in a range of absorption rates. Bypassing the hepatic
first-pass effect, liposomes can directly deliver the drug through the lymphatic route. By
minimizing direct interaction with the intestinal environment by encapsulating into lipo-
somes, drug-induced GI irritation may also be decreased [94,95]. They were first employed
in the 1960s to examine biological membranes. Since then, their use has expanded to drug
administration, cosmetic formulations, or the food industry, among other applications, as
shown in Figure 5.

Rao et al. has prepared a liposomal drug delivery system for the enhancement of
the solubility and bioavailability of Efavirenz. Efavirenz, having poor aqueous solubility
(0.0085 mg/mL) and high lipophilicity (log P: 5.4), belongs to BCS class II. It has been found
in their studies that there is an improvement in the solubility of Efavirenz with increasing
concentration of soya lecithin in the liposomal formulation (i.e., after the addition of 900 mg
of soya lecithin) along with the drug and water; solubility went up to 27.82 ± 2.55 µg/mL.
In addition, according to the in vivo pharmacokinetic study, it has been reported that the
oral bioavailability of the liposomal formulation has increased 2-fold compared to the free
drug [96]. To overcome the poor aqueous solubility of Apigenin, Telang et al. developed
the phospholipid complex of apigenin (APLC) via the incubation of phospholipon 90H
along with apigenin in a solution of 1,4-dioxane and methanol at 50 ◦C for 2 h and then
redissolved in chloroform and methanol. This mixture was further precipitated in hexane
followed by vacuum drying. It was found in their study that the newly formed complex
showed an increase in solubility that may be because of the amorphous state of apigenin in
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the APLC complex. Namely, APLC showed a 37-fold solubility improvement in the water
of apigenin (i.e., from 0.62 ± 0.88 µg/mL to 22.80 ± 1.40 µg/mL) [97].
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3.2. Dendrimers

Dendrimers, a new class of polymers, possess excellent potential for drug solubility en-
hancement [98,99]. Dendrimers are made up of four domains: a central core, internal layers
made up of repeating units that link to the vacant spaces, external surface groups, and core
(generation, G) [100]. Dendrimers containing poly (amidoamine) (PAMAM) are the most ex-
tensively studied dendrimers as drug delivery systems. They consist of an ethylenediamine
core and branched units made of methyl acrylate and ethylenediamine [101]. The capacity
of these hyper-branched, mono-dispersed molecules to covalently bind drug molecules to
their peripheral branches and encapsulate them within the dendritic structure is unique.
Several published research studies have successfully employed dendrimers to increase the
solubility of poorly soluble drugs. Using physical encapsulation or covalent conjugation,
dendrimers may also increase the solubility of hydrophobic compounds [21,98]. As per
literature, G0 PAMAM dendrimers can greatly improve the solubility of aceclofenac, a
practically water insoluble anti-inflammatory drug [102]. According to the research by
Patel et al., the solubility improvement was concentration-dependent and depended on the
pH, concentration, temperature, and dendrimer generation. The solubility was improved
in the following sequence via dendrimer synthesis at a constant pH: G3 > G2 > G1 > G0.
The enhancement in aceclofenac solubility caused by the dendrimer pH may be the result
of an electrostatic interaction between the NH2 groups of the dendrimer and the COOH
group of the medication, and the temperature of the dendrimer solution was shown to
have an inverse relationship with the solubility of aceclofenac [102].

Likewise, Gautam and Verma investigated the effect of a full-generation PAMAM (G4)
dendrimer on the solubility of candesartan cilexetil (lipophilic calcium channel blocker
agent). Purified water was used throughout the testing, which was conducted at room
temperature, and the drug’s concentration was determined to be 2.63 g/mL. The maximum
solubility of candesartan cilexetil increased approx. 373-fold at a 10 mg/mL PAMAM con-
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centration, and it was shown that the enhancement in solubility relies on the concentration
of the dendrimers [103]. Simvastatin was investigated with dendrimers by Kulhari et al.
with the goal of assessing the effectiveness of three different G4 PAMAM dendrimers. It
was found that PEGylated dendrimers had the highest solubilization (33-fold), followed by
NH2- (23-overlap) as well as OH-ended (17.5-overlay) dendrimers. The solvency improved
from 33.4 to 1093.25 mole/L with the introduction of 109.04 M (0.4%, w/v) PEGylated
dendrimer complexes (i.e., 33-overlap) [104].

