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Abstract
Different versions of polyhedral outer approximation are used bymany algorithms formixed-
integer nonlinear programming (MINLP). While it has been demonstrated that such methods
work well for convexMINLP, extending them to solve nonconvex problems has traditionally
been challenging. The SupportingHyperplaneOptimization Toolkit (SHOT) is a solver based
on polyhedral approximations of the nonlinear feasible set of MINLP problems. SHOT is
an open source COIN-OR project, and is currently one of the most efficient global solvers
for convex MINLP. In this paper, we discuss some extensions to SHOT that significantly
extend its applicability to nonconvex problems. The functionality include utilizing convexity
detection for selecting the nonlinearities to linearize, lifting reformulations for special classes
of functions, feasibility relaxations for infeasible subproblems and adding objective cuts to
force the search for better feasible solutions. This functionality is not unique to SHOT,
but can be implemented in other similar methods as well. In addition to discussing the
new nonconvex functionality of SHOT, an extensive benchmark of deterministic solvers for
nonconvex MINLP is performed that provides a snapshot of the current state of nonconvex
MINLP.

Keywords Nonconvex MINLP · Supporting Hyperplane Optimization Toolkit (SHOT) ·
Polyhedral outer approximation · Reformulation techniques · Local and global MINLP
techniques · Feasibility relaxation

1 Introduction

Mixed-integer nonlinear programming (MINLP) is one of the most versatile optimization
paradigms with many applications across engineering, manufacturing and the natural sci-
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ences [7,21,27,42,67]. MINLP combines the modeling capabilities of mixed-integer linear
programming (MILP) and nonlinear programming (NLP), while at the same time inheriting
computational challenges from both fields. The combinatorial features of mixed-integer pro-
gramming (MIP) in combination with nonlinearities creates a difficult class of mathematical
optimization problems. While the practical limits of MINLP are constantly pushed forward
through the means of computational and algorithmic improvements, there are still MINLP
problems with only a few variables that are difficult to solve. Most of the difficult cases are
nonconvex problems, i.e., MINLP problems with either a nonconvex objective function or
one or more nonconvex constraints, e.g., a nonlinear equality constraint.

Convex MINLP is a subclass of MINLP, where the nonlinear functions may have desir-
able properties that can be utilized in algorithms especially tailored for this problem class.
There are several convex MINLP algorithms, such as branch and bound [12,30], center-cut
[38], decomposition based outer approximation [61], extended cutting plane (ECP) [74],
extended supporting hyperplane (ESH) [37], generalized Benders decomposition [24] and
outer approximation (OA) [16]. Today, convex MINLP can almost be considered a technol-
ogy and there are a variety of efficient solvers available [36]. Globally optimizing nonconvex
MINLP is, however, still very challenging. Global solvers for nonconvex MINLP include
Alpine [62],Antigone [59],BARON[77],Couenne [2], LINDOGlobal [46] andSCIP [25,71].
Gurobi also recently introduced functionality to globally optimize nonconvex mixed-integer
quadratically constrained quadratic programming (MIQCQP) problems [31]. These global
solvers mainly rely on spatial branch and bound, where convex understimators and con-
cave overestimators are refined in nodes of a branching tree. There are also reformulation
techniques that can transform special cases of nonconvex problems, e.g., signomial [53] or
general twice-differentiable [50,53], into convex MINLP problems that can then be solved
with convex solvers. A decomposition technique to divide large sparseMINLP problems into
smaller more tractable MINLP subproblems is presented in [63]. More details on algorithms
and solvers for MINLP are given in [5,9,14,68,70].

Due to the computational difficulties of optimizing nonconvex MINLP problems, it may
not be possible to obtain a guaranteed optimal solution, or even reasonable bounds on the
best possible solution, within a limited amount of time. However, it is not always a necessity
to obtain a guaranteed globally optimal solution or tight bounds. Sometimes optimization
software users are mainly interested in finding a good-enough feasible solution to the opti-
mization problem within a reasonable computation time. In such situations a local MINLP
solver, or a heuristic MINLP technique [13,45], might be the best option. The definition
of a local MINLP solver is not completely straightforward, but in this paper we consider a
solver without any nonheuristic handling of nonconvexities in optimization problems, such
as employing convexifying reformulations or concave/convex over- and underestimating
techniques, to be a local solver. For example, a solver based on an algorithm with only
guaranteed convergence for convex problems is considered a local one. For nonconvex
MINLP problems, a local solver is not guaranteed to find an optimal solution or any feasi-
ble solution at all. However, local solvers are often significantly faster than global solvers,
and in many cases they manage to return the global solution, or a good approximation
of it, even for nonconvex problems. Local MINLP solvers include AlphaECP [41], BON-
MIN [6], DICOPT [28], Juniper [40], Minotaur [54], Muriqui [55], SBB [23] and SHOT
[49].

SHOT is a new solver initially developed for solving convex MINLP problems with
guaranteed globality, and extensive benchmarks have shown that the solver is one of the
most efficient solvers for this problem class [36]. SHOT is based on a polyhedral outer
approximation (POA) approach like many other local solvers, and is therefore tightly inte-
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grated with its underlying MILP (mixed-integer linear programming), MIQP (mixed-integer
quadratic programming) or MIQCQP (mixed-integer quadratically constrained quadratic
programming) subsolver. Solvers based on a POA technique solve a sequence of linear
relaxations of the MINLP problem, where cutting or supporting hyperplanes form an outer
approximation of the nonlinear feasible set. When a local POA solver is applied to a non-
convex problem, the solver is no longer guaranteed to generate an outer approximation of
the feasible set and the cuts may exclude parts of the feasible set. Therefore, a local POA
solver may converge to a locally nonoptimal solution or even fail to find any feasible solu-
tion.

In this paper, we present some heuristic techniques that have recently been added to SHOT
to improve its performance on nonconvex MINLP problems; some of these improvements
were briefly mentioned in the conference paper [48]. Although mainly intended to improve
the solver’s ability to find good feasible solutions, these techniques even enable the solver
to find and verify the global optimum in some cases. The techniques discussed in this paper
are:

1. Automatic convexity detection:

– Enables specialized handling of nonconvexities in the problem.

2. Feasibility relaxations through repair techniques of the linear subproblems:

– Can continue from an infeasible subproblem by expanding the search space and
mitigate the impact of bad cuts generated for nonconvex expressions.

3. Objective cutoff constraints:

– Reduce the chance of the solver terminating at a nonoptimal solution by forcing it to
search for better solutions.

4. Return valid bounds also for nonconvex problems:

– Can verify global optimality for some nonconvex problems.

5. Integer cuts:

– Exclude specific integer assignments from the search space and increase the speed
of convergence.

6. Automatic reformulations:

– Enable some nonconvexities to be transformed into convex form. Reformulations are
also performed for nonlinear equality constraints and absolute value expressions.

These improvements are not unique to SHOT and can also be added to other solvers
based on a POA algorithm such as ECP, ESH, or OA. The techniques are tested on a set
of 326 nonconvex MINLP problems, and the results show a significant improvement in
SHOT’s capabilities to find good primal solutions to nonconvex problems. In addition, the
new functionality enables SHOT to verify globality for a significant number of problems
in the test set, something not previously possible in any local MINLP solver. Finally, this
benchmark also provides an overview of the computational efficiency of some of the MINLP
solvers available by applying them to the same benchmark set.
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2 Background

In this paper, we consider general MINLP problems with the structure

minimize cT x,

subject to Ax ≤ a, Bx = b,

gk(x) ≤ 0 ∀k ∈ KI ,

hk(x) = 0 ∀k ∈ KE ,

xi ≤ xi ≤ xi ∀i ∈ I = {1, 2, . . . , n},
xi ∈ R, x j ∈ Z ∀i ∈ I \ IZ ,∀ j ∈ IZ ,

(1)

where IZ contains the indices of all integer variables. Throughout the paper, we assume that
the nonlinear functions g and h are differentiable, but we set no restriction on the convexity
of the functions. To simplify the notation by keeping all nonlinearities in the constraints,
we will assume that the MINLP problem has a linear objective function. The assumption is
not restrictive since a nonlinear objective can always be treated as a linear objective through
an epigraph reformulation. However, do note that a nonlinear objective is normally treated
separately within the SHOT solver [49] regardless of the conventions used in this paper.

MINLP problems are by definition nonconvex, but they are commonly divided into con-
vex and nonconvex classes based on their continuous relaxation. Therefore, problem (1) is
regarded as convex if all the nonlinear functions gk are convex and KE = ∅, i.e., the problem
does not have any nonlinear equality constraints [5]. If any of the nonlinear functions in prob-
lem (1) are nonconvex, or there are nonlinear equality constraints, the problem is regarded as
a nonconvex MINLP. In this paper, we focus on nonconvex MINLP problems so we assume
that the problems contain some form of nonconvexity.

