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Abstract
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While
sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little
is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software
POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in
metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data
spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species,
representing several major bacterioplankton clades, displayed population structures correlating significantly with
environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than
temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible
for the populations’ existence along with the salinity range. This in turn implies the broad existence of ecotypes that may
remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and
highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.

Introduction

Each liter of seawater contains around a billion bacterial and
archaeal cells (bacterioplankton) that play central roles in
biogeochemical cycles, marine food webs and ecosystem
services [1, 2]. The diversity of aquatic prokaryotes is
immense [3]. How this diversity is generated and structured
is far from fully understood. Aquatic taxa are differentially
distributed among habitats [4] and ribosomal RNA (rRNA)
gene sequencing has shown that bacterioplankton commu-
nities are structured both in time and space [5–8]. While

these studies have demonstrated that 16S rRNA gene
clusters (OTUs), or even specific 16S rRNA gene sequences
(amplicon sequence variants; ASVs), represent lineages
adapted to different habitats, the 16S rRNA gene does
generally not provide sufficient genetic resolution to reveal
within-species (intraspecific) diversity patterns, since pro-
karyotes with identical 16S rRNA gene sequences may have
highly divergent genomes and phenotypes [9].

Comparative genomics of isolates, as well as metage-
nomics on natural samples, have revealed sequence clusters
of >95% average nucleotide identity (which has emerged as
an operational delineation of prokaryotic species [10]);
however, it is not known to what extent this intraspecific
genomic variation represents neutral diversity vs. adaptation
to different niches. Due to the technical challenges, rela-
tively little is known about intraspecific structuring of
microbes, not least in the marine environment. However,
pioneering studies have shown that genetic content of single
bacterial species may correlate with geographic distance
[11], and that coexisting but ecologically differentiated
strains may arise through resource partitioning [12]. For
example, the picocyanobacterium Prochlorococcus has
been demonstrated to display fine-scale sequence clusters
associated with different regimes in temperature and light-
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intensity, and single-cell sequencing has revealed distinct
genomic backbones within clusters and variation in acces-
sory genes mainly between clusters [13]. The ubiquitous
and most abundant type of organism in the ocean, the
SAR11 clade, has undergone adaptive radiation in response
to temperature [14]. Apart from “genome streamlining”
[14, 15], it has been postulated that the ecological success of
this organism is facilitated by its adaptive divergence into
ecotypes specialized for specific environmental conditions
[6, 16]. However, it is not known if intraspecific niche-
differentiation is a general phenomenon in bacterioplankton
or a characteristic of exceptionally abundant species. A
deeper understanding of intraspecific diversity, sometimes
referred to as “microdiversity” [17], is of crucial importance
if we want to understand the ecology, evolution, and spe-
ciation of bacterioplankton, and of prokaryotes in general.
Studying genomic variation within a species can also reveal
genes involved in adaptation to specific environmental
factors, providing new clues on gene functions and cellular
mechanisms of adaptation.

The study of metagenomes has been predicted to offer a
more realistic view of prokaryotic diversity [18, 19] as
compared to PCR-based surveys of the 16S rRNA gene.
Metagenomics offers different routes for addressing intras-
pecific variation. The first is to reconstruct genetic infor-
mation of individual strains. By mapping reads from one or
several samples to the reference genome(s) of a species, the
gene complement and/or nucleotide sequences at variant
positions of the constituent strains can be inferred [20–22].
This approach is promising, but challenging, especially in
cases of many coexisting strains. The second approach does
not aim at reconstructing strains, but rather uses the reads
mapped to a reference genome to quantify intra- and
intersample genomic variation of the species. This approach
is more straightforward for analyzing population structure
and works well also in case of highly complex pan-
genomes. Schloissnig et al. [23] conducted pioneering
cross-continental comparative analyses of human gut
microbiomes using this approach and showed that there is
more intraspecific genetic differentiation between habitats
(human individuals) than within the same habitat over time.
Similar approaches have been used by Nayfach et al. [11]
and Delmont et al. [24] to show that gene content and amino
acid composition, respectively, differ between oceanic
regions within individual bacterial species.

Here we present the software POGENOM (POpulation
GENOmics from Metagenomes) that, similarly to MIDAS
[11], metaSNV [25] and inStrain [26] quantifies intraspe-
cific genomic variation from metagenomic data.
POGENOM differs from these softwares in that it takes as
input a Variant Call Format (VCF) file, the standard file
format for storing gene sequence variations. This allows the
user to apply a variant caller of choice, rather than relying

on an inbuilt algorithm. While MIDAS and inStrain provide
genome-wide and gene-specific diversity estimates,
metaSNV reports genome-wide population differentiation
(Manhattan distance). POGENOM outputs both diversity
and differentiation parameters, at the whole genome
(nucleotide diversity and fixation index (FST)) and at the
gene level (nucleotide and amino acid diversity, pN/pS, and
FST based on nucleotides and amino acids). POGENOM
also provides permuted gene-wise FST values, facilitating
significance tests on gene-wise differentiation.