3.3. Nanosuspensions

Nanosuspensions are submicron colloidal dispersions of drug particles in an aqueous
phase, colloidally stabilized with the aid of surfactants [105]. As an adjunct to lipidic
systems, nanosuspensions are employed in the formulation of drugs that are insoluble in
both water and organic solvents. Compounds with a high melting point, a high log p value,
and high dosage strength are the best candidates to be formulated as nanosuspensions [106].
By delivering the nanosuspension orally or intravenously (IV), the rate of saturation of the
active component increases and the optimal plasma level is more rapidly achieved. The
size distribution of solid particles in nanosuspension ranges from 200 nm to 600 nm [107].
Aghrbi et al. developed cilostazol-incorporated nanosuspension in an attempt to enhance
the in vitro solubility and dissolution rate via a wet milling method, and the results showed
that at pH = 1.2, the particle size reduction significantly increased the maximum thermody-
namic solubility of the drug (cilostazol) and had a two-fold improvement over unmilled
and pure surfactant dispersion [108]. Albendazole exhibits a solubility of 4.1 mg/L at 25 ◦C
in water and <5% bioavailability through the oral route. Thus, to improve the solubility of
albendazole, Rao et al. formulated nanosuspension-encapsulated multiparticulates; they
found in their studies that there was a 16-fold increase in aqueous solubility [109].

3.4. Micelles

The combination of a hydrophilic spherical shell composed of polar heads or a hy-
drophobic core composed of a polar tail produces an optimal environment for the solu-
bilization of poorly water-soluble drugs [86,110]. Polymeric micelles, which are typically
composed of amphiphilic block copolymers, have received a lot of interest in the last
few decades in terms of delivering hydrophobic payloads. Polymeric micelles with cen-
tral hydrophobic sections composed of hydrophobic moieties, such as poly (propylene
oxide) (PPO), PCL, poly (ethylene imine) (PEI), PLA, poly (jasmine lactone) (PJL), and
phosphatidylethanolamine (DSPE), and an outer hydrophilic shell (typically poly (ethylene
oxide) (PEO) may self-assemble into micelles in an aqueous media with low critical micellar
concentration (CMC) [111,112]. Due to the particular features of polymeric micelles, such
as nanoscale size, distinctive structure, stability, and compatibility, they are suitable for
many types of applications [113].