In this paper, and often in MINLP terminology in general, the words dual and primal,
have special meanings:

Definition 1 The dual bound to problem (1) is a valid lower bound on the optimal objective
value. A dual bound may be given by the optimal solution point x of the POA, i.e., cT x,
or it can just be a lower bound provided by, e.g., the MIP solver. In SHOT, there are two
main algorithms, ESH and ECP, for obtaining dual bounds and we refer to these as dual
strategies. Any feasible solution to the MINLP problem is considered a primal solution, and
the objective value of the best known feasible solution is called the primal bound.

2.1 Polyhedral approximation

In a convex setting, algorithms based on either ECP, ESHorOA can commonly be regarded as
polyhedral outer approximation (POA) type algorithms. However, since we focus on noncon-
vex problems, for which these algorithms do not necessarily generate outer approximations,
wewill refer to them as polyhedral approximation (PA) based algorithms.We begin by briefly
describing PA in a convex setting, before we move on the challenges of using this approach
for nonconvex problems.

The main concept behind PA-type algorithms is to construct a POA of the nonlinear
feasible set, and use the approximation to form a linear relaxation of the MINLP problem.
The POA is defined by a finite set of linear inequality constraints, often referred to as cutting
planes or supporting hyperplanes. The cutting and supporting hyperplanes are obtained by
linearizing the nonlinear constraints, i.e., a first order Taylor series expansion is used in the
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right-hand side of the constraint. If all the constraints in problem (1) are convex, then a POA
of the nonlinear feasible set is simply given by

gk(xi ) + ∇g(xi )T (x − xi ) ≤ 0 ∀k ∈ KI ,∀i ∈ 1, . . . , K , (2)

where
{
xi

}K
i=1 is a sequence of points. The POA can be used to generate a linear relaxation

of problem (1), which forms the problem

minimize cT x,

subject to Ax ≤ a, Bx = b,

gk(xi ) + ∇g(xi )T (x − xi ) ≤ 0 ∀k ∈ KI ,∀i ∈ 1, . . . , K ,

xi ≤ xi ≤ xi ∀i ∈ I = {1, 2, . . . , n},
xi ∈ R, x j ∈ Z ∀i ∈ I \ IZ ,∀ j ∈ IZ .

(3)

In the convex case, the optimum of problem (3) gives a lower bound on the optimal objective
value of the MINLP problem, i.e., a dual bound using the terminology in Def. 1.

The main difference between the ECP and ESH algorithms is how the sequence of points
{
xi

}K
i=1 is chosen. With the ECP algorithm, a new linearization point xi is directly chosen

as the minimizer of problem (3), resulting in a so-called cutting plane [74]. With the ESH
algorithm, the linearization points are obtained by approximately projecting the minimizer
of problem (3) onto the integer-relaxed feasible set of the MINLP problem, resulting in a
supporting hyperplane to the feasible set [37]. The OA algorithm also uses a similar approach
of iteratively solving problem (3) and generating new linearization points by solving an
NLP subproblem [16,20]. Techniques for utilizing quadratic approximations within an OA
framework have also been presented in [35,65]. If a polyhedral approximation technique is
combined with convexification procedures and spatial branch and bound, then it can also be
employed as a deterministic global optimization technique [69].

If the MINLP problem is nonconvex, the linearized constraints in Eq. (2) will not neces-
sarily outer approximate the feasible set of the problem. Feasible solutions of problem (1)
may then also be excluded from problem (3), which may then no longer provide a valid
lower bound. Problem (3) may even become infeasible even if the original MINLP problem
is feasible. Therefore, directly applying a PA algorithm, such as ECP, ESH or OA, to a non-
convex MINLP problem can result in solutions very far from the global optimum, or even
failure to find any feasible solution. Thus, for a local solver to be efficient for nonconvex
problems, there is a strong need for some additional (heuristic) techniques to deal with the
nonconvexities. The AlphaECP solver in GAMS, which as the name suggests is based on the
ECP algorithm, uses several heuristic techniques that have greatly improved its performance
for nonconvex problems [41]. For example, AlphaECP uses a strategy of only considering
subsets of the cutting planes generated as well as a so-called alpha updating strategy which
effectively relaxes the cuts [41,75]. TheOA-basedDICOPT solver uses themethods of equal-
ity relaxation and augmented penalty to improve its performance for nonconvex problems
[28,33,72]. A good summary of the additional nonconvex strategies in DICOPT is given in
[3].

Extensive benchmarking have shown that SHOT is one of the most efficient solvers for
convex problems [36]. However, the tight cuts giving SHOT an advantage for convex prob-
lems can actually make the solver perform worse for nonconvex problems. Without any
further remedies, SHOT often ends up with an empty search space, i.e., problem (3) being
infeasible, without finding any feasible solutions. Therefore, we will present several tech-
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niques in Sect. 3 to deal with the challenges of applying a local PA-based solver to nonconvex
MINLP problems.

2.2 The SHOT solver

SHOT is an open source solver for MINLP problems1 [49]. It can be used standalone, or be
integrated into modeling systems such as AMPL [22], GAMS [23], JuMP [15] or Pyomo
[32]. Like most solvers based on PA, such as DICOPT [28] and BONMIN-OA [6], SHOT
only guarantees to find the global solution to convexMINLP instances. These types of solvers
utilize a primal-dual strategy, where a lower bound is given by a PA of the nonlinear feasible
set and primal solutions are provided by heuristics. The main difference between SHOT and
the two other solvers mentioned is how the linear approximation is generated: DICOPT and
BONMIN-OA are based on OA, while SHOT utilizes the ECP and ESH algorithms.

SHOT uses two internal representations of the optimization problem, one copy of the
original problem on which the primal solutions are verified, and one reformulated version
on which the MIP subproblems solved in SHOT’s dual strategies are based. Having a sep-
arate reformulated version, makes it possible to use lifting-reformulations to, e.g., partition
nonlinear expressions in objectives and constraints. As shown in [39], this can have a large
impact on the performance when solving certain types of MINLP problems with separable
constraints, and this is used extensively in SHOT to rewrite the problem in a format that is
more suitable for an PA-based method.

Feasibility-based bound tightening (FBBT) based on interval arithmetic, is an important
part of global optimization [56,64]. Bound tightening on the constraints in the linear (and
quadratic, if supported) part of the problem is automatically performed by the MIP solver,
however, since it is not aware of the nonlinear constraints, all bounding information is not
normally carried over to the MIP subproblem. Bound tightening in SHOT is separately
performedonboth the original problem,which is needed since too loose bounds candisqualify
certain automatic reformulations, and on the resulting reformulated problem, on which the
MIP subproblems in turn are based.

Themain features of SHOT relevant to this paper are summarized in the following sections.
For more details, we refer to [49].

2.2.1 Utilizing subsolvers for the MIP subproblems

The PA strategy in SHOT is tightly integratedwith the underlyingMIP solver, which performs
most of the computational work. This means that SHOT’s performance is highly dependent
on the efficiency of its subsolver. If the MIP solver supports it, SHOT provides a single-tree
strategy, where so-called lazy constraint callbacks are used to iteratively add hyperplane cuts
without needing to restart theMIP solver. There is also amulti-tree strategy,where the cuts are
added after each iteration to form a new MIP subproblem, and where at least in principle the
MIP solver starts from the beginning in each iteration. However, as some information, e.g., the
currently best solution, is saved between such iterations even in a multi-tree strategy, there is
in practice not that much difference in efficiency between the single- and multi-tree strategies
if implemented correctly [49]. The subproblems are of the MILP, MIQP or MIQCQP types,
depending on the expressions present in the original MINLP problem and what types of
expressions the MIP solver supports. If Cbc is used, only MILP subproblems are allowed,

1 SHOT is a COIN-OR project and is available at github.com/coin-or/shot. More information about the solver
is available at www.shotsolver.dev.
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and all quadratic constraints need to be considered as general nonlinear and handled by the
ECP or ESH algorithm. CPLEX andGurobi can both handle convex and nonconvex quadratic
objective functions, as well as convex quadratic constraints, and then convex quadratic terms
does not need to be linearized by adding supporting hyperplanes or cutting planes. As of
Gurobi version 9, general nonconvex quadratic constraints are also supported, so in this case
nonconvex MIQCQP subproblems are allowed in SHOT; more on this subject in Sect. 5.
In general, handling the quadratic expressions in the MIP subsolver is more efficient than
utilizing either ECP or ESH methods, especially if the quadratic expressions are nonconvex.

2.2.2 Primal heuristics

The primal strategy in SHOT is (as of version 1.0) based on the following three heuristics
for obtaining integer-feasible solutions to the MINLP problem:

– MIP solution pool: The MIP solvers often find several valid, but nonoptimal, solutions
during a normal run, and these are stored in the so-called solution pool. SHOT checks all
of these solutions in case theymight fulfill also the nonlinear part of theMINLP problem,
in which case they are a valid primal solution.

– Fixed integer NLP relaxation: When a solution candidate has been found, e.g., from the
MIP solution pool, the integer variables can be fixed to their corresponding values and
the resulting NLP problem solved to obtain a new candidate for a primal solution. If the
NLP problem is infeasible, an integer cut can be added, cf., Sect. 3.4.

