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A B S T R A C T   

Electronic tongues (e-tongues) have been broadly employed in monitoring the quality of food, beverage, cos-
metics, and pharmaceutical products, and in diagnosis of diseases, as the e-tongues can discriminate samples of 
high complexity, reduce interference of the matrix, offer rapid response. Compared to other analytical ap-
proaches using expensive and complex instrumentation as well as required sample preparation, the e-tongue is 
non-destructive, miniaturizable and on-site method with little or no preparation of samples. Even though e- 
tongues are successfully commercialized, their application in cancer diagnosis from urine samples is under-
estimated. In this review, we would like to highlight the various analytical techniques such as Raman spec-
troscopy, infrared spectroscopy, fluorescence spectroscopy, and electrochemical methods (potentiometry and 
voltammetry) used as e-tongues for urine analysis towards non-invasive cancer diagnosis. Besides, different 
machine learning approaches, for instance, supervised and unsupervised learning algorithms are introduced to 
analyze extracted chemical data. Finally, capabilities of e-tongues in distinguishing between patients diagnosed 
with cancer and healthy controls are highlighted.   

1. Introduction to electronic tongue (e-tongue) 

Biological sensory systems have evolved through millions of years 
standing out in versatility, performance and sensitivity (Untereiner 
et al., 2014; van Wassenbergh et al., 2015). The human tongue is 
equipped with receptors ranging from 2000-10,000 taste buds; each 
taste bud contains 50–100 taste cells which are responsible for the five 
basic tastes (sweet, bitter, salty, sour, and umami) (Roper, 1995). This 
structure allows the tongue to discriminate fluids containing thousands 
of substances such as wine (Nery, 2019; Quideau, 2017). When inter-
acting with chemical substances, the taste cells generate a non-specific 
signal that can be used to indicate some characteristics or qualities of 
the sample being analyzed (Rodríguez-Méndez et al., 2010). The pro-
duced signal is then transmitted through the taste nerves to the brain, 
which is the central unit responsible for processing the incoming signal 
and recognizing the type of taste (Picó, 2012). Even though the taste 
buds situated on the tongue are not highly specific, they have a broad 
response (Freeman et al., 2017). Real time processing by the brain from 
the five senses - sight, hear, smell, touch and taste - remains well beyond 
the capability of artificial cognitive systems (Tarassenko and Denham, 
2006). Despite their advantages, it is impossible to use biological 

sensory systems in monitoring of industrial processes, analysis of 
distasteful, hazardous or toxic samples such as drugs, viruses, bacteria 
and pollutants (Shimizu et al., 2020). To overcome these challenges, 
bioinspired systems have been developed based on biological sensory 
systems’ principles such as tactile sensors which are intended to imitate 
the skin, electronic eye, electronic nose that mimic the mammalian nose 
when interacting with odor molecules and electronic tongue (e-tongue), 
an analytical device inspired by biological taste systems (Valle, 2011) 
(see Fig. 1). 

E-tongues, on the other hand, are capable of accomplishing quanti-
tative and qualitative analysis of complex solutions (Podrazka et al., 
2017; Vlasov et al., 2005). E-tongues consist of an array of non-selective, 
highly stable, and cross-sensitive sensors and a suitable pattern recog-
nition algorithm (PARC) or chemometrics. Various types of signal 
transduction methods have been used to develop e-tongues ranging from 
optical, electrochemical, mass to thermal sensors (Bagnasco et al., 2014; 
Huynh and Kutner, 2015). For instance, infrared spectroscopy showed to 
be a promising technique in food quality (Beullens et al., 2006; Fer-
rand-Calmels et al., 2014), medical diagnosis (Backhaus et al., 2010; Liu 
et al., 2002), and forensics (Pereira et al., 2018; Wong et al., 2019). 
Raman spectroscopy has also been extensively explored in various fields 
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such as food quality control (Richardson et al., 2019; Zhu et al., 2018), 
forensics (González-Rodríguez et al., 2011; Muehlethaler et al., 2011), 
and pharmaceutical analysis (Roggo et al., 2010; Vajna et al., 2011). 
Fluorescence spectroscopy was also investigated in water quality (Hei-
bati et al., 2017; Sorensen et al., 2018), food quality (Becker et al., 2003; 
Christensen et al., 2003), and cosmetics (J. Nie et al., 2008; J.F. Nie 
et al., 2008). Electrochemical based e-tongues have also been examined 
in food quality (González-Rodríguez et al., 2011; Muehlethaler et al., 
2011), forensics (Garcia-Breijo et al., 2013) and pharmaceutical analysis 
(Pein et al., 2015). Alternatively, bioelectronic tongue (bioe-tongue), in 
which an array of biosensors is used (Bachmann and Schmid, 1999), was 
proposed in the late 90’s. The use of highly selective and specific bio-
sensors can enhance the performance of the e-tongues while the other 
non-selective sensors diminish the effect of a complex and changing 
background of interfering compounds. These biosensors can be con-
structed using a wide range of bioreceptors comprising nucleic acids, 
aptamers, antibodies, cells and most importantly enzymes. The addition 
of enzymes not only speed up the sensor’s response, but also offers 
additional kinetic data which can considerably enhance the perfor-
mance of the e-tongue (Podrazka et al., 2017). Bioe-tongue has found 
applications in different areas such as food and beverage analysis, 
environmental monitoring, pharmaceutical analysis and disease diag-
nosis (Wasilewski et al., 2020). 