Bansal et al. has evaluated the solubilizing capability of poly-based (jasmine lac-
tone) (PJL) polymeric micelles against Soluplus® and with poly (lactide) copolymer mi-
celles. They found that after the introduction of -COOH groups to the polymeric chain of
PJL, the aqueous solubility of clotrimazole was enhanced approx. 334-fold compared to
Soluplus®. Hence, it was proposed that the solubilization capability of polymeric micelles
can be enhanced drastically via the introduction of a free functional group on the polymer
chain, which can interact with drugs electrostatically [114,115]. Zhou et al. synthesized
griseofulvin-loaded core crosslinked micelles to increase solubility and stability. As early
dissociation might be harmful to the micelles, linear dendritic polymers were crosslinked in
this study to avoid both it and drug leakage. The results of the study suggest a 10-fold im-
provement in the solubilization and sustained-release behavior of griseofulvin in developed
polymeric micelles [116].
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3.5. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two
lipid-based nano-systems that have sparked a great deal of interest for a method of orally
delivering hydrophobic drugs with low bioavailability [117]. These lipid nanocarriers offer
several advantages including biocompatibility, simplicity of scale-up, enhanced lymphatic
transport, and, hence, lower first-pass metabolism. SLNs are the 1st generation of lipidic
nanoparticles, measuring around 50 to 1000 nm in diameter, and are composed of an aquatic
lipid matrix dispersion (composed of approximately 0.1–30 (% w/w) solid fat dispersed
in an aqueous phase) stabilized using surfactants, which is solid at both room and body
temperatures [117]. Nevertheless, these systems have several disadvantages, which include
inefficient drug loading and the potential for drug leakage [118]. NLCs, similar to SLNs,
are innovative SLNs constructed out of solid lipids and liquid lipids. A larger payload,
reduced drug leaching during storage, and improved performance in producing the final
dosage forms, such as creams, tablets, capsules, and injectables, can be achieved. Moreover,
suspensions of higher solid content (e.g., 30–50% solid) and the sustained release of medi-
cation are the advantages of NLCs. These liquid oils inside the solid–lipid matrix provide
a matrix with a much lower lipid content, which allows for more cargo molecules to be
accommodated. For the oral administration of hydrophobic drugs, several investigations
have looked into SLN or NLC formulations [119]. Hu et al. developed solid lipid nanopar-
ticles (SLNs) to improve the oral bioavailability of all-trans retinoic acid (ATRA), a poorly
soluble drug used as the model drug, and the findings demonstrated that the absorption of
ATRA is improved significantly by incorporating it into SLN formulations [120]. Khan et al.
evaluated the potential of NLCs for the improvement of the solubility and bioavailability
of tacrolimus (TL). He and his colleagues created a tacrolimus-loaded nanostructured lipid
carrier for this purpose, and they discovered that it increased the relative bioavailability of
TL-NLC by 7.2 times compared to TL suspension [121].

3.6. Supercritical Antisolvent (SAS)

SAS is far more effective than liquid solvent precipitation and may be utilized as a
distinctive, environmentally friendly technique for producing nanomaterials. Supercritical
CO2 has been widely used to create a wide range of materials, including polymers, biopoly-
mers, superconductors, explosives, colorants, active pharmaceutical ingredients (APIs),
and catalysts. If the processed compounds do not dissolve in the supercritical medium,
an antisolvent is used to cause the controlled precipitation of solids to be dissolved in
the conventional solvent. These chemicals dissolve in an organic liquid that is miscible
with the supercritical antisolvent in the proper processing conditions. In order to produce
extremely porous nanoparticles, SAS combines the advantages of the sol-gel method with
the use of a supercritical CO2 antisolvent [122]. Conventional micronization techniques
such as milling, grinding, and spray drying, which rely on mechanical and thermal stress
to disaggregate the active compound, have the drawbacks of the overuse of solvent, the
thermal and chemical degradation of pharmaceuticals, polymers, and biologically active
proteins, a high concentration of residual solvent, and, most importantly, difficulty in
controlling the particle size and distribution during processing. These disadvantages can
be overcome via processes based on the use of supercritical fluids, the most common of
which is supercritical carbon dioxide (scCO2). The SAS process is predicated on a few
key prerequisites. Because scCO2 serves as an antisolvent in this technique, it must be
completely miscible with the liquid solvent used. In the literature, the SAS process is
most frequently used to create microparticles that increase APIs’ aqueous solubility. Rapid
contact between the two media (i.e., antisolvent and polymer/drug solution) speeds up
the process of nucleation and growth, resulting in the formation of very fine particles that
gives SAS an advantage over all abovementioned conventional methods [123].