– Root searches with fixed discrete variables: When having obtained an integer-valid solu-
tion not fulfilling the nonlinear constraints, a root search can be performed that possibly
obtain a solution fulfilling the nonlinear constraints as well.

In the future, additional methods such as the center-cut algorithm [34], rounding heuristics
[4] or feasibility pumps [1,3,18] are also planned. The NLP relaxations are solved either by
interfacing with the NLP solvers in GAMS (if available) or IPOPT [73].

2.2.3 Automatic convexity detection

In SHOT, all nonlinear expressions are by default considered to be nonconvex, and are only
regarded as convex if they fulfill some predefined rule. However, most convexity detection
is done term-wise, so currently not all convexities are discovered. The convexity of the
individual objective function and constraints are more valuable to SHOT than whether the
entire problem is convex, since knowing whether a specific constraint is convex or not affects
whether a cut generated for this constraint will be globally valid or not.

The convexity detection in SHOT is mostly internal, however for quadratic functions, the
Eigen library [29] is used to determine whether their Hessian matrix is positive semidefinite.
Monomials are always nonconvex, but the convexity of signomial terms depend on whether
the term is positive or negative and on the powers of the variables in the term. However,
as there are clear rules, e.g., described in [47], automatic determination of convexity for
signomial terms is trivial. For general nonlinear terms, convexity is determined by recursively
considering the nodes of the expression tree; inspiration for the used convexity detection rules
is taken from [11]. An important part of determining convexity is to have tight bounds, since
the available convexity rules for a node in the expression tree are often dependent on what
values the underlying expression can attain. Therefore, the convexity detection functionality
heavily depends on the bound tightening step described earlier.
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3 Strategies for finding and improving local solutions to nonconvex
MINLP problems

As mentioned earlier, PA-based methods are normally not able to guarantee optimality of a
solution for a nonconvex MINLP problem, but rather they work as a heuristic method that
might be able to find a good, perhaps even an optimal, solution. The problem is that the
separating hyperplane theorem, which these methods generally rely on, only guarantees that
it is possible to find a separating hyperplane between two convex sets. Due to the violation
of the separation theorem, the separation techniques commonly used in PA-based methods
may not be valid. Thus, whenever cutting planes or supporting hyperplanes are generated
to remove a previous solution point from the PA expressed in the MIP problem, we run the
risk of cutting away feasible solutions of the original nonconvex problem. Therefore, while
the primal bound provided by known integer-feasible solutions are still valid, the dual bound
provided by the MIP solver is not as soon as a cut has been generated for a nonconvex
constraint. Here, bound tightening is especially important since it may exclude problematic
nonconvex parts of the feasible region early on.

As long as no cutting planes or supporting hyperplanes have been added to nonconvex
constraints the lower bounds provided by the MIP solver are valid lower bounds also for the
nonconvex MINLP problem. These global bounds are stored in SHOT, and can be used for
termination on gap tolerance, e.g., if theMIP lower bound is equal or close to the upper bound
provided by primal heuristics. Because SHOTcan automatically detect convexity of nonlinear
constraints, it is possible in some cases to avoid adding cuts for nonconvex constraints; to the
best knowledge of the authors, SHOT is the only local solver available today that returns valid
lower bounds also for nonconvex problems. Also, even if termination cannot be achieved by
closing the objective gap, the lower bound may provide a good indication of the quality of
the primal solution. This is one of the reasons that the default nonconvex strategy in SHOT
tries to avoid creating cuts for nonconvex constraints as long as possible, i.e., as long as cuts
can be added to convex constraints, none are created for nonconvex ones.

By only adding the minimal number of cuts for nonconvex constraints required, the prob-
ability that the subproblem (3) becomes infeasible is reduced, and the longer the iterative
dual-primal solution process is allowed to continue, the greater is the probability of finding
better solutions with the primal heuristics. This is of course a generalization, and there are
naturally problem instances where adding several cuts early on and reducing the number of
subproblems solved improves the performance. However, as can be seen in the benchmarks
later in this paper, AlphaECP and DICOPT are quite efficient at quickly finding a feasible
solution, but they struggle at improving these initial solutions, and often have to terminate
before finding the optimal one.

In the next example, we will illustrate how the ESH algorithm fails to solve a simple
nonconvex MINLP problem. The same example will be used throughout this section to
exemplify the nonconvex improvements in SHOT.

Example 1 We will now consider a simple nonconvex MINLP problem with one continuous
variable x1 and one integer variable x2. The first nonlinear constraint g1 is nonconvex and g2
is convex.
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minimize f (x1, x2) := 4x1 − 15x2
subject to l1(x1, x2) := −x1 − 10x2 ≤ −6, l2(x1, x2) := x1 − 10x2 ≤ 4,

g1(x1, x2) := 8.8x1 − x21 + 7x2 + x1x2 − x22 ≤ 23.5,

g2(x1, x2) := −10x1 + x21 − 10x2 + 2x22 ≤ −25.1,

2 ≤ x1 ≤ 8, x2 ∈ {0, 1, 2}.

(4)

In the first iteration of the ESH algorithm, only the linear constraints are considered, i.e., con-
straints g1 and g2 are ignored. The solution point to the MILP problem will be x∗

1 = (2, 2).
Assuming that we have found the interior point (5.99, 0.35) by minimizing the function

G(x1, x2) := max{g1(x1, x2), g2(x1, x2)} ≤ 0, (5)

we can then perform a root search for a point on the boundary on the integer-relaxed nonlinear
feasible set, i.e., where G(x1, x2) = 0, to obtain the point (5.69, 0.48). By generating a
supporting hyperplane at this point for the constraint g1, since g2 is satisfied, we will get the
following supporting hyperplane

CUT1(x1, x2) := −2.10x1 + 11.74x2 + 6.39 ≤ 0. (6)

As can be seen from Fig. 1, adding this hyperplane, which is based on the nonconvex con-
straint, causes the MILP problem to immediately become infeasible as all integer solutions
are cut off. Thus, the standard ESH algorithm could not find a primal solution even to this
simple problem, as it cannot recover from an infeasible MILP subproblem.

SHOT includes much more functionality than the pure ESH algorithm, so it is possible
that it will still find a valid integer-solution to problem (4). For example, the MIP solver
can return more than one feasible solution in its so-called solution pool, and checking these
candidates on the original MINLP problem may give an integer feasible solution. Also other
primal heuristic strategies such as fixing integer variables to specific values and solving an
NLP problem could work. In general, however, SHOT without the supplementary strategies
discussed in this paper will not work well for nonconvex problems.

To reduce the probability of cutting away parts of the nonconvex feasible region, or more
drastically creating an infeasible subproblem, we may want to generate as few cuts for
nonconvex constraints as possible. It may also be a good idea to make the cuts less tight
while still cutting away the previous solution point. Utilizing the ECP algorithm instead of
the ESH algorithm, i.e., generating cutting planes instead of supporting hyperplanes is a
strategy to make the cuts less tight, thus reducing the probability of cutting away parts of the
nonconvex feasible region. Since it is also problematic to find an interior point needed for the
root search, ECP can in many cases be a better choice or the only option. However, since the
ESH algorithm normally generates fewer and better cuts, it is very problem specific which
of the algorithms to use for optimal performance.

As previously mentioned, SHOT first only adds cuts for the convex constraints. For most
problems, it will however be required to eventually add cuts for nonconvex constraints as
well. After this we cannot be sure that the lower bound obtained from the MIP solver is
valid anymore for the nonconvex MINLP problem. Another issue is that we can end up with
infeasible subproblems, even though the original MINLP problem is feasible. To handle this,
SHOT will try to repair infeasible MIP problems by relaxing the cuts added, as described in
Sect. 3.1. Also, if a primal solution has been found, SHOT will introduce an objective cut
that forces the next solution to be better than the currently best known solution. If this causes
the MIP problem to become infeasible, the same feasibility relaxation can be attempted. The
objective cut is described in Sect. 3.2.
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Fig. 1 The grey shaded area indicate the integer-relaxed feasible region of the MINLP problem. As can be
seen, the only feasible solutions lie in two disjunct feasible regions on the line x2 = 1, with the optimal
solution being in (2.19, 1) (black square). When solving the first ESH iteration (the integer-relaxed feasible
region is the blue area), we will get the solution point (2, 2) (black circle). When performing the root search
between this point and the interior point (5.99, 0.35) (red circle) the point (5.69, 0.48) (blue circle) on the
boundary is obtained. A supporting hyperplane CUT1 (blue line) is then generated and added to the MILP
problem in the second ESH iteration. Now, the MILP problem in iteration 2 is now no longer integer-feasible
(the integer-relaxed feasible region is the red area) since all the feasible solutions have been cut off

3.1 Repairing infeasibilities in the dual strategies

Themain issue with solving nonconvex problems with a PA strategy, is that feasible solutions
are often sooner or later cut off when adding cuts to nonconvex constraints. The cuts might
also make the linearized problem infeasible. Normally it is not possible to continue in this
case, and we would need to terminate with the currently best known solution (if any).

