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ECOLOGY

DNA metabarcoding highlights cyanobacteria as the
main source of primary production in a pelagic food
web model
Andreas Novotny1†*, Baptiste Serandour1, Susanne Kortsch2,3, Benoit Gauzens4,5,
Kinlan M. G. Jan1, Monika Winder1*

Models that estimate rates of energy flow in complex food webs often fail to account for species-specific prey
selectivity of diverse consumer guilds. While DNAmetabarcoding is increasingly used for dietary studies, meth-
odological biases have limited its application for food web modeling. Here, we used data from dietary metabar-
coding studies of zooplankton to calculate prey selectivity indices and assess energy fluxes in a pelagic resource-
consumer network. We show that food web dynamics are influenced by prey selectivity and temporal match-
mismatch in growth cycles and that cyanobacteria are themain source of primary production in the investigated
coastal pelagic food web. The latter challenges the common assumption that cyanobacteria are not supporting
food web productivity, a result that is increasingly relevant as global warming promotes cyanobacteria domi-
nance. While this study provides amethod for howDNAmetabarcoding can be used to quantify energy fluxes in
a marine food web, the approach presented here can easily be extended to other ecosystems.
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INTRODUCTION
Energetic food web models are used by decision-makers globally to
manage marine populations, predict the effects of environmental
change on commercial fish stocks, and inform control of algal
blooms (1). While marine food web productivity are determined
by diverse and dynamic interactions of prey (phytoplankton) and
predators (zooplankton) at the base of the food webs (2, 3), most
food web models are poorly resolved at lower trophic levels (4).
With shifting plankton communities, there is a pressing need to
account for species-specific feeding interactions, but a lack of em-
pirical knowledge of these interactions is a major limiting factor for
constructing resolved food webs, particularly between primary pro-
ducers and primary consumers (5–7). Consequently, it remains
unknown to what extent different primary producers are contribut-
ing to food web productivity at higher trophic levels and how food
web structure and ecosystem functioning will respond to changes in
primary production (8).
Global warming alters pelagic food webs by favoring cyanobac-

teria over eukaryotic phytoplankton (9, 10). In eutrophic waters, the
abundance of large-sized filamentous cyanobacteria (around 20 to
1000 μm) has been increasing, affecting water quality (5–7). In ad-
dition, the increasing success of small-sized picocyanobacteria (<2
μm) in open waters is assumed to cause declines in trophic efficien-
cy (9, 11) and food web degradation (12). Although being major
primary producers in the oceans, many food web models assume
that cyanobacteria are not fed upon by zooplankton due to their

size and sometimes toxicity (13, 14). On the contrary, recent evi-
dence from tracing studies suggests that cyanobacteria are incorpo-
rated in food webs (15–20), but it remains unclear to what extent.
Without a resolved food web model accounting for the diverse
feeding selectivity of zooplankton, the functional role and conse-
quence of increasing cyanobacteria in marine ecosystems will
remain unclear.
Obtaining the detailed information on feeding selectivity of zoo-

plankton (or predator-prey preferences) needed to quantify energy
fluxes in highly resolved food webs and thereby assess the role of
cyanobacteria would require running selectivity laboratory experi-
ments for all pairwise interactions in a food web (21–23). This is
something that quickly becomes unfeasible in complex communi-
ties that vary over space and time. DNA metabarcoding is increas-
ingly used to detect trophic interactions in various ecosystems (24,
25) and has become an important tool for identifying potential
predator-prey interactions in network models (26, 27). However,
as the output of metabarcoding is not directly proportional to
prey biomass (24, 28, 29), DNA metabarcoding has until now not
been used to calculate predator-prey preferences and energy fluxes
in complex food webs.
In this study, we used diet information from DNA metabarcod-

