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Abstract: Explicit model predictive control design is carefully developed for discrete-time
linear plants on Hilbert spaces, and we highlight the role of the so-called Slater condition
in the reliable explicit solution of the MPC optimization. We then proceed to present an
explicit MPC algorithm that accounts for the stabilization and input constraints satisfaction.
We do structure preserving temporal discretization of the infinite-dimensional parabolic PDE
system by application of the Cayley transformation. The salient feature of explicit MPC design
is the realization of the region-free approach in explicit MPC design with identification of
active constraint sets to realize optimal stabilization and constraints satisfaction. Finally, the
resulting design is illustrated by the application to the PDE model given by an unstable
heat equation with boundary actuation and Neumann boundary conditions. The example
demonstrates simultaneous stabilization and input constraints satisfaction on the one hand, and
on the ability to deal with a relatively high plant dimension and a long optimization horizon on
the other hand.
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1. INTRODUCTION

Model predictive control (MPC) designs permeate the
field of the control algorithm realizations that account for
important control related features, such as stabilization,
optimality, constraint satisfaction and computational real-
izability. In particular, the fundamental issues of stabiliza-
tion and constraint satisfaction in MPC design formulation
for finite-dimensional systems have been explored in prior
contributions, Rawlings et al. (2020), and other important
aspects of nonlinear model predictive control have been
explored in Grüne and Pannek (2017). However, the former
contributions do not in detail address the important and
fundamental aspects of model predictive control design re-
alizations when models are given by distributed parameter
systems.

Along the lines of various model predictive control de-
signs, the important realization is given by the explicit
linear quadratic regulator design for constrained linear
systems Bemporad et al. (2002); Johansen et al. (2002).
The advantage of solving the MPC optimization step ex-
plicitly (whenever this is possible) is computational speed
completely superior to solving the MPC optimization im-
plicitly. However, the problems arise in the realization of
the explicit MPC control designs when the number of
state variables increases, since this leads to an explosion
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of explicit controller complexity. Moreover, there are no
further guidelines on how to address the setting when the
state is of the infinite-dimensional nature as it is the case
given by the PDE models.

The scientific contributions in the area of control of
distributed parameter systems are quite mature and
well established, see seminal contributions (Curtain and
Pritchard (1978); Curtain and Zwart (1995); Krstic and
Smyshlyaev (2008)). The most important aspects of prior
contributions were given by synthesis and analysis of full
state feedback control laws as well as output feedback
designs with the emphasis on boundary/point based actua-
tion and/or observation. Along the same lines, the optimal
control strategies were explored which lead to the complex
realization of the Riccati equations for the distributed
parameter systems, see (Curtain and Zwart (1995); Ito and
Kunisch (2002)). However, there is a lack of contributions
that account for constrained input and/or state/output
setting, optimality, and the infinite-dimensional DPS set-
ting.

Motivated by the above, we develop an efficient explicit
MPC algorithm based on the region-free approach to ex-
plicit MPC design; see the survey Kvasnica et al. (2019)
for a nice introduction. Region-free explicit MPC al-
lows us to evade almost all problems related to explicit
MPC related to controller complexity, and degeneracy in
the Karush-Kuhn-Tucker optimality conditions (Spjøtvold
et al. (2006)). While the practical problems related to state

Explicit model predictive control for PDEs:

The case of a heat equation

Stevan Dubljevic ∗ Jukka-Pekka Humaloja ∗∗

Mikael Kurula ∗∗∗

∗ University of Alberta, Edmonton, Canada,
(e-mail: Stevan.Dubljevic@ualberta.ca)

∗∗ University of Alberta, Edmonton, Canada,
(e-mail: jphumaloja@ualberta.ca)
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(e-mail: Mikael.Kurula@abo.fi)

Abstract: Explicit model predictive control design is carefully developed for discrete-time
linear plants on Hilbert spaces, and we highlight the role of the so-called Slater condition
in the reliable explicit solution of the MPC optimization. We then proceed to present an
explicit MPC algorithm that accounts for the stabilization and input constraints satisfaction.
We do structure preserving temporal discretization of the infinite-dimensional parabolic PDE
system by application of the Cayley transformation. The salient feature of explicit MPC design
is the realization of the region-free approach in explicit MPC design with identification of
active constraint sets to realize optimal stabilization and constraints satisfaction. Finally, the
resulting design is illustrated by the application to the PDE model given by an unstable
heat equation with boundary actuation and Neumann boundary conditions. The example
demonstrates simultaneous stabilization and input constraints satisfaction on the one hand, and
on the ability to deal with a relatively high plant dimension and a long optimization horizon on
the other hand.