We here use POGENOM to investigate patterns of
genomic variation among a set of bacterioplankton species
in the Baltic Sea. The Baltic Sea is a geologically young
ecosystem with pronounced gradients of salinity, tempera-
ture, and nutrient concentrations, and is often used as a
model for postglacial colonization and ecological differ-
entiation [27, 28]. Marine macroorganisms display reduced
species richness and intraspecific diversity towards the
northern Baltic Sea, as the lower salinity of these waters
impose more challenging conditions. Likewise, freshwater
species diversity decreases with increasing salinity levels
towards the south-west [29]. Moreover, population genetic
studies have shown that species of fish and macroalgae have
distinct genetic populations in the Baltic Proper (central
Baltic Sea) compared to the Atlantic west of Sweden [30–
32]. With respect to microorganisms, population genetic
data across the salinity regimes is only available for one
eukaryote: the marine diatom Skeletonema marinoi [33]. It
is evident that the species is locally adapted and genetically
differentiated into separate populations on each side of the
Danish Straits, correlating with different salinity regimes
and oceanographic connectivity. For bacterioplankton,
community composition has been shown to vary sig-
nificantly along the horizontal salinity gradient, as well as
vertically along oxygen gradients, with the Baltic Proper
being composed of a mixture of typical freshwater and
marine taxa [34, 35]. Using metagenomic binning and
fragment recruitment analysis, Hugerth et al. [36] showed
that the prokaryotic organisms in the Baltic Proper are
genetically differentiated from closely related marine and
freshwater lineages while displaying high similarity to
sequences from North American brackish waters, suggest-
ing that the Baltic Sea prokaryotes are members of a global
meta-community adapted to brackish conditions. However,
it remains to be investigated whether the bacterioplankton
species display genetically structured populations within the
Baltic Sea ecosystem.

Results

To improve understanding in intraspecific variation and
revealing patterns in population genomic structure in
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bacterioplankton, we applied our newly developed soft-
ware POGENOM on a set of MAGs that was recently
reconstructed from a dataset of 123 water samples cov-
ering environmental gradients of the Baltic Sea [37]
(Supplementary Table 1). This set includes 1961 MAGs
that were clustered at 96.5% average nucleotide identity
(ANI) into 352 species-level clusters [35]. These clusters
are hereafter referred to as BACLs (BAltic Sea CLusters),
and sometimes, for convenience, the term species is used,
although these are not strict species. We selected a subset
of 22 BACLs for our analyses, displaying sufficiently
high coverage in at least ten surface water samples (see
Methods). For each BACL, one representative MAG was
used (with average estimated completeness and con-
tamination of 91% and 3%, respectively; Table 1 and
Supplementary Table 2). Metagenome reads from surface
water samples from two transect cruises (Pelagic Transect
2014 (n= 10) and Coastal Transect 2015 (n= 34)) and
from a 2-year time-series from one off-shore station (the
Linnaeus Microbial Observatory (n= 22)) (Fig. 1 and
Supplementary Table 1) were mapped to the MAGs
[37, 38]. To lower the risk of including reads derived from
other species, we only included reads mapping with >95%
identity to the MAGs. We further used a median coverage

depth threshold of ≥20X and a minimum coverage breadth
of 40% to include a sample for a BACL. To avoid biases
stemming from differences in coverage depth between
samples, mapped reads were downsampled to the same
median coverage (20X) for all samples.

Nucleotide diversity

In total, 355,951 single-nucleotide polymorphisms were
identified in the 22 genomes, with frequencies ranging from
0.0021 kbp−1 (BACL13) to 0.0195 kb−1 (BACL2). Mean
within-sample nucleotide diversity (π), corresponding to the
likelihood that two metagenome reads that overlap a posi-
tion in the genome will differ at the position, ranging from
0.0005 (BACL168) to 0.0040 (BACL2) (Table 1). Since
intraspecific genetic diversity tends to decline towards the
extremes of a species’ niche-gradients [39], we investigated
if any patterns in π across the salinity gradient could be
detected. Indeed, eight out of the 22 genomes displayed a
significant non-linear pattern (quadratic regression model)
of within-sample π, while the π of two genomes (BACL1
and BACL5) best fit a linear regression model with salinity
(Fig. 2, Supplementary Table 3). The observed non-uniform
patterns of π are likely not caused by biases between the

Table 1 BACLs for which a representative MAG was included in the population genomic analysis and their overall SNV frequency (number of
variant loci/genome size) and mean within-sample nucleotide diversity (π). The table is ordered by taxonomy.

Baltic Cluster Genome
size (bp)

Number
variant loci

SNP
frequency

Mean intra-
sample π

Phylum Family Genus

BACL13 1404359 2954 0.0021 0.0006 Crenarchaeota Nitrosopumilaceae Nitrosopumilus

BACL27 1786241 26173 0.0147 0.0033 Actinobacteriota Ilumatobacteraceae BACL27

BACL17 1756084 22436 0.0128 0.0026 Actinobacteriota Ilumatobacteraceae UBA3006

BACL6 2791422 12221 0.0044 0.0011 Actinobacteriota Ilumatobacteraceae UBA3006

BACL112 1305743 13388 0.0103 0.0029 Actinobacteriota AcAMD-5 ATZT02

BACL2 1227951 23983 0.0195 0.004 Actinobacteriota Nanopelagicaceae MAG-120802

BACL15 1276454 8011 0.0063 0.0015 Actinobacteriota Nanopelagicaceae Planktophila

BACL18 1767133 14674 0.0083 0.0016 Bacteroidota Cryomorphaceae TMED14

BACL8 2159345 6697 0.0031 0.0008 Bacteroidota Flavobacteriaceae MAG-120531

BACL327 1850878 26602 0.0144 0.0034 Cyanobacteria Cyanobiaceae PCC7001

BACL325 838244 15671 0.0187 0.0038 Proteobacteria Pelagibacteraceae NA

BACL144 1246612 17204 0.0138 0.003 Proteobacteria Pelagibacteraceae NA

BACL149 1310694 13757 0.0105 0.0026 Proteobacteria Pelagibacteraceae IMCC9063

BACL53 1312850 23119 0.0176 0.0032 Proteobacteria Pelagibacteraceae IMCC9063

BACL5 1242356 8386 0.0068 0.0016 Proteobacteria Pelagibacteraceae Pelagibacter

BACL262 1130444 12534 0.0111 0.0026 Proteobacteria Pelagibacteraceae Pelagibacter