Traditional procedures can benefit from novel, more effective micronization tech-
niques such as SCF-assisted particle formation, which can produce solvent-free products
in comparatively normal circumstances. Supercritical antisolvent (SAS) methods have the
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capacity to improve the solubility and bioavailability of a number of medications that are
poorly water soluble [123]. Although SCFs are incredibly dense and generally organic
solvents are miscible with it, the essential mechanism of the SAS technique is dependent
on critical parameters such as temperature, pressure, nature of the solvent, flow rate, and
nozzle geometry [123,124]. A SAS experiment begins by pumping CO2 into the precipitator,
which is then heated to the desired temperature. After the operating conditions have been
stabilized, the pure solvent is delivered to the precipitator via a nozzle. The liquid solution
containing the solute/solutes dissolved in the chosen solvent is then injected. The solute(s)
precipitates on a filter as a result of supersaturation. The solvent/antisolvent mixture is
recovered and separated downstream of the precipitator, where a vessel to collect the liquid
solvent is located. After injecting the solution, the scCO2 continues to flow to eliminate
the solvent residues. The precipitator is depressurized to atmospheric pressure at the
end of this washing step, and the precipitated powder can be collected [125]. The critical
conditions when SCFs are extremely dense and usually miscible with organic solvents
determine the basic mechanism of the SAS process. Figure 6 displays a schematic of the
SAS process.
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Telmisartan is a BCS class II drug with severely limited solubility in water, but it is
easily soluble in strongly alkalized solutions. Telmisartan dissolves in only a few organic
solvents. The most significant barrier to reaching the desired bioavailability is the issue of
solubility. The SAS technique was utilized to micronize, amorphize, or solid disperse BCS
class II drugs in several ways due to its unique properties. The SAS technique has been used
for producing solid dispersions of hydroxy propyl methyl cellulose/polyvinylpyrrolidone
(HPMC/PVP) at 1:0.5, 1:1, and 1:2 weight ratios of drug to polymer, while pure telmisartan
had also been processed. In conformity with the researchers, this SAS technique might
be a potential approach for accelerating the dissolving or improving the solubility of
telmisartan after adjusting the solid dispersion formulation [126]. Likewise, in order to
study fluconazole monohydrate using the SAS method, Park et al. varied the temperature
(40, 60, and 80 ◦C), the pressure (8, 12, and 16 MPa), and the type of solvent (acetone,
ethanol, and dichloromethane (DCM)). At high pressure, neither particle precipitation nor
nucleation took place (16 MPa). Nevertheless, both were observed when the pressure was
being reduced (12 MPa). This is caused by the increased solubility of fluconazole in SC-CO2
at high pressures. Additionally, the product yield increased gradually as the temperature



Life 2023, 13, 1099 17 of 32

was raised from 40 to 80 ◦C while maintaining the same pressure. At high temperatures,
the organic solvent’s solubility in SC-CO2 increased, causing the solvent to be extracted
more quickly, aiding in the drug’s precipitation [127].

3.7. Nanoemulsions

Nanoemulsions are heterogeneous, thermodynamically stable systems consisting of
an oil phase and an aqueous phase with one dispersed in the other with the assistance
of the surfactant, where the interfacial film formation of the surfactant provides colloidal
stability to the system [128]. Having a droplet size lower than other that of colloidal sys-
tems (1–100 nm) confers a greater surface area (e.g., standard emulsions), which assists
in improving solubility [129]. Reddy et al. has formulated nanoemulsions of febuxostat,
a BCS class II drug used for solubility enhancement. The outcome of their in vitro dis-
solution study demonstrated that within 6 h, 42.37% of the drug was released from the
formulated nanoemulsion; this indicated that the improved solubility of the drug is due to
the developed formulation [130]. Ostwald ripening, a foremost destabilization process of
nanoemulsions, is a process in which larger droplets grow at the smaller droplets’ expense.
This process can be avoided or slowed down by using hydrophobic components in the oil
phase followed by a decreased rate of coalescence. Wik et al. prepared a nanoemulsion
having an oily phase of a renewable poly (δ-decalactone) (PDL) and Pluronic F-68 as a
surfactant via the nanoprecipitation method for the evaluation of drug delivery potential
using various hydrophobic drugs. They found that, compared to well-founded Pluronic
micelles, the developed nanoemulsion (with droplet size < 200 nm) enhanced the aqueous
solubility of the drugs by improving it from 3- to 10-fold [131,132].