ing to calculate the relative feeding selectivity of zooplankton (30)
and thus overcome the limitations of previous studies to quantify
fluxes of energy in a bioenergetic food web model (31) (Fig. 1).
We used the 16S rRNA gene metabarcoding of zooplankton con-
sumers collected during several seasons at three different stations
in the Baltic Sea proper (fig. S1). This approach provides a model
with high trophic resolution and enables us to identify the main
sources and pathways of primary production in a pelagic food
web. The DNA analyses and the model revealed that cyanobacteria
are incorporated into pelagic food webs, a result that urges us to re-
consider the structural and functional role of cyanobacteria in
present-day and future marine food webs.
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RESULTS
Our consumer-resource network for the Baltic Sea proper included
eight of the most abundant zooplankton genera of several taxonom-
ic groups and size classes, including copepods (Temora, Centro-
pages, Pseudocalanus, and Acartia), cladocerans (Evadne and
Bosmina), and rotifers (Synchaeta and Keratella) (Fig. 2). We in-
cluded 10 orders of primary producers identified as resource
items for the zooplankton by 16S rRNA gene (16S) metabarcoding
and being abundant in the Baltic Sea biomass monitoring. The phy-
toplankton orders included diatoms (Chaetocerales and Thalassio-
sirales) and dinoflagellates (Peridiniales) that together constitute
the spring bloom; filamentous cyanobacteria (Nostocales) and pico-
cyanobacteria (Synechococcales) that together constitute the
summer bloom; as well as chlorophytes (Chlorellales and Pyrami-
monadales), haptophytes (Prymnesiales), cryptophytes (Pyreno-
monadales), and chrysophytes (Chromulinales) (Fig. 2).
Our bioenergetic model, used to calculate fluxes of energy

between phytoplankton and zooplankton for all days of the year, re-
vealed a dynamic food web structure, where both links and total
food web productivity varied over the seasons (Fig. 2 and table
S1). The total detected annual energy flux from primary producers
to primary consumers was 114 kJ/m2 per year. Among this flux, fil-
amentous cyanobacteria (Nostocales, 46%) and picocyanobacteria
(Synechococcales, 26%) together constituted the major source of
primary production in the food web. Spring bloom-forming dino-
flagellates (Peridiniales, 10%) and diatoms (Chaetocerotales and
Thalassiosirales, 11%), as well as a diversity of other small-sized
phytoplankton (6%), contributed to a lesser extent to the detected
annual secondary production (Fig. 2).

In our model, the copepod Temora was the consumer responsi-
ble for the largest proportion of the annual secondary production
(37%). Temora accounted for most of the total detected predation
on Synechococcales (65%) and other groups of small phytoplankton
(82% of Pyraminomonadales, 62% of Chromulinales, and 53% of
Chlorellales). At the same time, Temora accounted for a relatively
small proportion of the detected predation on filamentous cyano-
bacteria (19% of Nostocales) and chain-forming diatoms (25% of
Chaetocerotales). The copepods Centropages and Pseudocalanus ac-
counted for 13 and 10% of the detected secondary production, re-
spectively, and appeared to split their prey equally between available
resources (Fig. 2), while the copepod Acartia and the cladoceran
Bosmina accounted for 23 and 11% of the detected secondary pro-
duction and had the strongest grazing impact on filamentous cya-
nobacteria (33 and 21% of the total grazing on Nostocales,
respectively). Although cladoceran and rotifer zooplankton
(Evadne, Bosmina, Synchaeta, and Keratella) had comparatively
low-energy consumption due to relatively low biomass throughout
the year, they together constituted 17% of the detected annual pre-
dation on primary producers (Fig. 2).
The annual fluxes of energy in the food web were driven both by

zooplankton-specific prey selectivity (Fig. 3; also when accounting
for uncertainty, see fig. S2) and by strong fluctuations in the
biomass of resources (Fig. 4A) and consumers (Fig. 4B). Selectivity
indices calculated from 16S metabarcoding revealed a clear differ-
entiation in forage niche between different zooplankton genera
(Fig. 3). For instance, several of the non-copepod zooplankton
(such as Keratella and Bosmina) had a higher preference for fila-
mentous cyanobacteria (Nostocales) compared to the copepods
Temora and Centropages. Similarly, copepods had a generally
higher preference for diatoms than the non-copepod zooplankton
(Fig. 3). A temporal mismatch between the spring bloom of phyto-
plankton in March–May and the major peak in zooplankton
biomass in summer (June–August) resulted in a relatively low con-
tribution to secondary production by the dinoflagellate order Peri-
diniales (Fig. 4B) that had the highest biomass among the
phytoplankton in spring. Peridiniales was the main resource for
the rotifer Synchaeta, which peaked in biomass during the spring
bloom (Figs. 2B and 4B). In contrast to the low biomasses of zoo-
plankton observed during the spring bloom, the summer bloom of
cyanobacteria co-occurred with the peak in zooplankton biomass.
The mismatch is also reflected in the predation pressure on phyto-
plankton that was lowest during the spring months when biomasses
of phytoplankton were high and increased toward the end of the
summer bloom when zooplankton had their highest abun-
dance (Fig. 4D).