BACL214 2228508 25432 0.0114 0.0024 Proteobacteria Burkholderiaceae UBA2463

BACL14 1388129 7055 0.0051 0.0013 Proteobacteria Methylophilaceae BACL14

BACL3 2958067 16697 0.0056 0.0013 Proteobacteria Pseudohongiellaceae OM182

BACL1 1513717 15731 0.0104 0.0018 Proteobacteria D2472 D2472

BACL168 2226010 4876 0.0022 0.0005 Verrucomicrobiota NA NA

BACL9 1774586 12495 0.007 0.0018 Verrucomicrobiota UBA3015 UBA3015
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three sample sets, as no systematic grouping according to
sample-set was observed (Fig. 2).

No strong seasonal trends in π were observed in the
LMO time series data. However, a significant positive
correlation was observed between the difference in seasonal
time and difference in π for two genomes (BACL1 and
BACL149) out of the five tested (≥8 samples required;
Supplementary Fig. 1).

Population genomic structure

Ordination of the samples based on pairwise fixation index
(FST)––a measure of population differentiation across
samples––revealed a non-random population structure
across the Baltic Sea for the majority of the analyzed gen-
omes, with salinity correlating with the first principal
coordinate in most cases (Fig. 3). When conducting a par-
titioned distance-based redundancy analysis (dbRDA) on
the transect samples, salinity emerged as the most important
driver of population structure: Fifteen out of the 19 gen-
omes present in at least ten transect samples displayed a
significant correlation between FST and salinity level (p <
0.05; Fig. 4), eight of which displayed the highest correla-
tion to salinity. Temperature was the second most common
driver of population structure, followed by DOC, NH4, and
NO3. In four genomes, geographic distance (one of the
Principal coordinates of neighbor matrices parameters
PCNM1 and PCNM2) showed the highest correlation with
population structure, indicative of isolation by distance. It
should also be noted that the two genomes lacking sig-
nificant environmentally correlated spatial population
structure were among those with fewest included samples;
with more samples such structure may have been detected
also for these. Similarly, it is possible that a higher

sequencing depth would reveal even clearer population
structures, due to reduced noise in the FST computations.
However, benchmarking on one genome showed that FST

values calculated using the applied coverage correlated well
(Pearson R= 0.88) with values obtained using four times
higher coverage (Supplementary Fig. 2).

Of the four genomes that were present in at least eight of
the LMO time-series samples, two (BACL1 and BACL149)
displayed a significant correlation between FST and tem-
perature (p < 0.001; data not shown). We did not observe
any significant correlations between population structure
and season, when accounting for the correlation with
temperature.

Among the BACLs for which a comparison between
genomic differentiation over time and space was feasible,
the magnitude of differentiation was greater spatially across
the Baltic Sea than temporally at station LMO in six out of
eight cases (Fig. 5). For four of them, the difference was
statistically significant.

Genetic variation at the gene level

The previous analyses reveal patterns of genomic varia-
tion at the whole genome level. To investigate patterns of
selective constraints in these genomes, POGENOM esti-
mates the ratio of non-synonymous to synonymous
polymorphism rates (pN/pS) for each gene and sample,
where low values indicate negative (purifying) selection
and high values relaxed negative selection or diversifying
selection. As expected, house-keeping genes (using a set
of 36 single-copy core genes (SCGs) that are found in
single-copy in nearly all known bacterial genomes [40])
had on average lower pN/pS values than other genes in
most (20/22) genomes (Supplementary Fig. 2), reflecting

Fig. 1 The Baltic Sea salinity
gradient. Based on daily
average surface salinity data
from 2007 to 2017. Data
retrieved from the Baltic Marine
Environment Protection
Commission (http://metadata.
helcom.fi/). Sampling sites for
the metagenomic data sets used
in this study are indicated with
symbols.
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stronger purifying selection in genes with core functions
than in average genes [41, 42]. Likewise, comparing pN/
pS values between genes belonging to different Kyoto
Encyclopedia of genes and genomes (KEGG) [43] path-
ways showed that the pathways with lowest average pN/
pS values (indicative of negative selection) tended to be
associated with house-keeping processes such as

transcription, RNA degradation, nucleotide excision
repair and oxidative phosphorylation (Fig. 6, upper
panel). Among the pathways with the highest pN/pS ratios
(Fig. 6, lower panel), suggesting relaxed purifying selec-
tion or diversifying selection, we found several related to
biofilm formation and antimicrobial synthesis and resis-
tance. The pathway with the highest pN/pS value (0.52) in

Fig. 2 Intrapopulation π vs. salinity across the Baltic Sea ecosys-
tem. Shaded area in red indicates salinity 5–8 (the horohalinicum
[88]), to simplify the comparison of the graphs. Note different scales
on y- and x-axes. All plotted genomes (10 of the 22 genomes) show
statistically significant (p < 0.05) correlation with salinity, either using

a linear (BACL1, BACL5) or quadratic regression model (all other
BACLs), chosen based on the lowest AIC (Akaike information cri-
terion) value. Complementary information (Supplementary Table 3)
include statistical parameters for all models (also non-significant).
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a single genome (BACL13) was cationic antimicrobial
peptide (CAMP) resistance.