Keywords: Explicit MPC, Distributed Parameter Systems, Heat Equation, Boundary Control

1. INTRODUCTION

Model predictive control (MPC) designs permeate the
field of the control algorithm realizations that account for
important control related features, such as stabilization,
optimality, constraint satisfaction and computational real-
izability. In particular, the fundamental issues of stabiliza-
tion and constraint satisfaction in MPC design formulation
for finite-dimensional systems have been explored in prior
contributions, Rawlings et al. (2020), and other important
aspects of nonlinear model predictive control have been
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(e-mail: Mikael.Kurula@abo.fi)

Abstract: Explicit model predictive control design is carefully developed for discrete-time
linear plants on Hilbert spaces, and we highlight the role of the so-called Slater condition
in the reliable explicit solution of the MPC optimization. We then proceed to present an
explicit MPC algorithm that accounts for the stabilization and input constraints satisfaction.
We do structure preserving temporal discretization of the infinite-dimensional parabolic PDE
system by application of the Cayley transformation. The salient feature of explicit MPC design
is the realization of the region-free approach in explicit MPC design with identification of
active constraint sets to realize optimal stabilization and constraints satisfaction. Finally, the
resulting design is illustrated by the application to the PDE model given by an unstable
heat equation with boundary actuation and Neumann boundary conditions. The example
demonstrates simultaneous stabilization and input constraints satisfaction on the one hand, and
on the ability to deal with a relatively high plant dimension and a long optimization horizon on
the other hand.

Keywords: Explicit MPC, Distributed Parameter Systems, Heat Equation, Boundary Control

1. INTRODUCTION

Model predictive control (MPC) designs permeate the
field of the control algorithm realizations that account for
important control related features, such as stabilization,
optimality, constraint satisfaction and computational real-
izability. In particular, the fundamental issues of stabiliza-
tion and constraint satisfaction in MPC design formulation
for finite-dimensional systems have been explored in prior
contributions, Rawlings et al. (2020), and other important
aspects of nonlinear model predictive control have been
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in the reliable explicit solution of the MPC optimization. We then proceed to present an
explicit MPC algorithm that accounts for the stabilization and input constraints satisfaction.
We do structure preserving temporal discretization of the infinite-dimensional parabolic PDE
system by application of the Cayley transformation. The salient feature of explicit MPC design
is the realization of the region-free approach in explicit MPC design with identification of
active constraint sets to realize optimal stabilization and constraints satisfaction. Finally, the
resulting design is illustrated by the application to the PDE model given by an unstable
heat equation with boundary actuation and Neumann boundary conditions. The example
demonstrates simultaneous stabilization and input constraints satisfaction on the one hand, and
on the ability to deal with a relatively high plant dimension and a long optimization horizon on
the other hand.

Keywords: Explicit MPC, Distributed Parameter Systems, Heat Equation, Boundary Control

1. INTRODUCTION

Model predictive control (MPC) designs permeate the
field of the control algorithm realizations that account for
important control related features, such as stabilization,
optimality, constraint satisfaction and computational real-
izability. In particular, the fundamental issues of stabiliza-
tion and constraint satisfaction in MPC design formulation
for finite-dimensional systems have been explored in prior
contributions, Rawlings et al. (2020), and other important
aspects of nonlinear model predictive control have been
explored in Grüne and Pannek (2017). However, the former
contributions do not in detail address the important and
fundamental aspects of model predictive control design re-
alizations when models are given by distributed parameter
systems.

Along the lines of various model predictive control de-
signs, the important realization is given by the explicit
linear quadratic regulator design for constrained linear
systems Bemporad et al. (2002); Johansen et al. (2002).
The advantage of solving the MPC optimization step ex-
plicitly (whenever this is possible) is computational speed
completely superior to solving the MPC optimization im-
plicitly. However, the problems arise in the realization of
the explicit MPC control designs when the number of
state variables increases, since this leads to an explosion

⋆ J.-P. Humaloja is funded by a grant from the Jenny and Antti

Wihuri Foundation.

of explicit controller complexity. Moreover, there are no
further guidelines on how to address the setting when the
state is of the infinite-dimensional nature as it is the case
given by the PDE models.

The scientific contributions in the area of control of
distributed parameter systems are quite mature and
well established, see seminal contributions (Curtain and
Pritchard (1978); Curtain and Zwart (1995); Krstic and
Smyshlyaev (2008)). The most important aspects of prior
contributions were given by synthesis and analysis of full
state feedback control laws as well as output feedback
designs with the emphasis on boundary/point based actua-
tion and/or observation. Along the same lines, the optimal
control strategies were explored which lead to the complex
realization of the Riccati equations for the distributed
parameter systems, see (Curtain and Zwart (1995); Ito and
Kunisch (2002)). However, there is a lack of contributions
that account for constrained input and/or state/output
setting, optimality, and the infinite-dimensional DPS set-
ting.

Motivated by the above, we develop an efficient explicit
MPC algorithm based on the region-free approach to ex-
plicit MPC design; see the survey Kvasnica et al. (2019)
for a nice introduction. Region-free explicit MPC al-
lows us to evade almost all problems related to explicit
MPC related to controller complexity, and degeneracy in
the Karush-Kuhn-Tucker optimality conditions (Spjøtvold
et al. (2006)). While the practical problems related to state

space exploration, degeneracy in the KKT conditions, and
storing the explicit control law in an efficiently searchable
data structure has hampered the development of explicit
MPC in general, the development of region-free explicit
MPC has received little attention after the fundamental
paper by Gupta et al. (2011), due to the lack of an efficient
method to find the optimal active set.