3.8. Nanogels

Nanogels are three-dimensional hydrogel substances with a high capacity to hold
water and are generated by crosslinked swellable polymer networks in the nanoscale
size range without physically dispersing into the aqueous media [133]. Nanogels are
created by physically or chemically crosslinking nanoscale-sized networks, which include
networks made of neutral and cationic polymers such as poly (ethylene glycol) (PEG) and
polyethylenimine (PEI) [134]. Particle sizes in nanogels range from 100 to 200 nm [135],
and altering the solvent quality assists in maintaining the three-dimensional network
of the nanogel [136]. They have drawn significant attention as versatile polymer-based
nanodrug delivery systems, as they are capable of encapsulating both hydrophilic and
hydrophobic molecules. Having large surface areas, good drug loading capacities, and
effectiveness for the solubility augmentation of poorly soluble drugs makes nanogels
a promising, effective, and safe nanotechnological approach for delivering drugs [137].
Yao et al. developed myricetin (flavonoid) loaded novel nanogel based on chitosan. This
strategy promoted a 2.20-fold increase in oral bioavailability compared to plain myricetin in
rats [138]. Khan et al. has designed a nanogel system in an attempt to enhance the solubility
of olanzapine (OLZ), an antipsychotic drug, via the crosslinking of Poloxamer-407 and
2-acrylamido-2-methylpropane sulfonic acid (AMPS) with the assistance of methylene
bisacrylamide (MBA). The results confirmed that in comparison to the free drug, the
solubility of olanzapine in nanogel formulation was improved by up to 38 times [139].

3.9. Metal Organic Frameworks (MOFs)

Metal-organic frameworks (MOFs), which integrate organic ligands with metal ions or
metal complexes via coordinative bonding to form a two-dimensional or three-dimensional
network, are very porous and crystalline materials that would provide molecular structural
flexibility [140]. Due to their customizable physiochemical characteristics (i.e., surface
area, modulable porosity, functional moieties, tunable pore size, and pore volume and
flexibility to encapsulate significant active ingredient loadings), MOFs have attracted a lot
of consideration as drug delivery carriers in the past 10 years [141]. MOFs are an excellent
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representation of the ability to merge organic and inorganic chemistry, two areas that are
sometimes seen as incompatible [142].

Quercetin (Que) exhibits multifunctional pharmacological properties, which include
anti-cancer, anti-hypertensive, and antioxidant activities, but is associated with very poor
water solubility. In an attempt to overcome this limitation, Wang et al. loaded Que into γ-
cyclodextrin metal-organic frameworks (γ-CD-MOFs) in which they observed the 100-fold
enhancement of solubility relative to pure Que [143]. One of the promising solutions by
Chen et al. for isosteviol’s (STV) insolubility is the use of the highly porous supramolecular
carrier cyclodextrin’s metal-organic framework (CD-MOF). STV’s solubility in water was
less than 20 ng/mL at a pH of 1.0 and a pH of 4.5, but it was more soluble at a pH of 6.8 and
129.58 ng/mL; therefore, it exhibits pH dependency. The bioavailability of STV@CD-MOF
(1:1) was 8.67 times greater than that of STV, 1.32 times greater than that of STV@CD, and
1.27 times greater than that of STV@CD-MOF (0.5:1) in rats [144]. Similarly, to enhance the
solubility of Azilsartan (AZL), an angiotensin II receptor antagonist, He et al. designed a γ-
CD metal-organic framework (γ-CD-MOF). AZL was effectively confined in biocompatible
versatile γ-CD-MOF high molecular cages, resulting in clusters in the nanometer range,
improving solubility. Using this method, when compared to the pure drug, the relative
solubility of AZL/CD-MOF increased by 340 times; the bioavailability of AZL increased by
9.7 times after loading into the CD-MOF observed in Sprague-Dawley rats [145].