To identify environmental selection on specific genes,
we focused on salinity, since this was the major driver of
population structure in most BACLs. To facilitate the
interpretation of population structure, POGENOM calcu-
lates FST at the individual gene level. For the 19 genomes
that were present in at least ten transect samples, between
65 (BACL327) and 1245 (BACL18) genes displayed a
positive correlation between FST and difference in salinity
(Spearman correlation, FDR adjusted p < 0.05). These
correlations may indicate that the genes themselves have
undergone adaptation to the different salinity levels (or to
environmental factors that co-vary with salinity) but could
also reflect genetic hitchhiking, i.e., that an allele that
differs in frequency between environmental conditions
does so because allele(s) elsewhere on the genome have
undergone selective sweeps. To increase the chance of
identifying genes that truly have undergone positive
selection in relation to salinity, we investigated gene-wise
FST values for the pair of samples with the largest dif-
ference in salinity for each genome. We devised a

permutation procedure, where a permuted FST value is
calculated for each gene by shuffling variant loci over the
genome while keeping the population differentiation
constant at the genome-level (see Methods). This showed
that a number of genes (1–32) in all but two BACLs
displayed a higher FST (FDR adjusted p < 0.05) than
expected by chance, given the genomes’ background
levels of differentiation (Fig. 7 gives one example). The
majority (91%) of these genes also displayed a positive
correlation between FST and difference in salinity based
on all transect samples. Pathway enrichment analysis
indicated that the 151 genes that both displayed a sig-
nificant FST for the salinity extremes and a correlation
between FST and salinity difference were enriched in
certain KEGG pathways: six pathways were enriched in at
least two different BACLs each, and these were also
enriched when considering all BACLs (p < 0.05; Table 2
and Supplementary Table 4). Four of these; Nitrogen
metabolism (map00910), Alanine, aspartate and glutamate
metabolism (map00250), ABC transporters (map02010)
and Glyoxylate and dicarboxylate metabolism
(map00630) were all enriched in two actinobacterial

BACL13 BACL27 BACL17 BACL6

BACL112 BACL2 BACL15 BACL18

BACL8 BACL327 BACL325 BACL144

BACL149 BACL53 BACL5 BACL262

BACL214 BACL14 BACL3 BACL1

BACL168 BACL9

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Salinity

Low High

Fig. 3 Population structure of Baltic Sea bacterioplankton. Left
hand panel for each BACL represents a PCoA based on FST values,
each data point is one sample. Right hand panel depicts the geographic
location for each sampling point. The symbol colors indicate salinity

values, with independent scales for the different BACLs. Circles=
LMO Time series, squares= Pelagic Transect, diamonds=Coastal
Transect.
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Fig. 5 Comparison of FST

values spatially across the
Baltic Sea vs. over time at
station LMO. Median values
denoted with black lines.
p values from Wilcoxon rank-
sum tests comparing the
distributions of FST values over
time and space indicated by
asterisks (<0.01**, <0.001***).

Fig. 4 Environmental drivers
of population structure in 19
prokaryotic BACLs across the
pelagic and coastal transects.
The number of samples (n)
included for each BACL are
indicated by the left-most
column. Results stem from
conditioned redundancy
analyses. The PCNM variables
represent the spatial relationship
between sampling sites,
reflecting pairwise geographic
distances (shortest waterway
distance). R2 values are colored
from blue to red; only significant
correlations are shown
(p < 0.05).
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genomes each. The eggNOG category that was enriched
in most genomes (n= 4) was Inorganic ion transport and
metabolism (P).

Discussion

In this study we estimated genomic diversity and population
differentiation for a set of uncultured aquatic prokaryotic
species along environmental gradients across the Baltic Sea.
We quantified population genomic indices, such as the
intra-population diversity (π) and the fixation index (FST),
and quantified pN/pS ratios for genes belonging to different
pathways across the study system to detect potential biases
in selection pressures. With these analyses, we obtained
information about environmental drivers of population
structure and indications on functional traits under selection.
Such an exercise is now significantly streamlined with the
software POGENOM, calculating the above parameters
automatically. With intra-population diversity (π), we refer
to the average nucleotide diversity of a population, while
the fixation index (FST), measures the differences in allele

frequencies between pairwise populations. FST was origin-
ally designed for diploid, sexually reproducing organisms
[44] where a value close to 1 is interpreted as substantially
restricted gene flow between populations. However, the
concept of FST involves no obligate condition of sexual
reproduction, as it simply compares allele frequencies
between two populations and is thus as valid for asexually
reproducing prokaryotes [45]. Constraints in gene flow as
apprehended in sexually reproducing organisms may for
prokaryotes be seen as constraints in homologous recom-
bination and/or effects of environmental sorting of genetic
material, leading to skewed allele frequencies between
populations.