DISCUSSION
The outcome of this study shows that prey preferences of different
zooplankton genera have big effects on the consumption of primary
production within the food web, stressing the importance of assess-
ing and integrating predator-prey preferences in food web models.
Our study also shows that filamentous cyanobacteria and picocya-
nobacteria are the two major sources of primary production for
upper trophic levels, a consequence of both prey preferences and
temporal predator-prey co-occurrence. This knowledge demon-
strates that cyanobacteria can make a substantial contribution to

Fig. 1. Combining DNA metabarcoding, species population biomasses, and
metabolic allometry to estimate energy fluxes in a bioenergetic model. We
used a bioenergetic model to calculate energy fluxes between zooplankton (con-
sumers) and phytoplankton (resources) in a pelagic food web of the Baltic Sea. The
model builds on a steady-state assumption, where total energy gains for each con-
sumer equals their energetic losses. Energy is claimed from resources depending
on their availability (e.g., biomasses), assimilation efficiencies, and consumer pref-
erences or selectivity for each resource. Population biomasses and body mass in-
formation of the consumers were retrieved from the Swedish national pelagic
monitoring database. Resource selectivity indices for each consumer were calcu-
lated using DNA metabarcoding of zooplankton gut content and water samples.
This information was used toweigh the energy fluxes in the food webmodel. For a
more detailed description, see Materials and Methods.
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secondary production beyond that coming from diatoms and
dinoflagellates.
Studies that estimate energy fluxes typically assume that zoo-

plankton groups cannot graze efficiently on cyanobacteria (12, 32,
33) due to their body size (34). However, when using in situ DNA
observations of zooplankton feeding selectivity, our model shows
that some major groups of zooplankton indeed graze efficiently
on the cyanobacteria summer bloom. These findings are supported
by both experimental studies, showing that zooplankton can

shorten cyanobacteria filaments (35, 36) and more recent observa-
tions, on the basis of DNA and tracing approaches, indicating that
cyanobacterial matter is incorporated in the food webs (15–19).
While these studies were all able to detect trophic transfer, they
did not quantify the relative contribution of cyanobacterial produc-
tion in contrast to other important phytoplankton sources. Our
model shows that the phytoplankton spring bloom only contributes
marginally to ecosystem productivity and that the Baltic Sea food
web mainly is based on cyanobacteria primary production. This is

Fig. 2. Consumer-resource network of the pelagic Baltic Sea. Link width is proportional to fluxes of energy (kJ/m2) between resources (phytoplankton, bottom) and
consumers (zooplankton, top). Thewidth of the nodes (taxa) corresponds to each population’s contribution to annual secondary production. The diameter of each plot is
proportional to the square root of the total production.

Novotny et al., Sci. Adv. 9, eadg1096 (2023) 26 April 2023 3 of 8

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org on M

ay 15, 2023



Fig. 3. Predator-prey selectivity index for the consumers (zooplankton) in the food web calculated from 16S rRNA gene read abundance.

Fig. 4. Seasonal dynamics in the Baltic Sea pelagic food web. Daily population biomasses (g/m2) of (A) resources (phytoplankton) and (B) consumers (zooplankton).
(C) Contribution of each resource to daily food web secondary production (kJ/m2). (D) Daily predation pressure for each resource population (kJ/g).
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supported by a study quantifying input to the seafloor, concluding
that fresh organic matter originating from the phytoplankton spring
bloom constitutes the major input of the sediment, followed by
more degraded matter (fecal pellets and zooplankton body parts)
during the summer bloom (37).
Our approach provides a way forward for integrating DNA se-

quencing in food web models. A previous limiting factor in
pelagic food web models aiming at calculating energy fluxes was
to assess the weights of trophic interactions at the base of the
food web (23). By using DNA metabarcoding to calculate feeding
selectivity of consumers, we were able to account for the diverse
trophic niches of several zooplankton genera. While selectivity cal-
culations rely on the relative difference between gut content and
prey availability, it is not affected by quantitative biases between
DNA sequences and prey biomass that until now have limited the
use of metabarcoding for energy flux quantification (24, 28, 29).
Hence, our study bridges the gap between DNA metabarcoding
and energetic food web modeling. Still, models taking variation in
prey selectivity, different taxonomic levels, rare species, and life
stages into account will be important directions for quantifying
the seasonal and spatial energy fluxes from primary producers to
consumers. However, as DNA sequencing is increasingly used in
monitoring, our approach has the potential to be applied to many
different ecosystems.
Understanding how different sources of primary production are