3.10. Carbon Nanotubes

Carbon nanotubes (CNTs) are a promising carrier in nanotechnology with peculiar
electrical, mechanical, chemical, and optical properties. They are cylinder-shaped, al-
lotropic forms of carbon. On the surfaces of CNTs, functional groups are created via
functionalization. These functional groups aid in the enhancement of the contact between
the CNTs and the matrix or solvent and produce a homogenous dispersion or cause the
solubilization of the CNTs. To avoid aggregation and improve their dispersibility, the sur-
face modification of the CNTs is necessary for better interactions with matrix materials and
polymer matrices [146,147]. Due to the high water dispersibility of functionalized CNTs,
they can serve as the drug’s nucleating sites for hydrophobic compounds and enhance
hydrogen bonding with aqueous media, which facilitates fast dissolution [148]. Therefore,
the underlying mechanism by which CNTs improve the solubility of drugs that are weakly
water-soluble is known as “functionalized partitioning” [149]. Chen et al. introduced CNTs
into hydrophobic drugs (griseofulvin and sulfamethoxazole) during synthesis. The results
demonstrated that the carrier enhances the dissolution rate of both pharmaceuticals. For
CNTs in griseofulvin (4%), it takes 18 min instead of 66 min. For CNTs in sulfamethoxazole
(5.1%), it takes 10 min instead of 67 min to obtain 80% dissolution [150]. Further, Zhu
et al. formulated dipyridamole CNTs, as it is a poorly soluble drug, and concluded an
increase in drug loading; the form of dipyridamole changed from amorphous to crystalline.
Moreover, as drug loading into carriers improved, the release rate of the drug dropped
and improvement in dissolution rate was perceived. CNTs have been also shown to be
promising carriers for loading dipyridamole [151].

3.11. Mesoporous Silica

Mesoporous silica has been extensively recognized for possessing the ability to im-
prove solubility by adsorbing and thereby stabilizing APIs in their amorphous state within
their porous network [152,153]. Consequently, it has been suggested that mesoporous
silica materials (MSMs) be employed as matrices to increase the apparent solubility and
dissolution rate of poorly water-soluble drug molecules. Because amorphous silica is a
“generally regarded as safe” (GRAS) material, biodegradable by hydrolysis, and easily
surface-modifiable to enhance drug loading and subsequent release in the human body,
mesoporous silica materials are excellent candidates for drug delivery [154]. The primary
benefits of mesoporous silica as drug delivery systems for poorly water-soluble drugs are
their pore size, pore morphology, and versatility in altering the surface chemistry; the latter
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can result in optimized interactions between a drug candidate and the mesoporous silica
carrier by modifying the pore surfaces [155]. The fundamental property associated with
MSMs in this regard is nevertheless their characteristic pore size, which per the IUPAC
definition lies in the mesoporous range (2–50 nm). Namely, Rengajaran et al. were able to
derive that molecules residing in pores less than 10 times their size remains in amorphous
forms due to not having the space to form crystals [156]. This phenomenon has been
utilized in the formulation of orodispersable films (prednisolone) [157], fast dissolving
tablets (tamoxifen) [158], and lyophilized tablets (silymarin) [159,160]. In one in vivo study,
spherical mesoporous silica nanoparticles (MSNs) were developed by Zhang et al. as an
oral drug delivery system to enhance the oral bioavailability of the drug telmisartan (TEL).
Model drug permeability tests in the human colon cancer (Caco-2) cell lines showed that
MSNs may significantly increase TEL permeability and decrease the rate of drug efflux. The
oral bioavailability of TEL-laden ordered MSMs, MSNs, and the commercial drug Micardis
were investigated in beagle dogs. They found in their studies that the TEL-loaded MSNs
formulation had a relative bioavailability of 154.4 ± 28.4% and the TEL-loaded MSMs
formulation had a relative bioavailability of 129.1 ± 15.6% [161]. A similar study was later
repeated in a clinical setting by Bukara et al. in which they showed that both the absorption
rate and the extent was significantly enhanced for fenofibrate loaded into MSMs vs. a
marketed micronized formulation [162]. This study served as the first form of evidence for
this relatively novel formulation approach.
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Table 5. Summary of various delivery systems and polymers used for the solubilization of different drug molecules.

Delivery
System/Method

Employed
Polymer Used Drugs/API Structure Details References

PAMAM
Dendrimer

Amine and
ester-terminated PAMAM

Dendrimers
Nifedipine
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Table 5. Cont.