Our analyses showed that the majority of the BACLs had a
genomic population structure significantly correlating with
salinity across the Baltic Sea, i.e., that the diverse and
environmentally structured bacterioplankton communities that
have been described earlier in this ecosystem [34, 46–48] are
even further differentiated at the species level. A few BACLs
displayed statistically significant isolation by distance (IBD),
similar to the findings in Nayfach et al. [11]. However, var-
iation partitioning indicated that geographic distance was the

Fig. 6 Summary of pN/pS values for KEGG pathways in 22 bacterioplankton genomes. Pathways sorted by mean pN/pS across genomes. The
upper and lower panel consist of the twenty KEGG pathways with the lowest and highest mean pN/pS values, respectively.
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strongest driver of population structure only in four cases out
of 19 after taking environmental factors into account (Fig. 4).
In cases where stable differential selection is sustained, as in
the Baltic Sea, and where geographic distances are rather
small, isolation by adaptation (IBA) can spur population
structure within a species [49, 50]. When comparing the
extent of differentiation across space and time, FST values
were on average higher for geographically than temporally
separated populations, which probably reflects that salinity is
a stronger driver of population structure than the environ-
mental factors that covary with season. Hence, our data
indicate that intraspecific genomic differentiation is more
pronounced over the spatial than the temporal scale in the
Baltic Sea ecosystem, analogous to what has previously been
proposed for species sorting at the community level [35].
However, a couple of BACLs displayed temporal population
structures significantly covarying with temperature, exempli-
fying that population structure in marine bacterioplankton also
adhere to variations in niches at the same geographic location.
Combined, these results show that aquatic bacterial species
typically diverge from the null hypothesis of panmixia and
that populations are structured by species-specific environ-
mental drivers. This in turn implies the broad existence of
ecotypes [51] that may remain undetected by 16S rRNA gene
sequencing.

Earlier comparative genomic studies have shown
remarkable differences in gene content of bacterioplankton

belonging to the same species and concluded that the
flexible part of the genome is modified by horizontal gene
transfer in response to selective forces [11, 52–55]. Our
results suggest that environmental selection in bacter-
ioplankton also selects for and preserves specific alleles in
the existing genes. Delmont et al. [24] suggested an evo-
lutionary mechanism for such conservation of genetic het-
erogeneity by emphasizing the role of adaptive selection,
exemplified by the cosmopolitan SAR11 clade. The same
authors showed a partitioning of SAR11 populations in
concordance with large-scale oceanic temperatures, sug-
gesting that environmental selection is of central importance
even at the microdiversity level in marine bacterioplankton.
Our study shows that environmentally driven population
structure is not limited to species of certain clades, but
rather appears to be a general pattern for bacterioplankton.
We, also, observe this in several species of SAR11 (Pela-
gibacteraceae), but also in several other taxa. For example,
BACL1, belonging to the cosmopolitan Gammaproteo-
bacterial clade SAR86, displayed a population genomic
structure mainly driven by salinity in the Baltic Sea eco-
system. Another abundant group in the Baltic Sea, the
Actinobacteria, are also mostly driven by salinity according
to our analyses. Actinobacteria are one of the most abundant
types of freshwater bacteria globally and comprise multiple
different clades and species-level clusters [56, 57]. Recent
discoveries on their marked microdiversification may

Fig. 7 Example of genetic differentiation in a gene: ID= 302_3 of
BACL262 (ABC-type proline glycine betaine transport system
permease component). A Heatmap showing allele frequencies at
different salinities along the transect, the color indicates the counts of
the major allele in each sample (maximum= 10 since the counts were

downsampled to this level, see Methods). Nucleotide position in the
gene, major/minor alleles (nucleotides), and the resulting amino acid
translations, are given to the right. B Distribution of permuted FST

values for the gene based on 10,000 permutations. The red arrow
indicates the actual FST value (0.74).

3042 C. Sjöqvist et al.



explain their success in environmentally variable conditions
[58]. The Baltic Sea also hosts an abundant community of
different cyanobacteria species. An example is the cosmo-
politan genus Synechococcus, which is prevalent in the
Baltic Sea during summer or when the temperature reaches
>15 °C [59]. The environmental association analysis
showed that the population structure of the Synechococcus
sp. analyzed here (BACL327) was mainly driven by dif-
ferences in sea surface temperature across the Baltic Sea. A
marked difference between the situation in the Baltic Sea
and in the ocean, however, is that in the ocean, temperature
appears to be the main factor structuring bacterioplankton,
both at the community [60, 61] and population [24] level,
while in the Baltic Sea, salinity is the primary driver.

Empirical studies on marginal populations of macro-
organisms living close to the species range limits show
decreased genetic diversity, thus lowering their adaptive
potential to rapidly changing environmental conditions
[28, 62]. This has been observed in several marine macro-
organisms adapted to the brackish conditions in the Baltic
Sea, where the populations residing inside the Baltic display

lower intra-species diversity than their Atlantic founder
populations [28]. In contrast, several of the BACLs dis-
played a significant hump-shaped curve in intra-population
diversity (π) along the salinity gradient. However, our
previous study based on MAGs from station LMO indicated
that the bacterioplankton of the Baltic Sea are members of a
globally distributed brackish metacommunity, rather than
locally adapted freshwater and marine taxa [36]. Thus,
unlike most macroorganisms in this ecosystem, planktonic
prokaryotes residing in the Baltic Sea were likely adapted to
brackish conditions already when they entered the system,
consistent with the hump-shaped curves in diversity.
Whether most of the intraspecific variation and niche dif-
ferentiation that we see within the different BACLs were
gained after the populations immigrated, or was in place
already before, as a set of strains with different genetic
make-up and ecological niches, remains elusive.

Recently, proteome differences between some freshwater
prokaryotes and their closest marine relatives were descri-
bed, with a larger proportion of acidic and a lower number
of alkalic amino acids in the proteome of the marine

Table 2 Summary of the KEGG pathway and eggNOG category enrichment analyses on the set of genes that displayed significant FST levels
between the BACLs’ salinity extremes and significant correlations between FST and salinity difference.