channeled through the food web is becoming increasingly impor-
tant as global warming is altering the composition of primary pro-
ducers. As observed in many systems, blooms of cyanobacteria have
increased, which is currently suggested to cause declines in biolog-
ical productivity (12, 38) and rapid and widespread expansion of
hypoxic bottoms (39–41). Considering the feeding preferences of
zooplankton, our study shows that a large fraction of this cyanobac-
terial primary production is being efficiently channeled to the zoo-
plankton community. This result calls for a revision in our
understanding of cyanobacteria’s role in food webs and suggests a
reevaluation of current marine management plans for the spread of
hypoxia and predictions of future ocean productivity.

MATERIALS AND METHODS
Zooplankton sampling and DNA metabarcoding
Zooplankton was sampled at three locations in the Baltic Sea (Land-
sort Deep, Gotland Deep, and Bornholm Deep) over the season
between 2017 and 2020 (fig. S1). Zooplankton samples were collect-
ed with vertical hauls from 0 to 30 m and 30 to 60 m using a 90-μm
WP2 plankton net and preserved immediately in 95% ethanol. In-
dividuals of zooplankton were identified and isolated under a ster-
eomicroscope (table S2). To remove contamination of external
DNA, all individuals were rinsed five times in Milli-Q water,
screened for visible epibionts, soaked for 30 s in a 1% bleach solu-
tion, and rinsed another five times in Milli-Q water. Five to 12 in-
dividuals of the same species were pooled randomly into the same
sample tube and stored with 180 μl of alanine transaminase lysis
buffer (QIAGEN, Hilden, Germany). For estimating available
prey composition, water samples were collected with 10-liter
Niskin bottles with 5-m depth intervals above the thermocline of
30-m depth or with a 20-m long hose according to the Helsinki
Commission’s guidelines for plankton monitoring in the Baltic
Sea (42). The depths were mixed by adding an equal volume of

water from the Niskin bottles. A total of one to three liters were se-
quentially filtered onto 25-mm-diameter filters with 20-μm, 2-μm
(polycarbonate), and 0.2-μm (nylon) pore sizes.
DNA from pooled zooplankton individuals was extracted using

the QIAamp DNA Micro Kit (QIAGEN), including 1 μg of carrier
RNA following the manufacturer’s instructions for tissue samples.
DNA from water samples was extracted from the water filters using
the DNeasy Plant Mini Kit (QIAGEN) with an additional step of
bead beating with 1-mm glass beads and an overnight incubation
at 56°C with proteinase K (QIAGEN). Illumina sequencing
library preparation was performed according to best practices
(43). For each step in the library preparation procedure (DNA ex-
traction to amplification), a negative control was included. After the
full library preparation, the negative controls were analyzed with
Qubit and gel electrophoresis and did not result in observ-
able bands.
We amplified a 500–base pair (bp)–long fragment of the V3-V4

region of the 16S rRNA gene (16S) using the primers 341F-
Adapter1 and 805R-Adapter2 (table S3) (44, 45). The polymerase
chain reaction (PCR) reactions contained 10 μl of HiFi HotStart
Ready Mix (Roche, KAPA Biosystems, Basel, Switzerland), 1 μl of
each primer (10 nM; with attached adapter sequence) (Eurofins Ge-
nomics, Ebersberg, Germany), 2 μl of template DNA, and 6 μl of
PCR grade water (QIAGEN). Thermal cycling conditions included
98°C of initial denaturation for 2 min, followed by 25 cycles of 98°C
denaturation for 20 s, 63°C annealing for 20 s, 72°C elongation for
15 s, and a final extension step of 2 min at 72°C. PCR products were
cleaned using Agencourt AMPure XP magnetic beads according to
the manufacturer’s instructions (Beckman Coulter, Brea, CA).
An outer PCR step was added to attach unique index sequences,