There exists some theory on MPC for PDE systems,
mainly developed by Kunisch and coworkers (Azmi and
Kunisch (2016, 2018); Azmi et al. (2018); Azmi and Ku-
nisch (2019)), but there the setting is mainly in continuous
time and all forms of constraints have been excluded. In
practical implementations, however, it is much easier to
work in discrete time. We utilize the Cayley transforma-
tion that preserves the structural and energy preservation
properties of the underlying PDE models, building on
some prior contributions in the area of model predictive
control designs applied to distributed parameter systems,
see Dubljevic and Humaloja (2020). In particular, asymp-
totic stability is preserved under this transformation; see
Curtain and Oostveen (1997); Havu and Malinen (2007);
Hairer et al. (2006).

The rest of the paper is organized as follows. In §2, we
present the heat equation that serves as an illustrative
example throughout the paper, and in §3, we describe the
explicit MPC design that fits PDE systems. The focus of
§4 is the efficient and reliable solution of the optimization
step. We provide a rudimentary but very fast algorithm for
explicitly solving the optimization in the MPC controller.
We test the algorithm in a numerical simulation in §5,
where we treat an unstable heat equation with boundary
actuation and Neumann boundary conditions. Finally, §6
contains some concluding remarks.

This paper is a companion paper of a full journal paper,
which will soon be submitted for publication. This expo-
sition here has been simplified and the proofs have been
omitted for transparency. The PDE example in this paper
also differs considerably from the full paper. Please find
the full paper for proofs and a more detailed exposition.

2. SYSTEM MODEL

The motivating example belongs to the class of distributed
parameter systems frequently encountered in the indus-
trial engining process control practice. Namely, the heat
conduction (diffusion) systems are omnipresent examples
of the models that take the form of parabolic PDEs where
natural imposed boundary conditions imply the cooling on
one end as the boundary actuation element while the other
end is considered to be isolated, see Fig. 1.

We consider a one-dimensional heat equation on the spa-
tial interval ξ ∈ [0, 1] with Neumann boundary control at
ξ = 0:

∂

∂t
x(ξ, t) =

∂2

∂ξ2
x(ξ, t), x(ξ, 0) = x0(ξ) (1a)

0 ≡ ∂

∂ξ
x(ξ, t)

∣∣∣∣
ξ=1

(1b)

u(t) =
∂

∂ξ
x(ξ, t)

∣∣∣∣
ξ=0

. (1c)

Cooling

wall

Fig. 1. Boundary heated slab with cooling on one side.

The above boundary control problem can be written as
an abstract boundary control system (Tucsnak and Weiss,
2009, Sect. 10.1)

ẋ(t) = Ax(t)

Bx(t) = u(t),

on the state space L2(0, 1;R), where Ax(t) = x′′(t)
with domain D(A) =

{
x ∈ H2(0, 1;R) : x′(1) = 0

}
and

Bx(·, t) = x′(0, t). The operator A|ker(B) is the generator

of an analytic C0-semigroup on L2(0, 1;R).

The boundary control problem can be further written
as an abstract Cauchy problem ẋ(t) = Ax(t) + Bu(t)
on L2(0, 1;R), where A := A|ker(B) and the operator B
satisfies (Tucsnak and Weiss, 2009, Rem. 10.1.6)

�Ax, z� = �x,A∗z�+ �Bx,B∗z� ∀x ∈ D(A), z ∈ D(A∗).

Using integration by parts, we obtain A∗ = A with
D(A∗) = D(A) which then yields �Bx,B∗z� = x′(0)z(0),
i.e., B∗z = z(0) for all z ∈ D(A∗) = D(A), and hence B is
the Dirac delta distribution at zero.

We proceed to find a spectral representation for the heat
equation using the eigenvalues and the corresponding
eigenvectors. The eigenvalue equation Ax = sx gives
x′′(ξ) = sx(ξ) which for s = 0 has the solution x(ξ) =
1[0,1] ∈ D(A). For s �= 0, the solutions are of the form

x(ξ) = α cosh(
√
sξ) + β sinh(

√
sξ). Since x ∈ D(A), we

have x′(0) = 0 which gives β = 0, and then x′(1) = 0
gives α sinh(

√
sξ) = 0, i.e., s = −(kπ)2 for any k ∈ N.

Thus, the eigenvalues of A are λk = −(kπ)2 for k ∈ N0

and the corresponding normalized eigenvectors are φ0 = 1
and φk =

√
2 cos(kπξ) for k ∈ N.

Since the normalized eigenvectors of A form an orthonor-
mal basis for L2(0, 1;R), we can equivalently write A and
B∗ as (Tucsnak and Weiss, 2009, Sect. 2.6)

Ax =
∞∑

k=0

λk �x, φk�φk

B∗x =
∞∑

k=0

�x, φk� B∗φk =
∞∑

k=0

�x, φk�φk(0)

for x ∈ D(A). Moreover, for any s ∈ ρ(A), we have

(sI −A)−1x =

∞∑

k=0

1

s− λk
�x, φk�φk
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MPC in general, the development of region-free explicit
MPC has received little attention after the fundamental
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example throughout the paper, and in §3, we describe the
explicit MPC design that fits PDE systems. The focus of
§4 is the efficient and reliable solution of the optimization
step. We provide a rudimentary but very fast algorithm for
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We test the algorithm in a numerical simulation in §5,
where we treat an unstable heat equation with boundary
actuation and Neumann boundary conditions. Finally, §6
contains some concluding remarks.
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the full paper for proofs and a more detailed exposition.
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of the models that take the form of parabolic PDEs where
natural imposed boundary conditions imply the cooling on
one end as the boundary actuation element while the other
end is considered to be isolated, see Fig. 1.

