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REVIEW ARTICLE OPEN

Drosophila caspases as guardians of host-microbe interactions
Christa Kietz 1 and Annika Meinander 1,2✉

© The Author(s) 2022

An intact cell death machinery is not only crucial for successful embryonic development and tissue homeostasis, but participates
also in the defence against pathogens and contributes to a balanced immune response. Centrally involved in the regulation of both
cell death and inflammatory immune responses is the evolutionarily conserved family of cysteine proteases named caspases. The
Drosophila melanogaster genome encodes for seven caspases, several of which display dual functions, participating in apoptotic
signalling and beyond. Among the Drosophila caspases, the caspase-8 homologue Dredd has a well-characterised role in
inflammatory signalling activated by bacterial infections, and functions as a driver of NF-κB-mediated immune responses.
Regarding the other Drosophila caspases, studies focusing on tissue-specific immune signalling and host-microbe interactions have
recently revealed immunoregulatory functions of the initiator caspase Dronc and the effector caspase Drice. The aim of this review
is to give an overview of the signalling cascades involved in the Drosophila humoral innate immune response against pathogens
and of their caspase-mediated regulation. Furthermore, the apoptotic role of caspases during antibacterial and antiviral immune
activation will be discussed.

Cell Death & Differentiation (2023) 30:227–236; https://doi.org/10.1038/s41418-022-01038-4

INTRODUCTION
Cell death and inflammation are cellular processes crucial for
maintaining tissue homeostasis [1]. Centrally involved in both
processes is the evolutionarily conserved family of cysteine
proteases, named caspases (cysteine-aspartic proteases). By
driving apoptosis, a homeostatic form of cell death, caspases
control the non-lytic elimination of cells during development, and
the clearance of cells that are damaged, old or no longer
necessary in the adult organism [2]. Besides regulating apoptosis,
caspases also drive inflammatory signalling in response to
pathogenic infection by triggering the release of inflammatory
cytokines and by inducing pyroptosis, a proinflammatory form of
cell death [2, 3]. Based on these described functions, caspases can
be broadly divided into inflammatory and apoptotic caspases. The
apoptotic caspases are further subdivided into initiator and
effector caspases, depending on their position in the apoptotic
signalling cascade [3]. Structurally, caspases consist of an amino-
terminal prodomain of variable size followed by one large (p20)
and one small (p10) subunit that together form the catalytically
active protease domain (Fig. 1A). Inflammatory and apoptotic
initiator caspases contain specific recruitment domains, i.e., Death
effector domains (DEDs) or Caspase recruitment domains (CARDs)
in the N-terminal prodomain (Fig. 1A). These domains facilitate
recruitment of caspase monomers to oligomeric activation plat-
forms, e.g., the pattern-recognition receptor (PRR) induced
inflammasomes, the mammalian apoptosome, the Death inducing
signalling complex (DISC), and the p53-induced protein with a
death domain (PIDD)-osome, in which the initiator caspases are
activated [4–6]. The apoptotic effector proteins have short
prodomains that lack specific interaction domains (Fig. 1A). These

caspases exist as dimers and gain activity through proteolytic
processing of a linker region separating the large and small
subunit, mediated by an upstream caspase [6, 7].
Given their crucial role as executors of cell death, both the

activation process and the enzymatic activity of caspases need to
be carefully regulated. In addition to synthesising caspases as
inactive zymogens, or procaspases, requiring dimerization and
proteolytic processing to gain activity, the cell employs several
strategies, such as decoy proteins, posttranslational modifications
and caspase inhibitors to regulate caspase activity [7, 8]. In
metazoans, the main protein group of caspase regulators is the
Inhibitor of apoptosis (IAP) protein family, whose members
harbour one to three characteristic Baculoviral IAP repeat (BIR)
domains [9]. Some IAPs are furthermore, important transduction
intermediates in cellular signalling cascades, specifically during
innate immune responses and Nuclear factor κB (NF-κB) activation
[10, 11]. Due to the role of caspases and IAPs at the frontline of
immunity and cell death, these proteins and their interaction have
served as interesting targets when studying inflammatory
signalling and immunohomeostasis.
Drosophila melanogaster is one of the most commonly used