APAstrategy can, however, bemademore robust by performing an infeasibility relaxation,
where the cuts added are relaxed to restore feasibility, after an infeasible subproblem has
been detected. Assuming we have created an polyhedral approximation expressed using the
constraints Cx+d ≤ 0, we can easily solve the following MILP problem to find a feasibility
relaxation:
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minimize vT r

subject to Ax ≤ a, Bx = b,

Cx + d ≤ r,

xi ≤ xi ≤ xi ∀i ∈ I = {1, 2, . . . , n},
xi ∈ R, x j ∈ Z ∀i, j ∈ I , i �= j,

r ≥ 0.

(7)

Note that if the MIP solver supports quadratic terms, these can be included in the repair
problem as well. Here, the solution vector r will contain the values required for restoring
feasibility for the corresponding constraints. If rk is fixed to be zero, k-th cut will not be
allowed to be modified, e.g., for cuts generated for convex constraints, which we know are
valid. Penalizing the relaxation of individual constraints is done by assigning high values
to the corresponding element of the positive vector of scalars v. In SHOT, the strategy is to
penalize the constraints added later more than those added earlier, by assigning the weight
k, where k is an increasing counter for generated cuts. By favoring the modification of early
added cuts, the risk of cycling, i.e., when a cut recently added is directly relaxed, can be
reduced. After the feasibility relaxation has been found, the constraints in the MIP problem
are modified according to:

Cx + d ≤ 0 −→ Cx + d ≤ τr, (8)

where τ ≥ 1 is a parameter to relax the model further. The MIP problem can now be solved,
and additional cuts added to the linearization. If it was not possible to repair feasibility,
SHOTwill have to terminate with the currently best solution, as it is not possible to continue.
This can, e.g., happen if integer cuts have been added and the user has restricted SHOT to
not try to relax these in the repair process. However, since the NLP solvers utilized are not
global, we cannot guarantee that their returned solution is global and therefore, the integer
cut may exclude a solution we have not found yet, cf., Sect. 3.4. Another case when the
repair step might fail is when a cutoff value below the best possible solution has been added,
cf., Sect. 3.2.

CPLEX and Gurobi have built in feasibility-repair functionality (utilizing the functions
feasopt and feasRelax respectively), while Cbc currently lacks this functionality. Thus,
if Cbc is used, SHOT restores feasibility by solving problem (7) directly.

This type of infeasibility relaxation has similarities to the strategy used in DICOPT,
where the repair functionality is integrated into theMILP subproblem and considered in each
iteration instead of a separate repair step takenwhen the subproblem becomes infeasible [72].

Example 2 We will now apply the repair functionality to the infeasible subproblem obtained
in Ex. 1. The different steps are illustrated in Fig. 2. The infeasible problem (with added
supporting hyperplane CUT1) was

minimize x1 − 10x2
subject to − x1 − 10x2 ≤ −6, x1 − 10x2 ≤ 4,

− 2.10x1 + 11.74x2 ≤ −6.39,

2 ≤ x1 ≤ 8, x2 ∈ {0, 1, 2}.
(9)
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Fig. 2 The infeasibility repair functionality is utilized twice on the problem in Ex. 1 as described in Ex. 2

Now, we formulate and solve problem (7) with v1 = 1

minimize r1

subject to − x1 − 10x2 ≤ −6, x1 − 10x2 ≤ 4,

− 2.10x1 + 11.74x2 + 6.39 ≤ r1,

2 ≤ x1 ≤ 8, x2 ∈ {0, 1, 2}, r1 ≥ 0,

(10)
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which gives the solution (x1, x2, r1) = (8, 1, 1.30). The supporting hyperplane in problem (9)
is relaxed by adding 1.43 to the RHS (here, we assume that the factor τ = 1.1). Then the
new cutting plane replacing CUT1 will be

CUT2(x1, x2) := −2.10x1 + 11.74x2 + 4.96 ≤ 0. (11)

When the updatedMILPproblem is solved, the solution is (x1, x2) = (7.94, 1), with objective
value 16.75. Note that this point is not a valid solution to problem (1), since the constraint
g2 is not fulfilled. However, we have a valid point outside the feasible region of the (integer-
relaxed) MINLP problem, so we can perform a root search and generate a new constraint
CUT3:

CUT3(x1, x2) := 5.47x1 − 6.27x2 − 36.50 ≤ 0. (12)

As can be seen from the figure, this supporting hyperplane cut is generated for the convex
constraint g2. Thus, the new cut does not cut away any feasible solutions. Adding this cut
will however again give an integer-infeasible MILP problem, and we will need to restore
feasibility by solving the following relaxation (with v1 = v2 = 1)

minimize r1 + r2

subject to − x1 − 10x2 ≤ −6, x1 − 10x2 ≤ 4,

− 2.10x1 + 11.74x2 + 6.39 ≤ r1,

5.47x1 − 6.27x2 − 36.50 ≤ r2,

2 ≤ x1 ≤ 8, x2 ∈ {0, 1, 2}, r1 ≥ 0, r2 = 0,

(13)

where the variable r2 has been fixed to zero since the corresponding constraint was generated
for a convex constraint.Now,weobtain the value r1 = 0.29, and thuswe replace the constraint
CUT2 with

CUT4(x1, x2) := −2.10x1 + 11.74x2 + 4.67 ≤ 0. (14)

The resulting MILP problem is then

minimize x1 − 10x2
subject to − x1 − 10x2 ≤ −6, x1 − 10x2 ≤ 4,

− 2.10x1 + 11.74x2 + 4.67 ≤ 0,

5.47x1 − 6.27x2 − 36.50 ≤ 0,

2 ≤ x1 ≤ 8, x2 ∈ {0, 1, 2},

(15)

which gives the solution 16.20 at the point (x1, x2) = (7.80, 1). This is also a feasible solution
to the original MINLP problem (1). By performing these simple repair steps, we have thus
found a feasible solution to a problem we could not have solved otherwise with the ESH
method. Note however, that this is still not the globally optimal solution mentioned in Ex. 1.

3.2 Utilizing a cutoff constraint to force new solutions and reduce the objective gap

Solving problem (1) as described in Exs. 1 and 2, shows that PA strategies in general, and the
ESH algorithm specifically, may get stuck in suboptimal solutions for nonconvex problems.
Normally, the PA methods then terminate with this suboptimal solution. However, as briefly
described in [48], it is possible to try to force a better solution from the MIP problem when
no progress can otherwise be made by introducing a so-called primal objective cut and then
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resolving the MIP problem. This cut is of the form

cT x ≤ γ · PB, (16)

where γ must be selected so that γ ·PB < PB.Note that this cannot normally be accomplished
by using the cutoff functionality in the MIP solvers, since the infeasibilities normally need to
be explicitly present in themodel as constraints for the solvers’ built in infeasibility relaxation
functionality to work.

In practice, whenever SHOT reaches an optimality gap of zero with cuts also created for
nonconvex constraints, which would for a convex problemmean the global solution is found,
it creates or modifies the objective cut in Eq. (16), so that its right-hand-side is less than the
current primal bound. The problem is then resolved with the MIP solver. The problem will
then either be infeasible (in which case the repair functionality discussed in Sect. 3.1 will try
to repair the infeasibility), or a new solution with better objective value will be found. Note
however, that this solution does not need to be a new primal solution to the MINLP problem,
since it is not required to fulfill the nonlinear constraints, only their linearizations through
hyperplane cuts that have been included in the MIP problem. This whole procedure is then
repeated a user-defined number of times.

In the next example, and as illustrated in Fig. 3, the primal objective cut procedure in
combination with the repair functionality is applied to the problem considered in Exs. 1 and
2.

Example 3 In Ex. 2, we were able to repair the MILP problem to get a feasible solution in
(x1, x2) = (7.80, 1) with the objective value 16.20. However, we know that this is not the
global solution so we will try to find a better one by adding a primal objective cut that forces
the objective to have a better (lower) value. We do this by introducing a cut

CUT5(x1, x2) := x1 − 10x2 ≤ 0.3 · 16.20 = 4.86. (17)

Note that the value 0.3 has been chosen here to reduce the numbers of iterations, and normally
a γ -value less than but close to one should be used. As can be seen in Fig. 3, this makes the
MILP problem infeasible again, and the constraint CUT4 needs to be relaxed. The required
feasibility relaxation can now be obtained by again formulating and solving problem (7).
Note however, that the primal objective cut CUT5 should not be relaxed, so its corresponding
r -variable should be fixed to zero. By replacing constraint CUT4 with the repaired constraint
(with τ = 1.1)

CUT6(x1, x2) := −2.10x1 + 11.74x2 − 7.51 ≤ 0, (18)

the MIP problem again have a solution in the point (2.0, 1). This point is, however, not
feasible in the original MINLP problem, so we need to remove the point by adding a cut to
the MILP problem in the next iteration. Now, the interior point is no longer feasible in the
PA, so we instead add the cutting plane

CUT7(x1, x2) := −5.98x1 + 6.00x2 + 19.06 ≤ 0, (19)

based on the convex constraint g1. In iteration 7, the optimal solution (x1, x2) = (2.18, 1)
has now been found to a constraint tolerance of 0.03 and with an objective value of −6.25.