BACL Family Number of
significant genes

Significant KEGG pathways Significant eggNOG
categories

BACL27 Ilumatobacteraceae 2 map00910 P

BACL17 Ilumatobacteraceae 13 map00250,map02010,map00460 E,P

BACL6 Ilumatobacteraceae 26 map00020,map00630,map02024*,map00405,
map02025

BACL112 AcAMD-5 32 map03410,map00220,map00250,map00630,
map00910,map00471

BACL2 Nanopelagicaceae 18 map00984 P,

BACL15 Nanopelagicaceae 4 map02010

BACL18 Cryomorphaceae 6 map03008

BACL8 Flavobacteriaceae 2 map00550,map01502 M

BACL327 Cyanobiaceae 2 map00480,map00980,map00982,map00983

BACL325 Pelagibacteraceae 1

BACL144 Pelagibacteraceae 7 map00290,map00620,map00561,map00430 E

BACL53 Pelagibacteraceae 13 map00460,map00627,map00643,map00790,
map04122

G

BACL5 Pelagibacteraceae 1 map00330

BACL262 Pelagibacteraceae 16 map03060,map03070,map00680,map00190* U,P*,C

BACL214 Burkholderiaceae 0

BACL14 Methylophilaceae 0

BACL1 D2472 3 map00220

BACL168 NA 0

BACL9 UBA3015 5 map00450

All 151 map02010,map00910*,map03420,map00250,
map00630*,map02024,map00460,map00220

P*,E

The analyses included the 19 BACLs present in at least ten samples across the transect. Shown pathways/categories had p values <0.05 in Fisher’s
exact tests, and those highlighted with * had FDR adjusted p values < 0.05.
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representative of each pair, compatible with a “salt-in”
strategy earlier observed in halophilic prokaryotes [63].
This indicates that adaptations changing the chemical
properties of the proteome may be important for crossing
the freshwater - marine boundary [64]. However, none of
the 22 BACLs displayed a significant correlation between
salinity level of the sample and frequency of either acidic or
alkaline amino acids in the population proteome, as deduced
from the per-sample single amino acid variants (SAV) fre-
quencies output by POGENOM (data not shown). Thus,
adaptations altering the physicochemical properties of the
proteome does not seem to be the major driver behind the
genomic differentiation we observe within the Baltic Sea
region for these populations. It may however have been
important for facilitating the transition from freshwater or
marine to brackish conditions in the first place.

The gene-wise pN/pS analysis addressed patterns of
constraints in selection, not directly related to the environ-
mental gradients. While we observed relatively low pN/pS
ratios reflecting purifying selection for genes belonging to
KEGG pathways related to housekeeping functions, indi-
cations of diversifying selection were observed in other
parts of the functional spectrum. For instance, the cationic
antimicrobial peptide (cAMP) resistance pathway exhibited
the highest pN/pS value in a single BACL (BACL13).
Antimicrobial peptides (AMPs) play important roles in host
defense against microbial infections by weakening the
membranes of the microbes, subsequently killing them.
AMPs belong to a universal set of defense molecules syn-
thesized across the domains of life [65] and are known to be
produced by for example molluscs, crustaceans, ciliates,
phytoplankton and bacteria in the marine environment [66–
70]. Biosynthesis of streptomycin, a well-known antibiotic,
which is coupled to inositol phosphate metabolism as part
of the molecule is synthesized via myo-inositol. Both of
these pathways displayed among the highest pN/pS ratios
across BACLs. Interestingly Schloissnig et al. [23] showed
elevated pN/pS ratios for antimicrobial resistance genes in
the human gut microbiome. Our findings of elevated evo-
lution in both synthesis and defense genes for anti-
microbials suggest that adaptation related to chemical
warfare is of central importance also for aquatic bacter-
ioplankton, and raises an unexpected parallel to the human
gut ecosystem.

The gene-wise FST analysis revealed a small number of
genes in most BACLs displaying higher genetic differ-
entiation between the salinity extremes than expected by
chance, given the genomes’ background levels of genetic
differentiation, i.e., the genes were enriched in loci dis-
playing strong genetic differentiation between the samples
with lowest and highest salinity. This indicates con-
vergent evolution in multiple strains occupying one or
both of the locations, either by the same mutations

occurring independently in multiple strains, or by homo-
logous recombination of a genomic segment between the
strains, followed by selection. The fact that the poly-
morphisms of many of the loci displaying high differ-
entiation in these genes were synonymous (i.e., did not
cause a change in amino acid), argues for the homologous
recombination scenario. Moreover, in several cases,
multiple genes adjacent on the genome displayed sig-
nificant FST values, congruent with the recombination
scenario. This may in part be attributed to our approach
for identifying genes under selection, which is likely to
miss cases where the allele frequency of just a single (or
very few) sites in a gene has been altered by selection.
Among the pathways enriched in highly differentiated
genes we find ABC transporters (map02010). This may
reflect genetic adaptations to differences in concentrations
in inorganic and organic nutrients across the Baltic Sea
salinity gradient. One of the ABC transporters was glycine
betaine/proline transport system permease protein (in
BACL262; Fig. 7). Glycine betaine is a widely used
compatible solute (osmoprotectant) in bacteria and is
imported or synthesized in response to hyperosmotic
stress [71]. A previous metagenomic study found genes
for this transporter to be differentially abundant across the
Baltic Sea [8]. Another enriched pathway was nitrogen
metabolism (map00910). A closer look at this pathway
showed that the significant genes are mainly related to
glutamine and glutamate synthesis (Supplementary
Fig. 4). Glutamine and glutamate both act as osmopro-
tectants in several bacteria including marine species
[72–75] and the differing allele frequencies across the
salinity regimes in the genes synthesizing them may
reflect adaptations related to underlying enzyme kinetics.