model organisms in biological research. Its short life cycle and
high breeding rate, low maintenance fees, and a simpler, less
redundant genome compared to mammalian models, have made
the fruit fly an invaluable research model [12]. Moreover, the
versatile genetic tool-box of Drosophila with collections of mutants
and genetically modified flies, engineered to enable manipulation
of gene activity both temporally and spatially, enables sophisti-
cated genetic analyses to be carried out on tissue or whole-
organism level in the fly. Research done in Drosophila has
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contributed to major advancements in the fields of genetics,
development, behaviour and immunity [13, 14] and, the fruit fly is
recognised as a powerful disease model for diabetes, cancer, and
neuropathologies, and for the distinct diseases of heart, lung
and intestine [15–20]. When it comes to the cellular regulation of
innate immunity, research performed in Drosophila has con-
tributed greatly in understanding receptor activation, signal
transduction and transcriptional activation during host defence
[21]. Similarly, the molecular role of caspases in innate immunity,
inflammatory signalling and immunohomeostasis has been
elucidated in the fly [22–27]. In addition to the molecular
regulation of inflammation, Drosophila has emerged as a
versatile model in which to study complex physiological aspects
of immune defence, such as the spread or restriction of infection
[28], the priming and memory of the immune system [29] and,
finally, the local immune system and microenvironment
of barrier epithelia [30]. This review aims to give an overview
of the structure and function of the Drosophila caspases
and of the humoral part of the fly’s immune system. It will
describe the current knowledge on caspase-mediated regulation
of inflammatory signalling induced upon infection and during
host-microbe interactions. In addition, the role of cell death
activation in response to viral and bacterial infection will be
discussed.

DROSOPHILA CASPASES AND THEIR FUNCTION
Caspases have been identified in all metazoans, ranging from
Caenorhabditis elegans and Drosophila, to mouse and human [31].
Drosophila carries seven caspases: three initiator caspases, namely
Death related ced-3/Nedd2-like caspase (Dredd), Death regulator
Nedd2-like caspase (Dronc) and Ser/Thr-rich caspase (Strica)
[32–34], and four effector caspases, called Drosophila caspase
interleukin 1β-converting enzyme (Drice), Death-associated mole-
cule related to Mch2 (Damm), Death executioner caspase related
to apopain/yama (Decay) and Drosophila caspase-1 (Dcp-1)
[34–37] (Fig. 1B). All Drosophila caspases have been connected
to apoptotic signalling [32, 35–40], however, some seem to have
their main function, or additional roles, beyond cell death
[22, 24, 41–43].
Drosophila Dronc is homologous to human caspase-9 and is the

main apoptosis-initiating caspase in the fly [44]. In resting cells,

Dronc is inhibited by the antiapoptotic protein Drosophila iap1
(Diap1) [45]. During apoptosis, the proapoptotic proteins Reaper,
Grim and Hid bind to Diap1, antagonising the Diap1-Dronc
interaction, hence freeing Dronc [46, 47]. Freed Dronc is recruited
to Death-associated Apaf1-related killer (Dark) via CARD-CARD
interactions and is subsequently activated [48, 49]. Activated
Dronc cleaves effector caspases Drice and Dcp-1, which in turn
cleave downstream substrates, thereby executing apoptosis
[38, 45]. In addition to inhibiting Dronc, Diap1 has been shown
to inhibit Drice and Dcp-1 [47, 50]. These effector caspases are
homologous to mammalian caspase-3 and seem to have partially
overlapping functions during apoptosis. Dcp-1 mutants display
milder defects in apoptotic signalling compared to Drice mutants,
however, the phenotype of double Drice/Dcp-1 mutants is
stronger than that of either one alone [43, 51, 52]. A second
Drosophila IAP protein, Drosophila iap2 (Diap2), mainly known for
its potent role as an inducer of inflammatory signalling upon
infection by Gram-negative bacteria [53–56], has also been shown
to inhibit Drice, thereby lowering the apoptotic threshold of the
cell [57]. We, furthermore, recently demonstrated that Drice,
through its interaction with Diap2, has a role beyond apoptotic
signalling as a regulator of inflammatory signalling [24].
While the caspase-8 homologue Dredd has been implicated to

function in apoptotic signalling [32, 58], its major function has
been established to be a regulator of the inflammatory response
triggered by Gram-negative bacteria [22]. Dredd contains two DED
domains in its prodomain, needed for caspase recruitment to the
bacteria-induced receptor complex and for interaction with Diap2
[23, 59]. Besides being homologous to caspase-8, Dredd is also
structurally similar to cellular FLICE-like inhibitory protein (c-FLIP),
a member of the mammalian DISC-complex that regulates both
apoptotic caspase-8 activity and inflammatory NF-κB signalling
[60]. Similarly as caspase-8 and Dredd, c-FLIP contains two DED
domains that mediate recruitment to DISC, and is suggested to
facilitate interaction with the downstream NF-κB pathway
member NF-κB essential modulator (NEMO) [60, 61]. Hence, it
seems that the functions performed by Dredd have evolved to be
executed separately by caspase-8 and c-FLIP in mammals. The
caspases Decay, Strica and Damm have not received as much
attention as the other Drosophila caspases, however, Decay was
recently found to regulate wing size, independently of Dronc-
induced apoptosis [62]. Strica is known to contain a unique serine