3.3 Verifying lower bounds for nonconvex problems

If feasibility can not be restored by modifying the supporting hyperplanes or cutting planes
generated for the nonconvex constraints, the primal bound cannot be less the value γ · PB
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Fig. 3 A primal cut CUT5, which makes the problem infeasible, is now introduced to the MILP problem in
the first figure. The previously generated cut CUT4 is therefore relaxed by utilizing the technique in Sect. 3.1
and replace with CUT6 to allow the updated MILP problem to have a solution (2.0, 1). After adding a cutting
plane CUT7, a new primal solution, which is better than the previous primal solution (7.8, 1), is found in
(2.18, 1)! After this, we can continue to generate more supporting hyperplanes to try to find an even better
primal solution
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and this value is thus a valid lower bound for the objective value for the nonconvex problem.
What this means in practice is that the POA of the convex constraints has no solution giving
a lower objective value than γ · PB, and since all solutions to the nonconvex problems are
contained in this polyhedral feasible set, no solution to the entire nonconvex problem can
have a lower value than this value either.

Thus, the techniques in Sects. 3.1 and 3.2 can be combined to create amethod for verifying
a lower bound for problem (1). Assuming that we have generated cuts CUTl with indices
l ∈ LNC for nonconvex constraints out of all generated constraints indices in L . Then we
generate the following MILP problem:

minimize cT x +
∑

l∈L
rl ,

subject to Ax ≤ a, Bx = b,

CUTl(x) ≤ rl ∀l ∈ L,

cT x ≤ γ · PB,

xi ≤ xi ≤ xi ∀i ∈ I = {1, 2, . . . , n},
rl ≥ 0 ∀l ∈ LNC,

rl = 0 ∀l ∈ L \ LNC,

xi ∈ R, x j ∈ Z, ∀i, j ∈ I , i �= j .

(20)

If this problem is infeasible, then we know that the nonconvex problem (1), where each
nonlinear equality constraint h(x) = 0 has been rewritten as the two constraints −h(x) ≤ 0
and h(x) ≤ 0, does not have a solution with lower objective value than τ · PB.

3.4 Adding integer cuts

In algorithms based on PA, integer cuts are often used to exclude a specific combination of
integer or binary variable solutions. For example, in POA-based convex MINLP, this can be
used to speed up the solution process since a specific integer combination will not be revisited
in later iterations. In nonconvex PA-based methods integer cuts may be needed to force the
MIP solver to visit other integer combinations. An integer cut is a constraint of the form

‖y − yk‖1 ≥ 1, (21)

where y corresponds to the elements of the vector x that are integer or binary variables. The
constraint in Eq. (21) will then exclude the specific integer combination yk . In the case where
all discrete variables are binaries, this expression simplifies to

∑

ykj=0

y j −
∑

ykj=1

(1 − y j ) ≥ 1. (22)

It is also possible to write the constraint in Eq. (21) in linear form in the more general case
when one or more of the discrete variables are nonbinary; this is discussed further in [3].

For nonconvex MINLP, generating integer cuts in points provided by local NLP solvers
is problematic due to the fact that we cannot be sure that the solution we have received when
solving a fixed NLP problem for a specific integer combination is globally optimal unless
a global solver has been used. The integer cut can, therefore, exclude the optimal integer
assignment even if the optimal solution has not been obtained. Therefore, there is a setting
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in SHOT that also allows us to relax added integer cuts when doing the feasibility relaxation
in Sect. 3.1 in case the MIP subproblem becomes infeasible after adding integer cuts.

4 Utilizing reformulations in nonconvexMINLP

Reformulations may allow us to transform an optimization problem into a form that is more
suitable for a specific method. This is normally accomplished by utilizing so-called lifting
reformulations [43], where additional variables and constraints are introduced. The refor-
mulations can be either exact or approximative. In the former case, the solution for the
original problem can be easily obtained (e.g., using a direct linear or nonlinear correspon-
dence between variables) from the solution of the reformulated problem. In the latter case,
the solution to the reformulated problem might not directly provide a valid solution in the
original problem, but only e.g., a valid lower bound; an example being piecewise linear
approximations of nonlinear functions. As of version 1, SHOT only utilizes exact reformu-
lations, but we plan to implement the αSGO algorithm [53] for lower bounding of bilinear
[10,52], signomial [51] and general twice-differentiable [50] functions in a coming release.

The reformulations discussed in this section are introduced into the problem on which
the MIP subproblems are based and hyperplane cuts generated for; the original problem will
remain as is, and the validity of all primal solution candidates are verified on the original
problem.

4.1 Handling nonlinear equality constraints

A special type of nonconvexity are nonlinear equality constraints. As long as the function
h in a general nonconvex constraint h(x) = 0 is not linear, i.e., independently of whether
it is convex, concave or nonconvex, the constraint will always (unless it is infeasible or its
feasible region is a single point) give rise to a nonconvex feasible region. However, since
nonlinear equality constraints are quite common, these need to be handled in some way by
SHOT.

A possibility is to replace the constraint h(x) = 0 with two separate constraints h(x) ≤ 0
and −h(x) ≤ 0. Then, if it is possible to deduce the convexity of h(x) (in which case the first
constraint is convex) or convexity of −h(x) (in which case the second constraint is convex),
hyperplane cuts can be added to the convex one without the risk of cutting away the optimal
solution. Depending on whether the equality constraint is binding in one or both directions,
it might however not be possible to tighten the objective gap without adding cuts to also the
nonconvex constraint.

4.2 Reformulations for special terms

SHOT automatically performs reformulations for nonconvex terms, such as bilinear terms
of at least one integer variable or monomials of binary variables, into linear form. Such
reformulations can be written in many different ways, some options are discussed in [43,44].
If all nonconvex nonlinearities (that cannot be handled by the MIP solver) are removed
utilizing this strategy, SHOT will manage to find the global solution to a nonconvex MINLP
problem. Currently SHOT implements reformulations for the following terms:

– bilinear terms with at least one binary variable,
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– bilinear terms with two integer variables, and
– monomials of binary variables.

The reformulations employed in SHOTare not new, formore information see, e.g., for bilinear
terms [17], [76] or [26], and for general multilinear terms, [58,66].

4.2.1 Reformulating bilinear terms with at least one binary variable

Bilinear terms with one or more binary variables, i.e., a product xi x j of a binary variable
xi and a continuous or discrete variable x j , where 0 ≤ x j ≤ x j ≤ x j , xi x j , can easily
be reformulated to linear form by replacing the term with the auxiliary variable wi j and
introducing the linear constraints

x j xi ≤ wi j ≤ x j xi , wi j ≤ x j + x j (1 − xi ) and wi j ≥ x j − x j (1 − xi ).

Especially, if both variables are binaries, these expressions simplify to:

0 ≤ wi j ≤ xi , wi j ≤ x j − xi + 1 and wi j ≥ xi + x j − 1.

Note that the variable wi j will be reused in all terms where the bilinear term xi x j occurs.

4.2.2 Reformulating bilinear terms of at least one discrete variable

A bilinear term xi x j of one or more discrete variables with bounds xi ≤ xi ≤ xi and
x j ≤ x j ≤ x j can be be exactly represented in linear form by replacing the term with an
auxiliary variable wi j . Note that the term is not allowed to change signs. If there is only one
discrete variable in the product, we assume that it is xi , if there are two discrete variables,
we assume that xi is the one with smaller domain, i.e., |xi − xi | ≤ |x j − x j |. Now binary
variables bk for the variable xi is introduced, and constrained by

xi∑

k=xi

bk = 1, and xi =
xi∑

k=xi

k · bk .

Using the additional variables, the value of w is then given as

k · x j − M(1 − bk) ≤ w ≤ k · x j + M(1 − bk), ∀k ∈ {xi , . . . , xi },
where the values of M = 2max{|xi |, |xi |}max{|x j |, |x j |}.