Conclusions

Facilitated by our recently developed program POGENOM,
we show that populations of multiple bacterioplankton
clades are genomically structured, even within the same
ecosystem. Genomic differentiation within species corre-
lated with environmental variables such as salinity, tem-
perature and nutrient levels across spatial dimensions when
accounted for geographic distance. This emphasizes the role
of isolation by adaptation rather than isolation by distance
as a driving force for speciation of aquatic prokaryotes.
Population genomics analysis based on metagenomics data
will undoubtedly lead to a deeper understanding of the
ecology and evolution of important bacterioplankton spe-
cies, which is of central importance when learning about
how species adapt to new environmental conditions and
what their adaptive potential is in the face of Global
Change.
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Methods

POGENOM software

POGENOM takes as minimal input a file of the variant call
format (VCF). This is generated by mapping one or several
metagenome samples against a reference genome with a
read aligner such as Bowtie2 [76], BWA [77] or MOSAIK
[78] and calling variants using a variant caller such as
GATK [79] or Freebayes [80]. POGENOM calculates the
nucleotide diversity (π) within each sample. If multiple
samples have been mapped, the fixation index (FST) is
calculated for all pairs of samples. If, in addition to the VCF
file, an annotation file of the General Feature Format (GFF)
is provided, gene-wise π and FST will be calculated. If,
further, the genome sequence is provided in the GFF file or
in a separate FASTA file, amino acid frequencies will be
calculated for each codon position in each gene and sample,
and gene-wise π and FST will be calculated also at the amino
acid level. Now also non-synonymous to synonymous
polymorphism rates (pN/pS) will be calculated for each
gene and sample. Optionally, permuted gene-wise FST

values can be calculated. POGENOM has several optional
parameters, such as minimum read depth for a locus to be
included for a sample, minimum number of samples with
minimum read depth for a locus to be included at all,
subsampling to a given read depth, splitting of haplotypes
into individual SNVs in case haplotype variant calling was
applied, etc. A complete description on how the different
parameters are calculated can be found in the Supplemen-
tary Information. POGENOM was implemented in Perl.
Source code and documentation, and a pipeline for auto-
matic generation of input data (Input_POGENOM), are
available at https://github.com/EnvGen/POGENOM.

MAG and shotgun sequencing data

In total 66 (10 pelagic, 34 coastal, and 22 time series)
metagenomic samples, quality filtered as described before
[37], were used for population genomic assessments of 22
MAGs. The MAGs were selected based on being prevalent
in these samples based on data from Alneberg et al. [37].
Each MAG represents one unique species-level cluster
(BAltic Sea CLuster; BACL) and no pair of MAGs in this
set have >80% average nucleotide identity (ANI). MAGs
were taxonomically annotated using GTDB-tk [81] v.0.3.2
using v.89 of the GTDB [82]. Gene calling was conducted
with Prokka [83]. The shotgun data used for the population
genomic assessments are derived from two cruises: Pelagic
Transect 2014 [38] and Coastal Transect 2015 [37], as well
as from two years of time-series data from the Linnaeus
Microbial Observatory (LMO) station [37]. Sampling, DNA
extraction and sequencing procedures have been described

earlier [37, 38], but very briefly, surface water was filtered
through 0.2 um filters, either directly (transect samples), or
after pre-filtration through 3.0 um filter (time-series sam-
ples), DNA was extracted from filters and shotgun
sequenced on a HiSeq (Illumina) with on average 48 million
read-pairs per sample.

Variant calling

The Input_POGENOM pipeline was used for automatic
generation of input files for POGENOM, i.e., VCF files.
Briefly (more information provided in the online doc-
umentation), Input_POGENOM is a Snakemake [84]
pipeline that uses Bowtie2 [76] for read mapping to the
reference genome and Freebayes [80] for variant calling.
Bowtie2 v.2.3.4.3 was used and the ‘bowtie2_params’ of
Input_POGENOM was set to “–ignore-quals –mp 1,1 –np 1
–rdg 0,1 –rfg 0,1 –score-min L,0,-0.05”, corresponding to a
95% identity threshold between read and genome. The
parameters ‘min_coverage’ were set to 20 and ‘min_-
breadth’ to 40, i.e., only samples where the genome dis-
played ≥20X median coverage depth and ≥40% coverage
breadth (fraction of genome covered by at least 1 read) were
included for the genome. After mapping, the read-mapping
(BAM) files are downsampled to the same coverage (to
‘min_coverage’) using samtools (v.1.9; [85]). Freebayes
v.1.3.1 was used for the variant calling, which is run once
per genome, after combining the BAM files from the
approved samples into a multi-sample BAM file. The
‘freebayes_parameters’ was set to “-C 4 -p 1 –pooled-
continuous –read-max-mismatch-fraction 0.05 –min-alter-
nate-fraction 0.01 -q 15”, meaning that a SNV was called
only when the variant allele was supported by ≥4 reads and
with an allele frequency of ≥1%. Input_POGENOM was
further run in ‘prefilt’ mode, meaning that it first estimates
the coverage of a genome in a sample by only mapping a
subset of the reads, in order to fastly eliminate samples
unlikely to reach sufficient coverage.