Fig. 1 General domain architecture of caspases, and classification of the caspases identified in Drosophila. A Based on their described
function, caspases are divided into inflammatory and apoptotic caspases. The apoptotic caspases are further subdivided into initiator and
effector caspases. Caspases contain a small (S) and a large (L) subunit that together form the protease domain. In addition, inflammatory and
apoptotic initiator caspases contain an N-terminal long prodomain harbouring DED or CARD domains, whereas apoptotic effector have short
prodomains lacking specific protein domains. B Drosophila melanogaster carries three initiator caspases: Dredd, Dronc and Strica. In contrast to
Dredd and Dronc, the atypical initiator caspase Strica does not contain DED or CARD domains, but harbours instead a Ser/Thr rich prodomain.
In addition to the initiator caspases, Drosophila carries four effector caspases, Drice, Dcp-1, Decay and Damm. The length of the caspases in
amino acids are indicated to the right of the proteins.
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and threonine rich prodomain, however, the functions of Strica or
Damm, remain largely unknown.

THE DROSOPHILA IMMUNE RESPONSE
In its defence against pathogens, Drosophila mainly relies on an
innate immune response, aided, similarly as in mammals, by
physical barriers, such as the epithelial lining beneath the cuticle
in the digestive tract and trachea [21]. The Drosophila innate
immune system can be roughly divided into a humoral and a
cellular response. The cell-mediated immune response of Droso-
phila is carried out by freely circulating, or tissue-associated
specialised blood cells, called haemocytes [63]. The haemocytes
participate in the immune response by mediating phagocytosis,
encapsulation of invading pathogens, wound closure, and by
secretion of clotting factors and cytokines [63]. These cells also
function as activators of the humoral part of the immune system,
and the crosstalk between the cellular and humoral response is
abundant [63, 64]. The humoral response involves the production
of antimicrobial peptides (AMPs) and antipathogenic factors
through the Toll, Imd, c-Jun N-terminal kinase (JNK) and Janus
kinase/signal transducer and activator of transcription (JAK/STAT)
signalling pathways (Fig. 2) [21]. The aforementioned pathways
seem to also be involved in the antiviral defence. However, activity
of this fraction of the immune response is suggested to mainly be
mediated via the RNA interference (RNAi) pathways, restricting
viral replication via targeted degradation of viral double stranded
RNA (dsRNA) [65, 66]. In addition to RNAi, the Drosophila
stimulator of interferon genes (dSting) pathway, inducing expres-
sion of antiviral factors upon sensing of viral dsRNA by the cyclic
GMP-AMP (cGAMP) synthase (cGAS)-like receptor 1 (cGLR1), aids in
the immune response against viruses (Fig. 2) [67]. The presence of
an adaptive immune response in insects remains relatively
unexplored. However, described cases of immune priming,
resulting in a stronger specific immune response towards
secondary infection [68] and RNAi-based immunological memory
[69], point towards the presence of a specific, adaptive immune
response also in Drosophila.

CASPASE-MEDIATED REGULATION OF THE IMD PATHWAY
A hallmark of the Drosophila innate immune response is the Imd
and Toll pathway-mediated activation of NF-κB transcription
factors that drive the production and secretion of AMPs (Fig. 2)
[21]. The Imd pathway is activated by diaminopimelic acid (DAP)-
type peptidoglycan (PGN), present in the cell wall of Gram-
negative bacteria, recognised by the transmembrane PRR
Peptidoglycan recognition protein (PGRP)-LC or the intracellular
receptor PGRP-LE [70–73]. The receptors are thought to dimerise
or oligomerise upon ligand binding, whereafter the adaptor
protein Imd is recruited to the complex [74–76]. Imd recruits the
adaptor protein Drosophila Fas-associated death domain protein
(dFadd), which in turn binds to the caspase-8 homologue Dredd
[59, 77], a central component of the Imd pathway, and a driver of
NF-κB-mediated immune responses (Fig. 3). The importance of
Dredd in the Drosophila immune response was first demonstrated
in 2000, when Lemaitre and colleagues identified five Ethyl
methanesulfonate-induced mutations in Dredd, all severely
impairing bacteria-induced Diptericin expression in the fly [22].
Further characterisation of one of the mutants, DreddB118,
containing a premature stop-codon in the Dredd prodomain,
revealed the caspase to be crucial specifically during the immune
response induced by Gram-negative bacteria [22]. The link
between Dredd and activation of the NF-κB transcription factor
Relish was further elucidated by the laboratory of Dan Hultmark,
showing that activation of Relish proceeds through a signal
dependent endoproteolytic step leading to the nuclear transloca-
lisation of the Rel-68 truncated form, and that this Relish-cleavage