4.2.3 Reformulating monomials of binary variables

A monomial term of binary variables b1 · · · bN is either one (if all variables are one) or zero
(otherwise). This nonlinear and nonconvex term can be replaced with an auxiliary variable
w, where the relationship between w and bi ’s is expressed as:

N · w ≤
N∑

i=1

bi ≤ w + N − 1.
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5 Utilizing nonconvexMIQCQP solver functionality

One of themain philosophies of SHOThas always been to fully utilize its subsolvers to extend
the functionality and enhance the performance of the solver. SHOT utilized solving MIQP
and MIQCQP subproblems iteratively as the first of the POA-based solvers. This enhanced
the performance significantly when solving MINLP problems with a quadratic objective
function. SHOT has also previously supported passing on convex quadratic constraints to
its subsolvers instead of linearizing them with cutting planes or supporting hyperplanes.
Currently CPLEX and Gurobi support nonconvex quadratic objective functions, and as of
Gurobi version 9, there is support for nonconvex quadratic functions (i.e., bilinear terms and
concave quadratic terms) in the constraints as well. Naturally, SHOT can then automatically
pass on these types of quadratic expressions to the subsolver if supported. For example, when
considering Ex. 1, the convex quadratic constraint could directly be passed on to CPLEX
and Gurobi, and not handled with the ESH linearization strategy. If Gurobi 9 was used as
a subsolver, also the nonconvex quadratic constraint could be passed on directly. SHOT
also has the option to extract nonconvex quadratic expressions from nonlinear expressions
into quadratic equality constraints; this is beneficial since the nonlinear expressions might
then become convex and the nonconvex equality can be directly handled by Gurobi. SHOT
will then form a natural extension to the nonconvex functionality implemented in Gurobi,
as it does not currently support general nonlinear constraints or objective functions. SHOT
also exploits other types of reformulations and strategies, including NLP calls, that are not
available in Gurobi.

Gurobi’s strategy for solving nonconvexMIQCQP problems is mainly based on bounding
the nonconvex terms with their McCormick envelopes in the subnodes of the branching
tree. This is something that can be accomplished also by utilizing lazy constraint callback
functionality of solvers not supporting nonconvexMIQCQP problems [19]. This has not been
implemented yet in SHOT (as of version 1.0), but might be added to future releases.

6 NonconvexMINLP benchmark

Results from benchmarking SHOT’s new nonconvex functionality with different subsolvers,
and comparing the results to those of other MINLP solvers, are presented in this section.
The main benchmark set consists of problems taken from MINLPLib [57] that fulfill the
following conditions:

– are classified as nonconvex,
– have other nonlinearities than a quadratic objective function (i.e., are not pure MIQP

problems),
– have at least one discrete, i.e., binary or integer, variable, and
– have primal and dual bounds with an objective gap less than 0.1 in MINLPLib.

When applying these filters to the total problem library consisting of 1704 problems the
result is 326 problems. A full list of these are given in Appendix A. Note that a large part
(182) of these problems are actually MIQCQP instances. All the solver logs as well as the
reports generated by PAVER [8], which was used for performing the benchmark analysis,
are available online on the web site https://andreaslundell.github.io/minlpbenchmarks.

SHOT 1.0 was used in the comparisons. All the available MIP solvers in SHOT were
considered separately, namely Cbc 2.10 (with IPOPT as NLP solver), as well as CPLEX
12.10 and Gurobi 9 (with CONOPT as NLP solver). Hence, both a completely free version,

123

https://andreaslundell.github.io/minlpbenchmarks


882 Journal of Global Optimization (2022) 82:863–896

as well as options where commercial subsolvers are used, are included in the benchmarks.
Note that both CPLEX and Gurobi offer free academic licenses which can be used with
SHOT as well.

Both local (AlphaECP, DICOPT, SBB, BONMIN) and global (Antigone, BARON,
Couenne, SCIP, LINDOGlobal) MINLP solvers, as well as one global MIQCQP solver
(Gurobi) have been tested. It should be mentioned that comparing the local solvers with the
global solvers is not completely fair since the global solvers have more functionality for han-
dling nonconvex problems, and the local solvers are more tailored towards convex problems.
However, we have included both local and global solvers to give a better overview of the
current state of nonconvex MINLP. Also, since SHOT share similarities with both local and
global solvers, it is interesting to see how SHOT compares.

The solvers were called through GAMS 31.2. Most subsolvers rely on LP, MILP and NLP
subsolvers, with the defaults selected as CPLEX and CONOPT. However, for BONMIN
and Couenne the recommended solvers Cbc and IPOPTwere used. Also, SCIP only supports
IPOPT as its NLP solver in GAMS. For BONMIN, the recommended nonconvex BB strategy
was used. In these comparisons, we have tried to use the default values for solver settings
unless there is a specific reason to do otherwise, such as the solver clearly terminating
prematurely due to a low iteration limit. Nondefault settings are listed in Appendix B. The
absolute and relative gap termination limits used were both set to 0.1%. However, since
BARON uses a different measure of the relative gap than the others, a slightly larger relative
value was used in PAVER (0.102%) to make up for this fact. The time limit for all solvers
were selected to be 900 s, and if the solver did not exit within 920 seconds, the run was
considered as failed in PAVER. In the solution profiles shown in this section, we have also
included the so-called virtual best and worst solvers, where the virtual best solver selects the
most efficient solver for each problem instance based on the results, and the virtual worst the
least efficient one. This gives a good overview of the difficulty of the test set.

The local solvers AlphaECP, DICOPT, SBB and BONMIN only guarantee to find the
global solutions for convex instances, so for nonconvex problems they can only provide a
primal solution; note however, that in GAMS, these will still return a lower bound for the
objective value, but this bound is not in general valid. As SHOT can detect convexity on
the function level, both the lower and upper bounds on the objective are valid (unless its
convex strategy is forced), and thus it acts more like a global (nonconvex) solver, but with
no theoretical guarantee of finding the global optimal solution as the other global solvers
considered here.

The set of benchmark problems described above is by no means balanced, as we have not
excluded any instances and there are several problems with similar structure. Therefore, we
have also considered the instances in the Mittelmann MINLP benchmark problem collection
[60] fulfilling the criteria mentioned above. If there were instances with similar names, we
chose either the larger instance as indicated by the name or the last one alphabetically. The
results from the 16 nonconvex problems for SHOT (convex and nonconvex strategies) and
the global solvers BARON and SCIP are available in in Table 1. Note that the comparisons
on the smaller benchmark set was with a time limit of 1800 seconds.

6.1 Comparing the convex and nonconvex strategies in SHOT

The impact of the new nonconvex strategy in SHOT, based on the ideas presented in this
paper, is discussed in this section. Table 1 clearly shows that the improvements increase
SHOT’s ability to solve nonconvex problems, and the nonconvex strategy obtained a primal
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Table 3 In the upper half of the table, the impact of the reformulation step is indicated by showing the distri-
bution of the resulting problem types after reformulation. This indicates the differences between the subsolver
with regard to what type of subproblem they support. For example Cbc only handles linear subproblems so
the reformulated problems are either MILP or MINLP. CPLEX and Gurobi both support nonconvex quadratic
objectives. CPLEX supports only convex quadratic constraints, while Gurobi also allows nonconvex con-
straints. Thus, for CPLEX the reformulation step rewrites all nonconvex quadratic constraints as linear if
possible, or otherwise general nonlinear. In the lower half of the table, the success rates of the infeasibility
repair and objective cuts are shown. A success is registered if a better primal solution has been found for a
specific problem after the step was performed

Number of problem instances

SHOT+Cbc SHOT+CPLEX SHOT+Gurobi

Problem type after reformulation

MILP 63 64 49

Convex MIQCQP 0 29 29

Nonconvex MIQCQP 0 0 116

Convex MINLP 29 0 0

Nonconvex MINLP 232 233 139

Crash before ref. 3 1 3

Successful infeasibility repairs 48 67 19

Successful primal cuts 21 8 1

solution in 15 of the 16 problems compared to six for the convex strategy. The nonconvex
strategy also allowed SHOT to solve three of the problems to global optimality, which is not
possible in the convex strategy. In Table 2, more information about the impact of some of the
nonconvex enhancements in SHOT is detailed for this smaller benchmark set. Out of the 16
problems, SHOT was able to transform four into MILP problems. The number of times per
problem the feasibility repair and objective cut strategies successfully enabled the search for
a better primal solution when considering the smaller benchmark set is also shown in Table 2.
In this comparison CPLEX was used as MIP solver, and convex quadratic constraints were
passed on to the MIP solver.

The impact of the reformulations on the larger benchmark set is shown in Table 3. Since the
resulting reformulations depend on what type of subproblem theMIP solver allows, statistics
are shown for each of the three MIP solvers supported. It is clear that Gurobi (which supports
nonconvex quadratic constraints) can handle a large number of the problems directly without
any reformulations. For Cbc and CPLEX these problems must either be reformulated into
MILP form or handled as nonconvex nonlinear constraints or objectives. There are also
statistics on the number of problems where the infeasibility repair and primal cut strategies
have had an impact in Table 3.While the repair step seems to be useful inmany of the problem
instances, the impact of the primal cut is not as clear. There are, however, certain aspects of
the repair and objective cut strategies that could still be improved; for example, a smarter
way of prioritizing which constraints to modify during the repair step, and how to select the
reduction parameter γ in Eq. (16).