We consider a one-dimensional heat equation on the spa-
tial interval ξ ∈ [0, 1] with Neumann boundary control at
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Fig. 1. Boundary heated slab with cooling on one side.

The above boundary control problem can be written as
an abstract boundary control system (Tucsnak and Weiss,
2009, Sect. 10.1)

ẋ(t) = Ax(t)

Bx(t) = u(t),

on the state space L2(0, 1;R), where Ax(t) = x′′(t)
with domain D(A) =

{
x ∈ H2(0, 1;R) : x′(1) = 0

}
and

Bx(·, t) = x′(0, t). The operator A|ker(B) is the generator

of an analytic C0-semigroup on L2(0, 1;R).

The boundary control problem can be further written
as an abstract Cauchy problem ẋ(t) = Ax(t) + Bu(t)
on L2(0, 1;R), where A := A|ker(B) and the operator B
satisfies (Tucsnak and Weiss, 2009, Rem. 10.1.6)

�Ax, z� = �x,A∗z�+ �Bx,B∗z� ∀x ∈ D(A), z ∈ D(A∗).

Using integration by parts, we obtain A∗ = A with
D(A∗) = D(A) which then yields �Bx,B∗z� = x′(0)z(0),
i.e., B∗z = z(0) for all z ∈ D(A∗) = D(A), and hence B is
the Dirac delta distribution at zero.

We proceed to find a spectral representation for the heat
equation using the eigenvalues and the corresponding
eigenvectors. The eigenvalue equation Ax = sx gives
x′′(ξ) = sx(ξ) which for s = 0 has the solution x(ξ) =
1[0,1] ∈ D(A). For s �= 0, the solutions are of the form

x(ξ) = α cosh(
√
sξ) + β sinh(

√
sξ). Since x ∈ D(A), we

have x′(0) = 0 which gives β = 0, and then x′(1) = 0
gives α sinh(

√
sξ) = 0, i.e., s = −(kπ)2 for any k ∈ N.

Thus, the eigenvalues of A are λk = −(kπ)2 for k ∈ N0

and the corresponding normalized eigenvectors are φ0 = 1
and φk =

√
2 cos(kπξ) for k ∈ N.

Since the normalized eigenvectors of A form an orthonor-
mal basis for L2(0, 1;R), we can equivalently write A and
B∗ as (Tucsnak and Weiss, 2009, Sect. 2.6)
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∞∑
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which implies

�B∗(I −A)−1/2�2 =
∞∑

k=0

φk(0)
2

|1− λk|

<

∞∑

k=0

2

1 + (kπ)2
= 1 + coth(1)

so that B∗ is an admissible observation operator for A
(Tucsnak and Weiss, 2009, Prop. 5.1.3). Since A is self-
adjoint, B is equivalenty an admissible control operator
for A (Tucsnak and Weiss, 2009, Thm. 4.4.3). Thus, the
abstract Cauchy problem ẋ(t) = Ax(t) + Bu(t) resulting
from (1) is well-posed on L2(0, 1;R).

We will next apply the Cayley transformation to map
the continuous-time system ẋ(t) = Ax(t) + Bu(t) into a
discrete-time one xk+1 = Axk+Buk. For a given temporal
discretization parameter h > 0, we define δ := 2/h, and
the Cayley transformation of (A,B) from continuous- to
discrete-time is given by (Havu and Malinen, 2007, Sect.
1.3)

A = (δI +A)(δI −A)−1, B =
√
2δ(δI −A)−1B.

The Cayley transform follows from a Crank-Nicolson type
time discretization (Havu and Malinen, 2007, Sect. 1.1)

x((k + 1)h)− x(kh)

h
≈ Ax((k + 1)h) + x(kh)

2
+ Bu(kh)

after approximating u(kh) by uk/
√
h.

Using the above representations of A and B∗, we obtain

Ax =

∞∑

k=0

δ + λk

δ − λk
�x, φk�φk (3)

and

B∗(δI −A)−1x =
∞∑

k=0

φk(0)

δ − λk
�x, φk� =

B∗x√
2δ

so that �B∗x, u� = �x,Bu� gives

Bu =

∞∑

k=0

φk

√
2δ

δ − λk
φk(0)u. (4)

Thus, for practical computations we can approximate A
and B by restricting the spectral expressions (3) and (4)
to a finite number of terms.

3. DESCRIPTION OF THE MPC ALGORITHM

We describe the MPC algorithm in a general framework
where U and X are real Hilbert spaces, and A and B
are bounded linear operators between these so that the
discrete-time state equation

xn+1 = Axn +Bun, n ∈ N0, (5)

makes sense. In case of the heat equation described in §2
we have U = R, X = L2(0, 1;R) and A,B are given by
(3)–(4).