was absent in Dredd mutants post infection [27]. Dredd was later
confirmed to, indeed, be the caspase responsible of cleaving
Relish [78, 79], but also to process the apical-most adaptor protein
of the Imd pathway, i.e., Imd itself [26, 79], and to, thereby, enable
recruitment of Diap2 to the receptor complex (Fig. 3A, B) [26]. By
studying the Diap2-Dredd interaction and characterising one of
the Dredd mutants originally identified by Leulier et al., DreddD44,
harbouring a glycine-to-arginine point mutation at position 120
[22], we were able to show that signal-dependent lysine 63 (K63)-
linked ubiquitination of Dredd is required for Relish target gene
activation (Fig. 3C), and for fly survival in response to Gram-
negative bacterial infection [23]. The function of the ubiquitin
chains on Dredd remains to be elucidated. However, it is possible
that these chains serve as scaffolds for the recruitment of other
protein complexes needed for downstream signalling, such as the
IκB kinase (IKK) complex, consisting of the regulatory subunit
Kenny, homologous to mammalian NEMO or IKKγ, and of the
catalytic subunit called Immune response deficient 5 (Ird5),
homologous to the mammalian IKKβ [80, 81]. Furthermore, as
synthesis of methionine 1 (M1)-linked ubiquitin chains is required
for local NF-κB-mediated immune responses in the fly [82],
ubiquitin chain types beyond the previously described K63-linked
chains might regulate yet unidentified tissue specific functions on
Dredd. In addition to Dredd-mediated activation of Relish and
recruitment of the aforementioned IKK complex, the Drosophila
TGF-β activated kinase 1 (dTak1)/Drosophila Tak1 binding protein
(dTab2) complex is needed for intact Imd signalling [74, 78]. The
role of dTak1 may be to induce activation of Ird5 by
phosphorylation, similarly as Ird5 is known to activate Relish by
phosphorylation. However, while Relish phosphorylation drives
transcription and recruitment of RNA polymerase II, it is not
needed for Relish cleavage or nuclear translocation [78].
In contrast to the fat body-mediated immune response towards

bacterial infections, regulated by both the Imd and Toll pathway,
Imd signalling is believed to be the sole driver of NF-κB activity
during local epithelial immune responses of, for instance, the gut
and trachea [83, 84]. Intestinal Imd signalling needs to be carefully
regulated in order to ensure efficient elimination of pathogens,
while allowing for beneficial host-microbe interactions to be
established. We have recently described a role of the caspase
Drice as a negative regulator of intestinal Imd signalling induced
by commensal bacteria [24]. By forming a covalent complex with
Diap2, the details of which have been previously described [57],
Drice triggers the tissue-specific proteasomal degradation of both
proteins [24]. As a consequence, Diap2 is unable to interact with
members of the Imd pathway and downstream signalling is halted
(Fig. 4). As Diap2 has been shown to ubiquitinate itself [23] and
Drice [57], we speculate that formation of a Diap2-Drice complex
induces Diap2-mediated K48-linked ubiquitination of both pro-
teins, targeting them for proteasomal degradation (Fig. 4). Drice-
mediated regulation of Diap2 indicates that caspases, known to be
regulated by IAP-proteins during cell death [8], are indeed
themselves able to modify the activity of inflammatory IAP-
proteins.