To further illustrate the impact of the nonconvex enhancements, the repair step in Sec. 3.1
and the primal cut in Sec. 3.2 were disabled, as were the reformulations in Sec. 4. The
number of solved instances with relative primal gaps (deviation from known optimal value)
and relative objective gaps (difference between upper and lower bound on the objective)
of 0.1%,1% and 10% are shown in Table 4. This is a further indication that the strategies
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Table 4 The impact of disabling the nonconvex functionality has on SHOT when considering the larger
benchmark set of 326 problems. The time limit was set at 900 seconds, and CPLEX was used as MIP solver
in SHOT

Enabled functionality Solved instances with
relative objective gap (%)

Solved instances with
relative primal gap (%)

Reformulations red.cut + repair ≤ 0.1 ≤ 1 ≤ 10 ≤ 0.1 ≤ 1 ≤ 10

� � 92 92 119 128 136 144

� × 90 90 113 116 123 132

× � 48 48 73 86 94 114

× × 45 45 66 73 80 98

Fig. 4 The number of instances in the benchmark where the solvers returned a primal solution within 0.1%,
1% and 10% (as calculated by PAVER) of the best known objective value, and within a time limit of 900 s.
Note that Gurobi can only solve MIQCQP problems, in total 182 out of the 326 problems

presented in this paper has had a significant impact on the number of problems that could
be solved by SHOT. As can be expected, the reformulations have the largest impact when
considering the objective gap. This is natural since the repair and reduction cut is not used
before a linearization of a nonconvex constraint has been introduced, which in the process
excludes further dual bound improvements. When considering the primal gap, the reduction
cut and repair steps have more impact, but the reformulations are still important here; one
reason is that the primal heuristic of solving a fixed-integer MINLP, i.e., an NLP problem,
does not currently utilize the reformulated problem, but rather its original form.

6.2 Efficiency of finding primal solutions

In Fig. 4, it is shown how many of the problems are solved to relative primal gap of 1%
and 10% in addition to the termination gap of 0.1%. For some of the solvers the differences

123



Journal of Global Optimization (2022) 82:863–896 887

Fig. 5 The solution profile indicates the number of solved MINLP instances as a function of time. A problem
is regarded as solved if the primal gap, as calculated by PAVER [8], is ≤ 0.1%. For example, at 10 second
AlphaECP reaches 61 problems, which means that the solver is able to solve 61 of the problems by spending
less than 10 seconds on each problem. The solution times used are the ones where the solver has terminated,
not necessarily when the primal solution has been found. This explains the jump at 900 seconds for many of
the solvers, where they return the current best known solution. Note that the time axis up until 10 s is linear
and after that logarithmic. The grey shaded region indicates the difference between the virtual best (top) and
worst (bottom) solver

are small, i.e., either the solvers manages to find a good solution or they do not find one
within a 10% gap. However, especially for the local solvers there is a significant difference,
and for some of the problems they are struggling to find a close to optimal solution. The
number of instances each solver found a primal solution to (within a relative gap of 0.1% of
the best known solution) as a function of time is shown as a solution profile in Fig. 5. Note
that this does not indicate at which exact time each solver has actually found the solution,
only when it has terminated with said solution, a fact considered in an older benchmark in
[41]. From the figure, it can be seen that the polyhedral approximation based local solvers
AlphaECP, DICOPT and SHOT are quite good at quickly finding primal solutions, as are
the BB-based local solvers BONMIN and SBB. It is clear, however, that the global solvers
Antigone, BARON, Couenne and SCIP are the most efficient at finding the correct primal
solution when regarding the total time limit. We can also assume that their progress will
continue, albeit at a slower rate, if the time limit was increased, which may not be the case of
the local solvers. Gurobi also is very efficient when considering that it only supports a little
over half of the total number of problems!

When considering the performance of SHOT, we can conclude that the performance with
Cbc as MIP solver is the least efficient, but this can be expected as the same is true for convex
problems as well [49]. However, even with Cbc and IPOPT as subsolvers, SHOT clearly finds
more primal solutions than the other PA-based solvers, DICOPT and AlphaECP, even if they
have more efficient subsolvers (CPLEX and CONOPT in this case). This clearly indicate
that the additional techniques for nonconvex problems described in this paper are beneficial.
When considering SHOTwith CPLEX and CONOPT, the performance is clearly better. This
has not only to do with CPLEX in general being more efficient than Cbc, but also due to the
fact that CPLEX can handle convex or nonconvex quadratic objective functions, and convex
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Fig. 6 The number of instances in the benchmark where the solvers managed to reach an objective gap of
0.1%, 1% and 10%. Only the solvers that give a valid lower bound on the optimal solution, i.e., the global
solvers and SHOT, are included. Note that Gurobi can only solve MIQCQP problems, in total 182 out of the
326 problems

quadratic constraints. Thus, the subproblems solved in SHOT may also be of the MIQP- or
MIQCQP-types in CPLEX. Since more than half of the benchmark problems are actually
nonconvex MIQCQP problems, the performance boost of utilizing Gurobi as a subsolver in
SHOT is significant, and this has more to do with Gurobi than with SHOT. However, when
comparing directly with Gurobi, SHOT of course solves more problems since it supports
significantly more of the problems in the benchmark set.

6.3 Efficiency in proving optimality

The global MINLP solvers Antigone, BARON, Couenne, LINDOGlobal, and SCIP also
provide a valid lower bound on the optimal solution to nonconvex problems; this is also
true for Gurobi for the problems it supports, i.e., MIQCQP problems. SHOT also provides
a valid lower bound as described in Sect. 3, however in contrast to the global solvers, there
is no theoretical guarantee that the gap can be reduced to the globally optimal solution for
nonconvex problems.

In Fig. 6, the number of instances solved to objective gaps of 0.1%, 1% and 10% are
shown. From this figure it can be deduced that many of the unsolved problems for a solver
are far from being solved within 900 s since the gap is larger than 1% inmost of the remaining
ones.

A solution profile of the number of problems solved to an relative gap of 0.1% is shown
in Fig.7. It is clear that SCIP and BARON are in a league of their own, and manage to
find the global optimal solution to 195 and 193 of the problems respectively. Antigone and
SHOT with Gurobi manage to solve 160 and 158 respectively. Gurobi solves 141 of the
182 MIQCQP instances, which means that SHOT can verify the global solution of about
an additional 17 MINLP problems. The performance of SHOT with CPLEX and Cbc are
significantly worse due to the fact that they do not support nonconvex quadratic constraints
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Fig. 7 The solution profile indicates the number of solved MINLP instances as a function of time. A problem
is regarded as solved if the relative objective gap, as calculated by PAVER [8], is ≤ 0.1%. Note that the time
axis up until 10 s is linear and after that logarithmic. The grey shaded region indicates the difference between
the virtual best (top) and worst (bottom) solver

Fig. 8 The solution profile indicates the number of solved instances out of the total 182 MIQCQP problems
as a function of time. A problem is regarded as solved if the relative objective gap, as calculated by PAVER
[8], is ≤ 0.1%. Note that the time axis up until 10 s is linear and after that logarithmic. The grey shaded region
indicates the difference between the virtual best (top) and worst (bottom) solver

(CPLEX) or any quadratic terms at all (Cbc), respectively. Finally in Fig. 8 only the pure
nonconvex MIQCQP instances are considered. For these instances, it is clear that Gurobi
is currently the most efficient solver for this problem type. The difference between SHOT
with Gurobi and Gurobi might be due to the fact that SHOT also solves NLP problems in
its primal strategy which might help to tighten the objective gap. It also modifies a few of
Gurobi’s default settings.
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7 Conclusions

In this paper,we have described somenew features added to the SHOTsolver.As shown in this
paper, these features significantly increase SHOT’s capability of solving nonconvex MINLP
problems. The main issues with utilizing PA-based techniques for nonconvex MINLP are (i)
that valid solutions are likely to be cut off by the constraints generated as the approximation
of the nonlinearities in the problem is tightened or that the solution procedure is terminated
too early, and (ii) that the lower bounds given by the best possible solution in the outer
approximation can no longer be trusted. In this paper, the former has been addressed by
introducing a repair step for infeasible MIP subproblems and a primal objective cut that
forces the search for better primal solutions. The latter issue is partly handled by utilizing
lifting reformulations to convexify certain nonconvex functions and by exploiting convexity
detection on the nonlinear functions in the problem. The convexity detection is, for example,
used to determine if and when a cut has been added that invalidates the lower bound, in
which case the last valid bound is returned when terminating the solver. This approach
does not generally guarantee to completely close the objective gap, but may in some cases
actually allow us to reduce the objective gap to zero. It does however often provide some
bounds on the objective other local solvers can not. The type of MIP subsolver used has a
large impact on how well SHOT can solve nonconvex problems; especially in combination
with Gurobi version 9 and later, SHOT becomes a much more general and powerful tool
for solving general MINLP problems, since it can utilize Gurobi’s nonconvex MIQCQP
functionality. Even if SHOT’s performance is somewhat reduced with Cbc as a subsolver,
together with IPOPT the combination forms a completely free open-source source solver
with a performance that is on pair with the commercial local solvers. In this paper, SHOT
is compared to other local and global solvers on a benchmark set of 326 MINLP problems,
and the results are promising. It is clear that the new features greatly improve SHOT’s ability
to solve the nonconvex test problems, and overall the solver performs well compared to the
other local solvers. The improvements discussed in this paper are, however, only the first
steps in SHOT’s nonconvex development, and we plan to introduce lifting reformulations
for signomials [51] and general twice-differentiable [50] functions in coming versions; these
will significantly extend SHOT’s nonconvex capabilities further.
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Appendix A

The problems considered in the benchmark were selected using the conditions specified in
Section 6. The result is the 326 problems listed here.