The objective is to drive xn in (5) to zero in such a way
that a quadratic cost functional

∞∑

n=0

(�Qxn, xn�+ �Run, un�) , (6)

is minimized while satisfying some affine constraints on
the inputs un and the states xn, which we here denote by

[ xn

un
] ∈ W. Model predictive control (MPC), also called

receding horizon control (RHC), achieves this objective
by approximating the cost (6) by a finite sum. Choosing a

horizon N and denoting u′ := (u′
k)

N−1
k=0 , the input signal at

time step n is chosen as un = u∗,0, where u∗ = (u∗,k)
N−1
k=0

is the minimizer of the cost functional

J(u′, xn) := �Px′
N , x′

N �+
N−1∑

k=0

(�Qx′
k, x

′
k�+ �Ru′

k, u
′
k�)

{
x′
k+1 = A′x′

k +B′u′
k,

x′
0 = xn,

[
x′
k

u′
k

]
∈ Wk, 0 ≤ k ≤ N − 1,

(7)
where the weights P = P ∗, Q = Q∗ ∈ L(X) satisfy
P,Q ≥ 0 and R = R∗ ∈ L(U) is coercive, i.e., it satisfies

�Ru, u� ≥ ε�u�2, ∀u ∈ U (8)

for some ε > 0 independent of u, and we assume that the
prediction model in (7) is perfect, i.e., (A′, B′) = (A,B).
We further require that the constraints can be written in
the affine form[
x′
k

u′
k

]
∈ W ⇐⇒ d−Ex′

k−Eu′
k ∈ [0,∞)p, 0 ≤ k ≤ N−1,

(9)
with d ∈ [0,∞)p, E ∈ L(X;Rp), E ∈ L(U ;Rp) all given as
part of the control problem.

We assume that the state-space can be decomposed as
X = Xu ⊕ Xs, corresponding to the unstable and stable
eigenspaces of A, respectively, in such a way that Xu

is finite-dimensional. In terms of the heat equation of
§2, we have Xu = span {φ0} and Xs = span {φk}∞k=1.
The operators A and B can be decomposed accordingly
as A = Au ⊕ As and B =

[
Bu

Bs

]
, where Au, As, Bu, Bs

are obtained by restricting the spectral representations of
A and B to the spanning vectors of the corresponding
subspaces; from (3) we obtain, e.g., that

Auxu =
δ + λ0

δ − λ0
�xu, φ0�φ0.

To see how (7) approximates (6), consider the dual-mode
controller whose control signal is of the form

u′ = (u′
k)

N−1
k=0 and u′

k = 0, k ≥ N,

which switches to zero control after the control horizon.
Since A may have finitely many unstable eigenmodes, we
proceed as in Muske and Rawlings (1993) and impose a
terminal constraint on the unstable modes to guarantee
a finite terminal cost under the zero control. That is, we
require that (xN )u = 0 which equivalently translates to an
affine constraint

AN
u x′

0u +
[
AN−1

u Bu AN−2
u Bu . . . Bu

]
u′ = 0. (10)

The feasibility of the terminal constraint (10) requires
that the pair (Au, Bu) is null-controllable in N time steps.
With the unstable modes taken care of by the terminal
constraint, we get from the strong stability of As that

∞∑

k=N

(�Qxn, xn�+ �Run, un�) = �PxN , xN �,

where P = 0Xu
⊕ Ps with Ps being the solution of the

Lyapunov equation

A∗
sPsAs − Ps = −Qs (11)

on Xs; since As is strongly stable, (11) has a unique

solution if and only if Q
1/2
s is an infinite-time admissible

observation operator for As (Curtain and Oostveen, 1997,
Thm. 2.4.f). The latter always holds if As is exponentially
stable (in continuous-time). In case of the heat equation
of §2, As is exponentially stable and, e.g., for Q = IX the
solution Ps is explicitly given by

Psxs =
∞�

n=0

(A∗
s)

nAn
sxs =

∞�

n=0

∞�

k=1

�
δ + λk

δ − λk

�2n

�xs, φk�φk.

Note that for a any fixed k ∈ N, we get the sum of the
geometric series

Psφk =

∞�

n=0

�
δ + λk

δ − λk

�2n

φk =
1

1− rk
φk (12)

where rk =
�

δ+λk

δ−λk

�2

=
�

δ−(kπ)2

δ+(kπ)2

�2

. However rk → 1 as

k → ∞.

4. EXPLICIT MPC DESIGN

As described in §3, nominal MPC solves a constrained
quadratic optimization problem at every time step, in
order to compute the next control action. Explicit model
predictive control (here abbreviated to eMPC, not to be
confused with economic MPC) was introduced in Johansen
et al. (2002), Seron et al. (2000) and Bemporad et al.
(2002). The point of eMPC is to express the optimal input
u′ sequence in (7) subject to the constraints (9) and (10)
explicitly as a piecewise affine function of the parameter
xn, rather than as the implicit result of the constrained
optimization problem described above.

Here we pursue a region-free approach to explicit MPC,
which is much lighter than, and avoids some challenges
of, the traditional explicit MPC approach. In particular,
we do not need to pre-explore the state space, and we
also circumvent storing the (often very complex) piecewise
affine optimal control function.

Using a standard reformulation, see e.g. Seron et al. (2000),
we can write the optimization problem (7) in the following
form of a parametric quadratic program:

Solve

argmin
z

1

2
�Hz, z�

subject to

W ′ + S′xn −G′z ≥ 0

AN
u (xn)u +

�
AN−1

u Bu . . . Bu

�
(z−H−1Fxn) = 0

(13)

to obtain the minimizer z∗, and then get the predicted
optimal control sequence as u′ = z∗ −H−1Fxn.