to facilitate sample pooling. Reactions contained 14 μl of KAPA
HiFi HotStart Ready Mix (Roche, KAPA Biosystems), 1 μl of
Handle1-index-Adapter1 (10 μM), 1 μl of Handle2-index-
Adapter2 (10 μM), and 12 μl of cleaned PCR product from the pre-
vious step (table S3). The thermocycling conditions were 98°C for 2
min, followed by 10 cycles of 98°C for 20 s, 62°C for 30 s, 72°C for 30
s, and a final extension step of 2 min at 72°C. PCR products were
pooled at equimolar amounts and purified using Agencourt
AMPure XP (Beckman Coulter). DNA concentration and quality
were determined using a Qubit fluorometer (Qubit dsDNA BR
Assay, Thermo Fisher Scientific, Waltham, MA) and a Bioanalyzer
assay (Agilent, Santa Clara, CA). Libraries were sequenced on
MiSeq (MSC 2.5.0.5/RTA 1.18.54) pair-end setup (2 × 300 bp,
version 3, Illumina, San Diego, CA) with the addition of 10%
genomic PhiX.
MiSeq sequences were converted from Bcl to FastQ (Sanger/

phred33/Illumina quality scale) using “bcl2fastq2” from the
Casava software. Primers and adapters were truncated in the Cuta-
dapt software, which also removes sequences where primers are
missing (46). All downstream analyses were conducted in R (47).
Quality control and filtering, error rate modeling, sequence derepli-
cation, ribosomal sequence variant inference, and taxonomic as-
signment were done using the DADA2 R package (48). Reads
were truncated after 256 nucleotides (forward) and 220 nucleotides
(reverse), and the two first nucleotides were removed. Sequences
with maximum expected errors (EE) higher than 2 or sequences
containing ambiguities (N) were removed. Pair ends were merged
with a minimum overlap of 15 nucleotides, allowing for a
maximum of one nucleotide mismatch. Sequences were
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taxonomically assigned using the Naive Bayesian Classifier (49)
from the DADA2 R package to a custom-made database combining
the SILVA 16S reference database (50) with the PhytoREF data-
base (51).

Bias assumptions of selectivity index based on DNA
metabarcoding
To assess the selectivity index (Si) for each prey taxon (i) of a con-
sumer, we used a standardized forage ratio (30), which requires a
quantitative estimate (e.g., biomass) of both the prey composition
in the gut sample (Bgi) and the prey availability in the environment
(Bei). The selectivity index for each prey can be calculated using the
following equation (Eq. 1)

Si ¼

Bgi
Bei
P

i
Bgi
Bei

ð1Þ

Given that the same DNA metabarcoding protocol is used for
assessing both prey composition of the gut and prey availability in
the environment, we assume the following relationship between
prey sequence read abundances (Rgi for gut samples and Rei for
the environment) and prey biomass (Bgi for gut samples and Bei
for the environment) (Eq. 2)

Bgi ¼ Rgi�Pi�Lg
Bei ¼ Rei�Pi�Le

�

ð2Þ

Here, Pi is a factor representing biases linked to the identity of
the prey taxa (i), such as the ratio between tissue biomass and gene
copy number (25); DNA recovery determining howmuch of the in-
gested DNA matter that can be recovered after sampling and DNA
extraction (52); amplification efficiency (53); and other biases that
remain constant independently of prey taxa. Similarly, Lg and Le
represent biases that can be linked to the identity of the sample
DNA library, including biases originating from differences in
sample sizes, extraction efficiency (54), PCR performance (55),
various steps of sample dilution, and others. Given that prey-
related biases (P) are constant for both gut and environmental
samples and that library-related biases (L) are independent of
prey taxa, the selectivity index is not influenced by the values of
either P or L (Eq. 3)

Si ¼

Rgi�Pi�Lg
Rei�Pi�Le
P

i
Rgi�Pi�Lg
Rei�Pi�Le

¼

Rgi
Rei

P
k

Rgi
Rei

ð3Þ

We used Eq. 3 to calculate selectivity indices for each zooplank-
ton sample and prey taxon at sequence identity level. Selectivity
indices for all zooplankton samples were summarized to class
level. For all zooplankton species and prey classes, we calculated
the mean of the selectivity indices (table S2).