THE DROSOPHILA TOLL SIGNALLING PATHWAY
Toll signalling is initiated by extracellular PRRs that recognise
conserved structures of the cell wall of fungi or Gram-positive
bacteria. Fungal β-glucan is identified by the Gram-negative
binding protein 3 (GNBP3) [85], whereas Lys-type PGN from Gram-
positive bacteria is identified by a complex consisting of PGRP-SA
and GNBP1 (Fig. 2) [86]. These PRRs induce a serine-cascade
leading to the proteolysis-dependent activation of the extracel-
lular cytokine Spätzle that, by functioning as the Toll receptor
ligand, activates downstream signalling [87, 88]. Upon receptor
activation, the adaptor protein Myeloid differentiation primary
response (MyD88), the adaptor protein Tube and the kinase Pelle

C. Kietz and A. Meinander

229

Cell Death & Differentiation (2023) 30:227 – 236



are recruited to form a MyD88-Tube-Pelle trimeric complex
[89, 90]. Pelle drives downstream signalling by phosphorylating
the inhibitory IκB protein Cactus, thereby targeting Cactus for
proteasomal degradation [91]. The NF-κB transcription factors
Dorsal-related immunity factor (Dif) and Dorsal, sequestered in the
cytoplasm by Cactus in resting cells, are released, and enter the
nucleus in order to activate anti-inflammatory target genes
[91–93]. Among the Drosophila caspases, Dronc and Dredd have
been connected to the Toll-pathway. Apoptosis-deficient Dronc
mutants display chronic activation of Toll signalling in the absence

of infection, and the caspase has been suggested to be involved in
the regulation of the Toll-mediated inflammatory response
towards danger-associated molecular patterns (DAMPs) [94]. In
addition to binding Tube and Pelle, dMyD88 has been shown to
interact with dFadd when overexpressed in Drosophila S2 cells
[95]. As dFadd is known to recruit Dredd during Imd signalling,
this result may indicate that Dredd is able to regulate immune
responses induced by Gram-positive bacteria in certain tissues, or,
conversely that members of the Toll pathway are recruited
downstream of dFadd during activation of the PGRP-LC/LE

Fig. 2 Signalling pathways regulating Drosophila innate immunity. The Imd pathway is initiated by DAP-type PGN derived from Gram-
negative bacteria binding to the PGRP-LC receptor. The adaptor proteins Imd and dFadd, the caspase Dredd and the E3 ligase Diap2 are
recruited to the receptor, whereafter Diap2 ubiquitinates Imd, Dredd and Kenny with K63-linked ubiquitin chains. The chains on Imd are
thought to recruit the dTak1/dTab2 complex, whereas the chains on Dredd are needed for caspase activity and Relish cleavage. In addition to
K63-linked chains, Kenny is also modified by M1-linked ubiquitin chains synthesised by Lubel. The dTak1/dTab2 complex is upstream of the
IKK complex, consisting of Kenny and Ird5, which activates Relish by Ird5-mediated phosphorylation. The pathway culminates in translocation
of Relish to the nucleus and target gene expression. In addition to driving Imd signalling, dTak1 functions as one of the apical-most kinases in
the JNK pathway. Activated dTak1 phosphorylates Hep, that in turn phosphorylates Bsk. Bsk activates the transcription factor complex AP-1,
consisting of Kay and Jra, which drives target gene expression after its nuclear translocation. The Toll pathway is induced when Lys-type PGN,
originating from the cell wall of Gram-positive bacteria, is recognised by the PGRP-SA/GNBP1 receptor complex or when β-glucan, derived
from fungi, is sensed by GNBP3. The activated receptors induce a serine-cascade culminating in the maturation of the ligand Spätzle from
proSpätzle, whereafter Spätzle is recognized by the Toll receptor. Receptor activation leads to the recruitment of dMyD88, Tube and Pelle and
subsequent Pelle-mediated phosphorylation of the IκB protein Cactus, targeting the protein for proteasomal degradation. Freed transcription
factors Dif and Dorsal translocate to the nucleus and drive target gene expression. JAK/STAT signalling is activated by the cytokines Upd, Upd2
and Upd3, secreted by infected or damaged neighbouring cells. The Upds bind the receptor Dome, leading to phosphorylation of receptor-
associated Hop. Activated Hop phosphorylates the transcription factor Stat9E, hence inducing its dimerisation and nuclear translocation. The
dSting pathway is activated by viral dsRNA, sensed by the receptor cGLR1. The activated receptor produces 3’2’-cGAMP, a secondary
messenger activating dSting. Signalling downstream of dSting remains largely elusive, however Ird5 and Relish seem to be needed for dSting
target gene expression. In addition to cGLR1, cGLR2 is known to produce both 2’3’-cGAMP and 3’2’-cGAMP, however, its upstream trigger
remains unknown. Viral dsRNA is recognised and cut into smaller fragments by Dicer-II. The fragments are loaded into AGO-2-containing RNA-
induced silencing complex (RISC) wherein one of the viral RNA strands is degraded. The activated RISC complex then recognises and
degrades RNA containing complementary sequences to the original viral RNA.
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complex. Although a functional role of Dredd in Toll signalling is
yet to be demonstrated, the caspase serves as an interesting
candidate when studying mediators of crosstalk between the two
NF-κB pathways.