In (13), the operatorsH,W ′, S′, G′ and F are given by the
reformulation, and H = H∗ is coercive due to the assumed
coercivity of R in (8). Using the coercivity of H and the
closedness and convexity of the set of feasible z, we can
prove the following:

Theorem 1. Assume that the optimization problem (13)
is feasible, i.e., that there is some z that satisfies all
constraints. Then (13) has a unique solution z∗.

Note that the equality constraint arising from the terminal
constraint on the unstable eigenmodes can be equivalently

written as two inequality constraints. Moreover, we can
write AN

u (xn)u = ΓANxn where Γ denotes the orthogonal
projection onto Xu, so that W ′, S′ and G′ can be modified
to account for the equality constraint in (13) by defining

W :=



W ′

0
0


 , G :=




G′
�
I
−I

� �
AN−1

u Bu . . . Bu

�



S :=




S′
�
I
−I

� ��
AN−1

u Bu . . . Bu

�
H−1F − ΓAN

�

 .

(14)

The set of constraints that are active at the optimizer z∗,

A := {k | fk(z∗) = 0, k = 1, 2, . . . , �p}
is referred to as the optimal active set, and its complement
is Ac := {k | k �∈ A, k = 1, 2, . . . , �p}.
Let GA denote the projection of the operator G onto the
components indexed by A. If GA is surjective, then we
say that the Linear Independence Constraint Qualification
(LICQ) holds.

Using a Hilbert-space formulation of the Karush-Kuhn-
Tucker theory in (Zeidler, 1985, §47.10), we can prove
the following theorem which is a more precise formulation
compared to what is presently found in the literature.

Theorem 2. Let ∅ �= A ⊂ {1, 2, . . . , �p} and let λ :=
[λ1 . . . λp̃]

∗
be a column vector of putative Lagrange

multipliers. The following statements are true:

(1) Assume that A, xn ∈ X×U , z∗ ∈ UN and λA ∈ R
#A

are such that LICQ holds and

WA + SAxn = GAz∗, WA
c

+ SA
c

xn ≥ GA
c

z∗,

λA ≥ 0, Hz∗ = −(GA)∗λA.
(15)

Then the unique minimizer of (13) is

z∗ = H−1(GA)∗
�
GAH−1(GA)∗

�−1
(WA + SAxn).

(16)
Moreover, the set of active constraints at z∗ contains
A and

λA = −
�
GAH−1(GA)∗

�−1
(WA + SAxn). (17)

Finally, complementarity, holds, i.e., λA
c

= 0.
(2) Conversely, assume that the parameter xn ∈ X × U

is such that the Slater condition holds, i.e., there is a
z ∈ UN , such that W + Sxn −Gz ∈ (0,∞)p̃.
If z∗ is the minimizer of (13), and if A is the set

of constraints active at z∗, then (15) holds, together
with WA

c

+ SA
c

xn > GA
c

z∗.

The Slater condition trivially implies feasibility (since the
feasible set contains all the Slater points z) and then
Lemma 1 guarantees the existence of the minimizer z∗. If
the Slater condition does not hold, but the minimization
(13) is nevertheless feasible, then the unique minimizer z∗
still exists by Lemma 1, but then we have no guarantees
that z∗ (or λ

A) has the affine representation (16) (or (17)),
even if LICQ holds. The Slater condition is needed already
in finite dimensions, see (Zeidler, 1985, pp. 56–57), but it
is usually overlooked in the explicit MPC literature.

Even if item 2 in Theorem 2 is the part that is usually
mentioned in the explicit MPC literature, in fact item 1 is
also frequently used implicitly, and indeed item 1 is the one
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observation operator for As (Curtain and Oostveen, 1997,
Thm. 2.4.f). The latter always holds if As is exponentially
stable (in continuous-time). In case of the heat equation
of §2, As is exponentially stable and, e.g., for Q = IX the
solution Ps is explicitly given by

Psxs =
∞�

n=0

(A∗
s)

nAn
sxs =

∞�

n=0

∞�

k=1

�
δ + λk

δ − λk

�2n

�xs, φk�φk.

Note that for a any fixed k ∈ N, we get the sum of the
geometric series

Psφk =

∞�

n=0

�
δ + λk

δ − λk

�2n

φk =
1

1− rk
φk (12)

where rk =
�

δ+λk

δ−λk

�2

=
�

δ−(kπ)2

δ+(kπ)2

�2

. However rk → 1 as

k → ∞.

4. EXPLICIT MPC DESIGN

As described in §3, nominal MPC solves a constrained
quadratic optimization problem at every time step, in
order to compute the next control action. Explicit model
predictive control (here abbreviated to eMPC, not to be
confused with economic MPC) was introduced in Johansen
et al. (2002), Seron et al. (2000) and Bemporad et al.
(2002). The point of eMPC is to express the optimal input
u′ sequence in (7) subject to the constraints (9) and (10)
explicitly as a piecewise affine function of the parameter
xn, rather than as the implicit result of the constrained
optimization problem described above.

Here we pursue a region-free approach to explicit MPC,
which is much lighter than, and avoids some challenges
of, the traditional explicit MPC approach. In particular,
we do not need to pre-explore the state space, and we
also circumvent storing the (often very complex) piecewise
affine optimal control function.