POGENOM runs

POGENOM v.0.8.2 was run with the parameter settings
--min_count 10, --subsample 10, and --min_found 1 on the
VCF file of all approved samples for each MAG. In other
words, it included for a sample only those loci with allele
counts ≥10 (i.e., with ≥10 overlapping reads), and for loci
with counts >10, it downsampled to counts= 10. And
overall, it included only those loci fulfilling the --min_count
conditions for at least one sample. Although we used
--min_found 1 here, it may be preferable to set it to the
number of samples when for example comparing π between
samples for the same genome. For comparing actual and
permuted gene-wise FST values, POGENOM was run on
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only the pair of samples with extreme salinities for each
MAG by specifying these samples using the --sample_file
parameter, otherwise using the same parameter setting as
above except also --fst_perm 10000, meaning that 10,000
permuted FST values were computed for each gene.

Environmental association analysis

Nucleotide diversity was compared against salinity across
the Baltic Sea using linear and quadratic regression models.
The best model for each MAG was chosen based on AIC
values for linear vs. non-linear models. Nucleotide diversity
was also studied over time in the LMO data set using
Spearman’s rank correlation. For the above analyses, and
for the data presented in Table 1, we used normalized
genome-wide π, calculated as described in the Supplemen-
tary Information. Relating to population structure we con-
ducted environmental association analyses using a global
dbRDA (distance-based redundancy analysis) followed by a
conditioned analysis. This allowed us to disentangle the
relative contribution of different independent variables in
driving seascape genomic structure. The global dbRDA was
conducted using all environmental variables (salinity, tem-
perature, ammonia, nitrate, phosphate, silicate, chlorophyll
a and dissolved organic carbon [and time for LMO sam-
ples]). FST matrices were subjected to an unconstrained
Principal Coordinates Analysis (PCoA) and the PCoA-axes
were used as dependent input in the dbRDA. Regression
coefficients in the dbRDA are reported as adjusted values of
multiple determination (R2-adj.). Statistical significance of
the global dbRDA was evaluated using the permute-
function from vegan and by performing an Anova (by
“term”, 999 permutations) on the dbRDA result to assess
the statistical significance of each variable. The conditioned
analysis was only conducted in case the global dbRDA
showed statistically significant explanatory power (p < 0.05)
to avoid Type I error and overestimation of the explained
variance [86]. Prior to the conditioned dbRDA we per-
formed a forward selection procedure where variables are
added to the model consecutively. The selection stops when
adding a variable no longer improves the overall model
(threshold, p < 0.05). Statistical significance of conditioned
individual fractions (i.e., marginal effects) was evaluated by
an Anova (by “margin”; 999 permutations). Time was
transformed to PCNM-variables (Principal coordinates of
neighbor matrices) by first conducting a PCoA on the
matrix for time differences. All eigenvectors with positive
values were included in the following RDA analysis where
the FST matrices of respective MAGs were used as response
data. All PCNM variables displaying significant correlation
with population structure over time were included side by
side with environmental variables in the global dbRDA.
Likewise, geographic distance (shortest waterway distance)

was transformed to PCNM-variables and used as explana-
tory variables in the dbRDA.

KEGG pathway analysis

The genomes were functionally annotated using online
eggNOG-mapper [87] which assigned the genes to KEGG
pathways, KEGG modules, KEGG orthologs, eggNOGs,
and eggNOG functional categories. For the gene-wise pN/
pS and FST analyses, only KEGG pathways that we judged
relevant for microbial genomes were included; the pathways
belonging to categories 1.1–1.12, 2.1–2.4, 3.1, 4.4–4.5, and
6.11 (https://www.genome.jp/kegg/pathway.html#genetic).
For the pN/pS analysis, only pathways that resulted in pN/
pS values for >90% of the BACLs were included. For the
KEGG pathway enrichment analyses, each pathway present
in the BACL was checked for overrepresentation of sig-
nificant genes using Fisher’s exact test. The p values from
these tests were subsequently adjusted for multiple testing
using False Discovery Rate. For genes assigned to multiple
pathways, all of the assignments were used. The eggNOG
functional category enrichment analyses were done in the
same way. The KEGG pathway map of Supplementary Fig.
4 was generated using the KEGG database online resource
(https://www.genome.jp/kegg/).

Permutation analysis of gene-wise FST values

POGENOM calculates permuted gene-wise FST values for a
pair of samples by shuffling all variant loci for the genome
so that each gene will get a new set of loci (with their
associated allele frequencies) while having the same num-
ber of variant loci as in the original data set. Subsequently,
gene-wise FST values are calculated based on the shuffled
data. This procedure is repeated many times and p values
can be calculated by comparing the actual FST value with
the distribution of permuted FST values for each gene; here
we defined the p value as (1+ the number of permuted FST

values ≥ the actual FST value)/(the number of permutations)
and we performed 10,000 permutations.

Data availability

The MAG sequences as well as the preprocessed sequencing
reads from the LMO Time Series 2013–2014 and Coastal
Transect 2015 samples were published before (Alneberg,
2020) and are available at ENA hosted by EMBL-EBI under
the study accession number PRJEB34883. The preprocessed
sequencing reads from the Transect 2014 samples were also
published elsewhere (Alneberg, 2018) and are available at
ENA under the study accession number PRJEB22997. Source
code and documentation for POGENOM are available at
https://github.com/EnvGen/POGENOM.
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