DREDD IS NEEDED FOR BACTERIA-INDUCED JNK SIGNALLING
Besides driving Imd signalling, dTak1 functions also as one of the
apical-most kinases in the conserved JNK pathway (Fig. 2) [96]. JNK
is involved in a variety of biological processes in Drosophila,
including development, metabolism and apoptosis, and in stress

and immune responses [97]. Upon activation of dTak1, the kinase
phosphorylates the JNK kinase Hemipterous (Hep), which in turn
phosphorylates the single Drosophila JNK protein Basket (Bsk)
[98, 99]. The JNK pathway culminates, depending on the cellular
setting, in the activation of the transcription factors Forkhead Box
O (FOXO), or Activator protein-1 (AP-1), a heterodimer consisting
of Jun-related antigen (Jra), homologous to mammalian c-Jun, and
Kayak (Kay), homologous to mammalian Fos, and to subsequent
target gene expression [97]. Co-regulation of JNK and NF-κB
signalling is required for a balanced immune response and JNK is
needed for proper release of AMPs and is, furthermore, required
for Imd-induced epithelial shedding [100, 101]. In addition, the
expression patterns of JNK are regulated by Relish that induces
the proteasomal degradation of dTak1 upon activation by a Gram-
negative bacterial infection, hence terminating JNK signalling
[102]. Similarly as for the Imd pathway, Dredd has been shown to
be needed for bacteria-induced JNK signalling. RNAi-mediated
downregulation of the caspase in Drosophila S2 cells impairs
phosphorylation of JNK and subsequent JNK target gene
expression upon PGN treatment [103, 104]. Concordantly,
DreddB118 mutants are unable to induce JNK phosphorylation or
target gene expression in response to septic infection with E. coli
[104].

CASPASES REGULATING THE DROSOPHILA ANTIVIRAL
IMMUNE RESPONSE
In its defence against viral infections, Drosophila relies on the
antiviral RNAi system and on inducible responses mediated via the
dSting, JAK-STAT, Toll and Imd pathways [105]. The host RNAi
pathway is triggered upon sensing of viral dsRNA by the RNase III
enzyme Dicer-II that processes the dsRNA into small interfering
RNAs (siRNA). The siRNAs are loaded into the Argonaute-2 (AGO2)
protein, part of the RNA-induced silencing complex (RISC) and
guide AGO2 to target RNAs to induce their degradation, hence,
restricting viral replication (Fig. 2) [65, 66]. Another sensor of viral
dsRNA is cGLR1, which drives dSting signalling in virus infected
cells. The recognition of viral RNA, triggers cGLR1-mediated
synthesis of the secondary messenger 3’2’-cGAMP that by
interacting with dSting, drives the dSting-dependent antiviral
immune response (Fig. 2) [106, 107]. Interestingly, a second

Fig. 4 Drice restrains Imd signalling induced by commensal
bacteria. During basal conditions, DAP-type PGN originating from
commensal bacteria in the gut lumen activates the PGRP-LC
receptor, leading to the recruitment of Imd, dFadd and Dredd. The
receptor complex aims at recruiting Diap2 to drive downstream
signalling. Drice halts Imd signalling by forming an inhibitory
complex with Diap2, targeted for proteasomal degradation, inter-
fering, hence, with the ability of Diap2 to interact with pathway
members and activate downstream signalling.

Fig. 3 Dredd drives Imd signalling and Relish activation. A Upon activation by DAP-type peptidoglycan, Imd and dFadd are recruited to the
PGRP-LC receptor. Dredd binds to dFadd, is activated, and cleaves Imd. B Cleavage of Imd enables recruitment of Diap2 that also interacts
directly with Dredd. Diap2 catalyses the formation of K63-linked ubiquitin chains on Dredd and Imd. C The K63-linked chains on Imd are
thought to recruit the dTak1/dTab2 complex, and the chains on Dredd might function as a scaffold for additional proteins or protein
complexes needed for downstream signalling. Ubiquitination of Dredd is, in addition, needed for proteolytic processing and nuclear
translocation of Relish.
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dSting-activating cGLR, cGLR2, producing both 2’3’-cGAMP and
3’2’-cGAMP, was identified simultaneously as cGLR1, however, its
upstream ligand remains unidentified [107].
The JAK/STAT pathway is, similarly as in the mammalian host