Using a standard reformulation, see e.g. Seron et al. (2000),
we can write the optimization problem (7) in the following
form of a parametric quadratic program:

Solve

argmin
z

1

2
�Hz, z�

subject to

W ′ + S′xn −G′z ≥ 0

AN
u (xn)u +

�
AN−1

u Bu . . . Bu

�
(z−H−1Fxn) = 0

(13)

to obtain the minimizer z∗, and then get the predicted
optimal control sequence as u′ = z∗ −H−1Fxn.

In (13), the operatorsH,W ′, S′, G′ and F are given by the
reformulation, and H = H∗ is coercive due to the assumed
coercivity of R in (8). Using the coercivity of H and the
closedness and convexity of the set of feasible z, we can
prove the following:

Theorem 1. Assume that the optimization problem (13)
is feasible, i.e., that there is some z that satisfies all
constraints. Then (13) has a unique solution z∗.

Note that the equality constraint arising from the terminal
constraint on the unstable eigenmodes can be equivalently

written as two inequality constraints. Moreover, we can
write AN

u (xn)u = ΓANxn where Γ denotes the orthogonal
projection onto Xu, so that W ′, S′ and G′ can be modified
to account for the equality constraint in (13) by defining

W :=



W ′

0
0


 , G :=




G′
�
I
−I

� �
AN−1

u Bu . . . Bu

�



S :=




S′
�
I
−I

� ��
AN−1

u Bu . . . Bu

�
H−1F − ΓAN

�

 .

(14)

The set of constraints that are active at the optimizer z∗,

A := {k | fk(z∗) = 0, k = 1, 2, . . . , �p}
is referred to as the optimal active set, and its complement
is Ac := {k | k �∈ A, k = 1, 2, . . . , �p}.
Let GA denote the projection of the operator G onto the
components indexed by A. If GA is surjective, then we
say that the Linear Independence Constraint Qualification
(LICQ) holds.

Using a Hilbert-space formulation of the Karush-Kuhn-
Tucker theory in (Zeidler, 1985, §47.10), we can prove
the following theorem which is a more precise formulation
compared to what is presently found in the literature.

Theorem 2. Let ∅ �= A ⊂ {1, 2, . . . , �p} and let λ :=
[λ1 . . . λp̃]

∗
be a column vector of putative Lagrange

multipliers. The following statements are true:

(1) Assume that A, xn ∈ X×U , z∗ ∈ UN and λA ∈ R
#A

are such that LICQ holds and

WA + SAxn = GAz∗, WA
c

+ SA
c

xn ≥ GA
c

z∗,

λA ≥ 0, Hz∗ = −(GA)∗λA.
(15)

Then the unique minimizer of (13) is

z∗ = H−1(GA)∗
�
GAH−1(GA)∗

�−1
(WA + SAxn).

(16)
Moreover, the set of active constraints at z∗ contains
A and

λA = −
�
GAH−1(GA)∗

�−1
(WA + SAxn). (17)

Finally, complementarity, holds, i.e., λA
c

= 0.
(2) Conversely, assume that the parameter xn ∈ X × U

is such that the Slater condition holds, i.e., there is a
z ∈ UN , such that W + Sxn −Gz ∈ (0,∞)p̃.
If z∗ is the minimizer of (13), and if A is the set

of constraints active at z∗, then (15) holds, together
with WA

c

+ SA
c

xn > GA
c

z∗.

The Slater condition trivially implies feasibility (since the
feasible set contains all the Slater points z) and then
Lemma 1 guarantees the existence of the minimizer z∗. If
the Slater condition does not hold, but the minimization
(13) is nevertheless feasible, then the unique minimizer z∗
still exists by Lemma 1, but then we have no guarantees
that z∗ (or λ

A) has the affine representation (16) (or (17)),
even if LICQ holds. The Slater condition is needed already
in finite dimensions, see (Zeidler, 1985, pp. 56–57), but it
is usually overlooked in the explicit MPC literature.

Even if item 2 in Theorem 2 is the part that is usually
mentioned in the explicit MPC literature, in fact item 1 is
also frequently used implicitly, and indeed item 1 is the one
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that we base our explicit MPC algorithm on in this paper.
For constraints not involving the state, the Slater condition
often holds for all parameter values xn, but unfortunately
for us the Slater condition never holds, due to the terminal
constraint which is always active in (13).

We call an A satisfying (15) a sufficient active set, since it
may be strictly smaller than the actual set of constraints
active at the optimum z∗, but such an A is nevertheless
sufficient for guaranteeing optimality. Theorem 2 says
nothing for A = ∅, but it is clear that the optimizer is
z∗ = 0 in this case (provided that the problem is feasible),
and λ = 0 works as associated Lagrange multiplier.

We end this section by describing a simple algorithm the
purpose of which is to find a sufficient active set A(xn) for
the parameter xn. The algorithm is a kind of point location
algorithm, which is concerned with active sets rather than
with the more traditional critical regions. It is based on
the idea that violated constraints should be activated and
negative Lagrange multipliers should be locked to zero by
deactivating the corresponding constraint, thus making
use of complementarity. Moreover, at time step n, the
sufficient active set from time n− 1 is likely to be a fairly
good warm start, as it is not expected that we cross too
many critical regions in one step; see the idea of facet
flipping in Tøndel et al. (2003).