Delivery
System/Method

Employed
Polymer Used Drugs/API Structure Details References
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4. Conclusions

This review offers a critical assessment of previously reported literature and some
newly emerging technologies, which include formulation design, solid particle techniques,
prodrug strategies, micronization, solid dispersions, particle size reduction technologies,
nanosizing, cyclodextrins, solid lipid nanoparticles, drug conjugates, colloidal drug delivery
systems, nanoemulsion, micelles, and so forth. Most new drug molecules entering the
development pipeline are poorly water-soluble. Solubility is an important parameter for
successful formulation development, as it directly controls the bioavailability, defines what
kind of formulation should rationally be attempted, and affects the therapeutic efficacy of
the drug. The nanotechnological approach is another strategy that has sparked interest in
drug solubility enhancement, being one of the easiest tasks associated with nanomedicines.
They have been used as platforms for enhancing drug solubility. Despite the fact that
nanotechnology has made significant strides, some difficulties have been witnessed in the
expansion of novel drug delivery systems. These difficulties include the transition of these
nanocarriers from the laboratory to the pharmaceutical market, relying on factors such as
fabrication costs and the reproducibility of formulation properties on the production scale,
and benefits to the human population because of the divergent pharmacokinetics profile.
Nevertheless, despite these difficulties, innovative drug delivery technologies continue
to advance and provide benefits that cannot be overlooked. As a result, nanotechnology
provides formulation scientists with a chance to expand their research and development
in order to address the problems associated with poorly soluble drugs, consequently
increasing the therapeutic efficacy. Solving the above-mentioned problems is based on
molecular properties, but researchers anticipate that solid dispersions and lipid delivery
will be the most sought-after techniques to solve these issues in a reasonable number of
drug compounds.

5. Challenges and Future Perspectives

The growing array of insoluble APIs that have been discovered over the past few
decades has intensified the burden on scientists to develop and adopt innovative tech-
niques to improve bioavailability. With the goal of delivering effective pharmaceuticals
products, scientists need to investigate more varied formulation approaches to overcome
the formulation challenges. Despite the existence of an assortment of conventional ap-
proaches that can boost bioavailability, additional research is needed to create practical and
efficient formulation approaches. Even though solid dispersion techniques and lipid-based
nanotechnological approaches have been the focus of recent research, there are still rela-
tively few commercially available products employing these techniques due to issues with
production scale-up, physicochemical instability, short expiry periods, and reproducibility
issues. To assist with poorly soluble molecules, a number of trends in solubility enhance-
ment have been developed, including novel methods and excipients. However, applying a
completely new methodology is an expensive affair for the pharmaceutical industry, and it
often requires new infrastructure and personnel. To simplify the process and to identify the
best approach, attention has been directed to molecular modelling. Although this is not yet
possible, scientists are moving closer to being able to use molecular dynamic simulations
to determine which excipients or technologies will function most effectively.

For instance, Fagerholm et al. suggested a novel approach where oral bioavailability in
humans is predicted from a chemical structure by directly utilizing an integrated technique
comprising 9 machine learning models, 3 sets of structural alerts, and 2 physiologically
based pharmacokinetic models. On a benchmark dataset of 184 chemicals, they evaluated
the model and achieved a predicted accuracy (Q2) of 0.50; which is considered successful
by the pharmaceutical sector. They arrived to the conclusion that this approach has
enough predictive accuracy to be feasible in applications predicting human exposure
and dose, compound optimization, and decision-making, with potential to rationalize
drug discovery and development and reduce failures and overexposures in early clinical
trials with candidate drugs [187]. Since administering medications orally is the most
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practical method, it is essential to accurately determine oral bioavailability during drug
discovery and development. Quantitative structure-property relationship (QSPR), rule-of-
thumb (RoT), and physiologically based-pharmacokinetic (PBPK) approaches are promising
alternatives for early oral bioavailability prediction [188]. Combining the power of artificial
intelligence and novel solubility enhancement technologies could be a game changer in
solving solubility issues, which is also capable of reducing R&D cost.
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