defence, a key regulator of the Drosophila immune response
against virus infections [108, 109]. JAK/STAT signalling contributes,
however, also to the immune defence against bacterial infections
and controls cellular immunity by regulating haemocyte prolifera-
tion and differentiation [110–112]. The pathway is driven by three
cytokine-like proteins: Unpaired (Upd), Upd2 and Upd3, expressed
to various extents during development, tissue damage, viral
infections and bacterial challenge [110, 113, 114]. The Upds bind
to the receptor Domeless (Dome), inducing its dimerisation [115]
and subsequent activation of the receptor-associated JAK homo-
logue Hopscotch (Hop) [116]. Hop phosphorylates Stat9E, a
homologue of the mammalian transcription factor STAT [117]
that dimerises, translocates to the nucleus and drives target gene
expression (Fig. 2). In response to viral infections, JAK/STAT target
genes include antiviral effectors such as TurandotM (TotM) and
virus-induced RNA-1 (vir-1) [113, 118, 119]. Interestingly, activation
of JAK/STAT signalling does not seem to be a general defence
mechanism during viral infection, but is induced only in response
to specific viruses [112, 113, 119].
Regarding the function of Toll and Imd signalling during

antiviral immune responses, mutants of signalling mediators of
both pathways have been shown to display increased suscept-
ibility to viral infections. However, the details of receptor
activation, virus specificity and number of pathway members
involved remains to be elucidated [120–123]. Further strengthen-
ing the role of NF-κB signalling as an important factor during
antiviral defence, is the identification of viral suppressors of Toll
and Imd signalling in the in the genomes of Kallithea viruses and
Invertebrate Iridescent Virus-6 (IIV-6), respectively [124, 125].
Similarly, homologues of a cytokine named Diedel (Die), up-
regulated in Drosophila upon certain viral infections and proposed
to protect the fly from detrimental consequences by preventing
excessive activation of Imd signalling, are encoded by insect DNA
viruses, hence indicating an evolved need of viruses to suppress
Drosophila NF-κB signalling [126]. When it comes to the caspase-
mediated regulation of the RNAi system, the JAK-STAT pathway,
and the Imd and Toll pathways in response to viral infection, little
is known. However, as Relish mutants display an impaired antiviral
immune response [122–124], it is tempting to speculate that
Dredd, given its role as an activator of Relish, also plays a role in
Imd signalling during antiviral defences. Interestingly, in a study
conducted by Imler and colleagues, ectopic expression of dSting
was shown to prevent viral replication in a Ird5- and Relish-
dependent manner. In this study RNAi-mediated silencing of
Dredd in S2 cells led to a small increase in Drosophila C virus
replication [127]. However, as no definite conclusions of Dredd
regulating dSting can be drawn from this study, further in vivo
characterization of Dredd mutants upon viral infection are needed
to elucidate a potential role of Dredd in the dSting-Relish axis.

APOPTOSIS MODULATING DROSOPHILA INNATE IMMUNE
DEFENCE
In addition to being an efficient eliminator of damaged or
unnecessary cells, apoptosis contributes to a well-functioning
immune defence and is often induced upon pathogenic infections
[128]. Apoptotic cells facilitate their own removal by recruiting
phagocytes, leading to the elimination of infected host cells in a
controlled manner, and prevention of a possible spread of the
infectious agent [129, 130]. Phagocytosis of infected cells
contributes to the successful elimination of viruses in both
Drosophila and mammals [123, 131, 132]. Upon virus infection in
fly cells, apoptosis is induced as a consequence of a decrease in
Diap1 levels that leads to the increase of active Dronc and Drice

[131, 133]. As phagocytic clearance of virus-infected Drosophila S2
cells has been shown to depend on caspase activation [132],
apoptosis seems to be a trigger of phagocytosis during the
Drosophila immune response.
In order to maintain tissue homeostasis upon cell death