Biomasses and metabolic losses
The population biomasses of zooplankton and phytoplankton were
retrieved from the Swedish Metrological and Hydrological Institute
(SMHI: available at https://sharkweb.smhi.se) with sampling inten-
sity ranging between monthly and weekly samples. Individual body
masses of phytoplankton and zooplankton were retrieved from the
Helsinki Commission’s guidelines for plankton monitoring in the
Baltic Sea (42). We calculated daily biomass estimates over 1 year by

linearly interpolating data from samples taken between 2007
and 2018.
The metabolic rate for each node was calculated on the basis of

metabolic scaling theory (Eq. 4), where the metabolic rate Xi (J/s) is
derived from species’ body masses Mi and an allometric scaling
constant, i.e., a normalization constant a = 17.17 for invertebrates.
Bei represents the total population biomass per area unit (grams per
square meter) and is multiplied by the metabolic rate (flux per gram
biomass) to obtain a metabolic rate estimate at the population level.
Metabolic rates are also adjusted to ambient temperature, where E is
the activation energy, K is Boltzmann’s constant, and T is the abso-
lute temperature in Kelvin.

Xi ¼ eða�lnMiÞ � e
� E
kTþX0ð Þ � Bei ð4Þ

Estimating energy fluxes
We used a bioenergetic model (31) to calculate energy fluxes (Joules
per day per square meter) between all nodes (taxa) in the food web
for each day of the year and each of the three stations. The model
builds on a steady-state assumption (56, 57), where the energy con-
sumption of each species equals the energetic losses (Gi = Li). In this
model, losses of each population (Li) were defined as the sum of
metabolic losses (Xi) for the population and the energy flux lost
to predation (Fi) (Eq. 5). Gains for each population (Gi) were calcu-
lated as the sum of all fluxes from prey to predator multiplied with
the assimilation efficiency, i.e., conversion of consumed biomass
into energy (ej) (Eq. 6) and an absolute prey preference constant
Wij. The efficiency was based on the functional group of the prey
and put to 0.77 (58). The prey preference was based on the selectiv-
ity index calculated from DNA abundances scaled with the relative
biomass abundance of the prey species (Eq. 7). The fluxes were cal-
culated using the “fluxing” function in the fluxweb R package
version 0.2 (31)

Li ¼ Xi þ Fi ð5Þ

Gi ¼
X

jejiWjiFji ð6Þ

Wij ¼
Sij � Bei

P
k Skj � Bek

ð7Þ

X

jejiWjiFji ¼ Xi þ
X

jWijFij ð8Þ

Influence of variation in biomass and prey selectivity
To account for annual variations in biomass of prey and predators,
we estimated fluxes (Joules per day per meter squared) between
primary producers and primary consumers for each day of the
year and each station (8) by adjusting the biomass parameters for
predators and prey. For each node and day of the year, we calculated
the total predation losses as Fi = ∑jFij (Joules per day per meter
squared), normalized predation pressure as Pi = Fi/Bei (Joules per
gram per day) (59), and total consumption as Fj = ∑iFji (Joules
per day per meter squared). We also calculated annual food web
metrics by summarizing all daily flux networks (Joules per year
per meter squared).
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To test for the consistency of our results in regard to the variabil-
ity in consumer preferences, we ran a bootstrapping analysis. For
each consumer taxa i, our main results on selectivity were based
on the average of ni replicates (table S2). One iteration of the boot-
strap procedure consisted of random sampling with replacement of
ni replicates for each consumer taxa i (using “slice_sample” from
dplyr R package). We used this dataset to recalculate average pref-
erences and corresponding energy fluxes. The procedure was re-
peated 100 times to characterize a distribution of fluxes showing
the uncertainty around our predictions. Last, we compared the dis-
tributions against a null model that assumes no preferences (for
each consumer the differences in foraging intensity depend only
on its prey’s relative biomasses).

Model limitations
Our model assumes a steady-state ecosystem where the energy re-
quired by zooplankton equals their resting state respiration. This as-
sumption leads to an underestimation of secondary consumption
when the population grows and overestimates the requirements
during population decline. Furthermore, limited access to dietary
data from DNA metabarcoding limited us to only include the
most abundant taxa in the model. Including less abundant taxa
and more trophic levels and life stages would influence the model
output. Because of a limited resolution in the current taxonomic
database used to annotate the 16S sequences (51), the model was
calculated on the order level. The development of more highly re-
solved taxonomic databases in the future will yield more robust
measurements of selectivity. Last, while we account for systematic
biases in DNA read abundance when calculating selectivity index
(Eq. 3), nonsystematic biases may influence the result. For instance,
primer competition biases that are dependent on the composition
of prey taxa, rather than just species-specific amplification efficien-
cy (25), were not accounted for in our approach. Likewise and
similar to any observational study of gut contents, degradation
rates that are unique both to the sample type and prey taxa were
not accounted for in this model.
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