Algorithm 1: Rudimentary search for a sufficient
active setA and the corresponding optimizer z∗. At the
first time step n = 0, Alg. 1 is called with A′ := ∅. At
subsequent time steps n, the warm start is the sufficient
active set from the previous time step, A′

n = An−1.

Data: xn, H
−1, F , G, S, W and warm start A′

Result: optimizer z∗ and sufficient active set A
Calculate λA

′

using (17) with k = 0;

if some λA
′

k < 0 then

remove k with the most negative λA
′

k from A′;
else

calculate z∗ using (16);
if some constraint is violated then

add k with the most negative
W {k} + S{k}xn −G{k}z∗ to A′;

else
return z∗ and A := A′;
terminate;

return z∗ and A as the result of this algorithm with
the new warm start A′

Note that the algorithm only adds violated constraints
to A′, and that a redundant constraint is never violated.
Hence, the only way that the algorithm can run into LICQ
violation, is if a candidate active set A′ is infeasible. With
the constraints described in this paper, feasibility can be
guaranteed by choosing the horizon N long enough.

It turns out that the simple and pragmatic active set
algorithm in Alg. 1 allows very fast explicit MPC for our
example, as we shall see in §5 below. The algorithm also
highlights a fundamental difference between a sufficient
active set and the full set of constraints active at the
optimum: If A denotes the full optimal active set at an
optimum z∗, then GA always contains the last two lines of

G, by (14), and hence GA always violates LICQ. However,
the sufficient active sets found by Alg. 1 never violate
LICQ, and hence they are always a proper subset of the
full optimal active set. (All constraints in a sufficient active
set A are active at the optimum z∗, as a consequence of
(16).)

5. TESTING THE ALGORITHM ON THE HEAT
EQUATION

We demonstrate the proposed explicit MPC design with
a numerical simulation of the heat equation described in
§2. For the simulation, we choose the weights in the cost
function (7) as Q = IX , R = 1. We consider the cooling
problem of a nonnegative temperature profile distribution,
so that in continuous-time the input constraints are given
by u(t) ∈ [−3, 0] for all t ≥ 0, which for the Cayley
transform (Havu and Malinen, 2007, Sect. 1.1) correspond

to uk ∈
√
h [−3, 0] for all k ∈ N for the given discretization

parameter h. In the simulation, we use h = 1/40 so that
δ = 80. We will then have to choose the prediction horizon
N sufficiently large so that the constraint on the unstable
subspace AN

u x0u +
[
AN−1

u Bu . . . AuBu Bu

]
u = 0 can

be satisfied within the input constraints. Note that the
feasibility of this constraint has to be checked only at the
first time step as Au = 1, Bu > 0 and uk ≤ 0 so that
(xk+1)u = (xk)u+Buuk ≤ (xk)u for all k ∈ N0. A sufficient
choice for the horizon length is N = 7.

The initial condition for the simulation is given as x0(ξ) =
3ξ2 − 2ξ3. The evolution of the state profile under the
explicit MPC controls with prediction horizon N = 7 is
shown in Fig. 2. For computing the controls, the expres-
sions of A,B and Ps are approximated from (3), (4) and
(12), respectively, by using the first terms in the series
up to k = 15. The discrete-time controls are converted to
continuous-time using zero-order hold, i.e., u(t) = uk/

√
h

for t ∈ [kh, (k+1)h). Figure 2 shows that the state profile
converges to zero in about one second under these controls.
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Fig. 2. State profile of the heat equation for t ∈ [0, 1.5]
under the explicit MPC law for N = 7.

The explicit MPC law that controls the state in Fig. 2 is
shown in Fig. 3. For comparison, Fig. 3 also shows the
explicit MPC law for the horizon length N = 21. This
shows that the shorter horizon N = 7 has to sacrifice some
optimality in order to satisfy the terminal constraint on
the unstable subspace, whereas the longer horizon N = 21
achieves stabilization with less control effort. However, the
discrete-time control costs are J7 ≈ 2.89 and J21 ≈ 2.77
so that the benefit of tripling the prediction horizon is

only minor. Amazingly, tripling the prediction horizion
only increases the computational time by about 50 percent
which is still only around 0.11 milliseconds per time step
in Matlab on a 1.4 GHz Intel i5 processor.
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Fig. 3. The explicit MPC law for N = 7 and N = 21 (solid
lines) along with the input constraints (dotted lines).

6. CONCLUSIONS

We extended explicit model predictive control to the
distributed parameter plant setting and considered a
parabolic PDE with boundary applied actuation. Based
on a carefully formulated KKT theorem for the Hilbert-
space setting, we provided a rudimentary algorithm fast
enough for solving high-dimensional problems with a long
MPC horizon. The role of the Slater condition in the
explicit solution, and the difference between necessary and
sufficient conditions for optimality were highlighted.
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space setting, we provided a rudimentary algorithm fast
enough for solving high-dimensional problems with a long
MPC horizon. The role of the Slater condition in the
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M., and Bakaráč, P. (2019). Real-time implementa-
tion of explicit model predictive control. In Hand-
book of model predictive control, Control Eng., 387–412.
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Birkhäuser Verlag.

Zeidler, E. (1985). Nonlinear functional analysis and its
applications. III. Springer-Verlag, New York.