activation, apoptotic cells induce Dronc-dependent compensatory
proliferation of neighbouring healthy cells [51, 134, 135]. Studies
performed in the epithelial cells of the imaginal discs, indicate that
Dronc would drive apoptosis-induced proliferation [41] and
neoplastic activity [41, 136] by stimulating the production of
reactive oxygen species (ROS), hence, attracting hemocytes that
by cytokine secretion activate epithelial JNK signalling and drive
proliferation. An organ naturally subjected to continuous cell
turnover is the Drosophila midgut [137, 138]. Enterocyte cell death
and caspase activity have been shown to influence intestinal stem
cell proliferation and are needed for maintaining homeostatic
renewal of cells [25, 139]. Of the Drosophila caspases, Dronc is
known to regulate enterocyte turnover and seem to, depending
on the cellular setting, be either limiting or driving intestinal stem
cell activity [42, 140]. The epithelial turnover itself is affected by
the metabolic state of the fly, but also by external factors such as
pathogenic bacteria [111, 141–143]. Local bacterial insults are
associated with increased caspase activity and cell death, as well
as with higher amounts of ROS that, although contributing to the
elimination of bacteria, also harms the epithelial cells [111, 144].
To overcome the damage inflicted by bacteria, compromised cells
produce Upds that activate JAK/STAT signalling, driving compen-
satory stem cell-mediated proliferation [111, 142, 144]. The
function of specific caspases in intestinal epithelial regeneration
upon bacterial infection remains unexplored. However, given the
role of Dronc as a regulator of epithelial proliferation, it is likely
that the caspase also contributes to epithelial regeneration in the
Drosophila intestine during local bacterial insults. Indeed, loss-of-
function Dark mutants, unable to activate Dronc, were shown to
display increased sensitivity to wounding, due to inability of
driving caspase activation and tissue regeneration in the midgut
[25].
In addition to Dronc, the effector caspase Drice seems to be

activated in the intestinal enterocytes upon bacterial infection.
Indeed, effector caspase activation, presumably by Drice, has been
used as a marker of apoptosis in the Drosophila midgut post
infection [111, 143]. As Drice levels are increased upon bacterial
infections, the Drice-Diap2 complex described earlier (Fig. 4),
might, besides regulating Diap2 and NF-κB-mediated immune
signalling [24], also play a role in maintaining homeostatic cell
turnover by restraining excessive Drice activity, and apoptosis-
mediated cell proliferation during steady-state conditions.

CONCLUSION AND FUTURE PERSPECTIVE
Since their initial discovery in C. elegans, caspases have been the
subject of intense research, both in the field of programmed cell
death and as regulators of inflammatory signalling [3, 145].
Although traditionally separated into inflammatory and apoptotic
caspases, overlapping functions of the mammalian caspases from
both categories have become evident. Inflammatory caspase-1
has, for instance, been shown to engage apoptotic effector
caspase-7 in S. typhimurium-infected macrophages [146], and
mammalian caspase-8, best known for its initiating role in the
extrinsic apoptotic pathway, is able to regulate the Nod-like
receptor family pyrin domain containing 3 (NLRP3) inflammasome,
to cleave proIL-1β and to drive NF-κB signalling during specific
cellular conditions [147]. Given their central role in tissue health
and homeostasis, caspases serve as interesting targets when
tuning inflammatory signalling. In addition, mutations affecting
caspases and their signalling pathways are connected to severe
autoimmune and autoinflammatory diseases [148, 149]. In order
to treat these conditions and to find potential therapeutic targets,
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the cellular mechanisms of caspase regulation and, importantly,
the dual function of caspases in cell death and immune defence
needs to be elucidated.
Studies done in Drosophila during the last two decades have

contributed greatly to our knowledge regarding caspase-
mediated regulation of immune signalling and epithelial
immunohomeostasis. Although the function of Dredd in the
immune response towards Gram-negative bacteria has been
elucidated in considerable detail, several questions regarding
Dredd as a regulator of innate immunity remain to be addressed.
Among these are the function of Dredd during virus immune
responses, the role of Dredd-ubiquitination in inflammatory
signalling, and whether ubiquitin-patterns vary during septic
and local immune responses, and, finally, the involvement of
Dredd in the response towards Gram-positive bacteria in the
intestinal epithelia. Indeed, the recently reported tissue-specific
function of Drice in intestinal immunity [24], underscores the
difference in inflammatory regulation during acute, septic
immune responses and local immune responses induced in
tissues that are exposed to both resident and pathogenic
bacteria during normal life. To expand our understanding of
caspase-mediated regulation of the immune defence in the
intestinal epithelia, further studies regarding the upstream
drivers of Drice activity, and the functions of Dronc during
steady-state conditions and in response to bacterial insults, are
needed. Finally, as the potential immune-regulatory functions of
Strica, Dcp-1, Damm and Decay remain elusive, further
characterisation of these caspases will likely provide the field
with valuable knowledge regarding caspase-mediated regula-
tion of innate immunity.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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