The following 144 problems are general MINLP problems, i.e., they have at least one
nonlinearity that is not quadratic:

4stufen, autocorr_bern20-05, autocorr_bern20-10, autocorr_bern20-15,
autocorr_bern25-06, autocorr_bern25-13, autocorr_bern30-04,
autocorr_bern30-08, autocorr_bern35-04,
autocorr_bern40-05, batch0812_nc, batch_nc, bchoco05, bchoco06, bchoco07,
casctanks, cecil_13, chp_shorttermplan1a, chp_shorttermplan1b,
chp_shorttermplan2a,
chp_shorttermplan2b, chp_shorttermplan2d, csched1a, csched1, eniplac, ethanolh,
ethanolm, ex1221, ex1222, ex1224, ex1225, ex1226, ex1233, ex1243, ex1244, ex1252,
ex1252a, ex3pb, fin2bb, gasnet_al1, gasnet_al2, gasnet_al3, gasnet_al4,
gasnet_al5, gastrans, gastrans040,
gastrans135, gastrans582_cold13, gastrans582_cold13_95, gastrans582_cold17,
gastrans582_cold17_95, gastrans582_cool12, gastrans582_cool12_95,
gastrans582_cool14, gastrans582_cool14_95, gastrans582_freezing30,
gastrans582_freezing30_95, gastrans582_mild10,
gastrans582_mild10_95, gastrans582_mild11, gastrans582_mild11_95,
gastrans582_warm15, gastrans582_warm15_95, gastrans582_warm31,
gastrans582_warm31_95, gear4, ghg_1veh, ghg_2veh, gkocis, hadamard_4, hadamard_5,
hda, heatexch_gen2, heatexch_spec1, heatexch_spec2, heatexch_spec3,
heatexch_trigen, hmittelman, hybriddynamic_var, johnall, kport20, lip,
milinfract, minlphix,
multiplants_mtg1a, multiplants_mtg2, multiplants_mtg5, multiplants_stg5,
nvs01, nvs05, nvs16, nvs21, nvs22, oaer, oil, oil2, ortez, parallel, pooling_epa1,
pooling_epa2, pooling_epa3, procsel, sepasequ_convent, sfacloc2_2_80,
sfacloc2_2_90, sfacloc2_2_95, sfacloc2_3_80, sfacloc2_3_90, sfacloc2_3_95,
sfacloc2_4_80, sfacloc2_4_90, sfacloc2_4_95, spring, st_e15, st_e29, st_e32,
st_e35, st_e36, st_e38, st_e40, super1, supplychainp1_020306,
supplychainp1_022020, supplychainp1_030510, supplychainr1_020306,
supplychainr1_022020, supplychainr1_030510,

supplychainr1_053050, synheat, tanksize, tspn05, tspn08, tspn15, unitcommit2,

wager, wastepaper3, wastepaper4, waternd1, waternd2, waterno2_01, waterno2_02,

waterno2_03, watertreatnd_conc, watertreatnd_flow.

The following 182 problems can in general be classified as MIQCQP problems:

autocorr_bern20-03, autocorr_bern25-03, blend029, blend146, blend480, blend531, blend721,
blend852, carton7, crudeoil_lee1_05, crudeoil_lee1_06, crudeoil_lee1_07,
crudeoil_lee1_08, crudeoil_lee1_09, crudeoil_lee1_10, crudeoil_lee2_05,
crudeoil_lee2_06, crudeoil_lee2_07, crudeoil_lee2_08, crudeoil_lee2_09,
crudeoil_lee2_10, crudeoil_lee3_05, crudeoil_lee3_06, crudeoil_lee3_07,
crudeoil_lee3_08, crudeoil_lee3_09, crudeoil_lee3_10, crudeoil_lee4_05,
crudeoil_lee4_06, crudeoil_lee4_07, crudeoil_lee4_08, crudeoil_lee4_09,
crudeoil_lee4_10, crudeoil_li01, crudeoil_li02, crudeoil_li03, crudeoil_li05,
crudeoil_li06, crudeoil_li11, crudeoil_li21, crudeoil_pooling_ct2,
crudeoil_pooling_ct4, crudeoil_pooling_dt1,
crudeoil_pooling_dt4, edgecross10-010, edgecross10-020, edgecross10-030,
edgecross10-040, edgecross10-050, edgecross10-060, edgecross10-070, edgecross10-080,
edgecross10-090, edgecross14-019, edgecross14-039, edgecross14-058, edgecross14-078,
edgecross14-137, edgecross14-156, edgecross14-176, edgecross20-040, edgecross22-048,
elf, ex1263, ex1263a, ex1264, ex1264a, ex1265, ex1265a, ex1266, ex1266a, feedtray2, gabriel01,
gabriel04, gasprod_sarawak01, gasprod_sarawak16, gasprod_sarawak81, genpooling_lee1,
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genpooling_lee2, genpooling_meyer04, hydroenergy1, hydroenergy2, hydroenergy3,
portfol_robust050_34, portfol_robust100_09, portfol_robust200_03,
portfol_shortfall050_68, portfol_shortfall00_04, portfol_shortfall200_05, prob02,
prob03, product, product2, radar-3000-10-a-8_lat_7, ringpack_10_1, ringpack_10_2, sep1,
sjup2, smallinvSNPr1b020-022, smallinvSNPr1b100-110, smallinvSNPr1b150-165,
smallinvSNPr1b200-220, smallinvSNPr2b010-011, smallinvSNPr2b020-022,
smallinvSNPr2b050-055, smallinvSNPr2b100-110, smallinvSNPr2b150-165,
smallinvSNPr2b200-220, smallinvSNPr3b010-011, smallinvSNPr3b020-022,
smallinvSNPr3b050-055, smallinvSNPr3b100-110, smallinvSNPr3b150-165,
smallinvSNPr3b200-220, smallinvSNPr4b010-011, smallinvSNPr4b020-022,
smallinvSNPr4b050-055, smallinvSNPr4b100-110, smallinvSNPr4b150-165,
smallinvSNPr4b200-220, smallinvSNPr5b010-011, smallinvSNPr5b020-022,
smallinvSNPr5b050-055, smallinvSNPr5b100-110, smallinvSNPr5b150-165,
smallinvSNPr5b200-220, sonet17v4, sonet18v6, sonet20v6, sonet21v6, sonet22v4, sonet24v2,
sonet25v5, spectra2, sporttournament06, sporttournament08, sporttournament10,
sporttournament12, sporttournament14,
sporttournament16, sporttournament18, sporttournament20, sporttournament22,
sporttournament24, sporttournament26, sporttournament28, squfl010-025persp,
squfl010-040persp, squfl010-080persp, squfl015-060persp, squfl015-080persp,
squfl020-040persp, squfl020-050persp, squfl020-150persp, squfl025-025persp,
squfl025-030persp, squfl025-040persp, squfl030-100persp, squfl030-150persp,
squfl040-080persp, sssd08-04persp, sssd12-05persp, sssd15-04persp, sssd20-04persp,
sssd25-04persp, st_e13, st_e31, supplychain, telecomsp_njlata, telecomsp_pacbell, tln2,
tln4, tln5, tln6, tln7, tln12, tloss, tltr,

unitcommit_200_0_5_mod_7, unitcommit_200_100_2_mod_7, util, waste.
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Appendix B

The options provided to the solvers (and subsolvers) in the benchmark are listed below.
Otherwise default values have been used for the solvers.

Name Value Description

General GAMS

MIP CPLEX Uses CPLEX as MIP solver
NLP CONOPT Uses CONOPT as NLP solver
threads 7 Max amount of threads
optCR 0.001 Relative termination tolerance
optCA 0.001 Absolute termination tolerance
nodLim 108 To avoid premature termination
domLim 108 To avoid premature termination
iterLim 108 To avoid premature termination
resLim 900 Time limit

BONMIN

bonmin.algorithm B-BB Selects the main strategy
bonmin.time_limit 900 Sets the time limit

DICOPT

maxcycles 108 Iteration limit

SBB

memnodes 5 · 107 To avoid premature
termination, but not too
large, since memory is
preallocated

nodlim 1010

rootsolver CONOPT.1 To use the CONOPT options below

SHOT

Dual.MIP.NumberOfThreads 7 Max number of threads
Dual.MIP.Solver 0–2 Depending on MIP solver
Primal.FixedInteger.Solver 1 To use GAMS NLP solvers
Subsolver.GAMS.NLP.Solver conopt use CONOPT as GAMS NLP solver
Termination.ObjectiveGap.Absolute 0.001 Absolute termination tolerance
Termination.ObjectiveGap.Relative 0.001 Relative termination tolerance
Termination.TimeLimit 900 time limit

CONOPT (GAMS)

RTMAXV 1030 To avoid problems with
unbounded variables in
DICOPT and SBB
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