The data produced by aforementioned analytical techniques is 
analyzed using chemometrics – the art of extracting relevant chemical 
information (Lavine and Workman, 2008). Chemometrics is regarded as 
a subset of the more general domain – machine learning (ML) and 
benefits from the various approaches and algorithms offered by ML 
(Torrione et al., 2014). Several ML algorithms have been applied for 
extracting maximum of information from chemical data. The choice of a 
ML algorithm relies on the objective of the study (clustering, classifi-
cation, or prediction) (Moncayo et al., 2015), the number of data points 
and features, interpretability of the model, data format, linearity of data, 
training time, prediction time and memory requirements (Ramya, 
2020). ML could be divided into (i) supervised (ii) and unsupervised 
learning. 

Supervised learning offers a powerful approach by presenting the 
algorithm with example inputs and their desired classes (outputs) to 
build a general model that maps inputs to classes (Moncayo et al., 2015). 
Supervised learning methodology could also be split up into two sub-
groups: classification and regression. Linear regression analysis is usu-
ally employed in making predictions by way of finding mathematical 
relationships between quantitative variables. Linear regression is 
considered as one of the most primitive ML methodologies which are 
still broadly utilized (Talabis et al., 2015). A wide variety of linear 

regression models include simple linear regression (SLR), multiple linear 
regression (MLR), principal component regression (PCR), partial least 
squares regression (PLSR), and support vector machine (SVM) (Yan and 
Ramasamy, 2019). Linear regression has been utilized in many appli-
cations, for examples, determination of the total polyphenols content in 
green tea (Chen et al., 2008), glucose, fructose, and sucrose in bayberry 
juice (Xie et al., 2009), prediction of microbial numbers on Atlantic 
salmon (Tito et al., 2012) and quantification of urea, creatinine, glucose, 
protein, and ketone in urine (Pezzaniti et al., 2001). Alternatively, 
nonlinear regression is a type of regression analysis in which experi-
mental data are represented by a nonlinear function which is a combi-
nation of one or more independent variables and model parameters 
(Giddings and Ratkowsky, 1991). For instance, one of the nonlinear 
regression algorithms – neural network has the ability of learning 
complex nonlinear relationships from a training dataset. This ability 
makes it appropriate for pattern recognition problems involving the 
uncovering of convoluted tendencies in high-dimensional datasets 
(Guenther, 2001). Classification is established on a collection of 
formerly labeled inputs to generate a discrimination model capable of 
distinguishing between two or multiple classes. Classification is founded 
on the similarities and differences among individuals within the same 
and different classes, respectively, by means of discriminating a set of 
classes based on their measured features or variables. One of the main 
concerns encountered in classification is feature engineering, which 
deals with figuring out the most significant features. Over the past few 
decades, several classification algorithms have been developed, such as 
linear discriminant analysis (LDA), logistic regression (LR), partial least 
squares discriminant analysis (PLS-DA), naive Bayes, k-nearest neigh-
bors (k-NN), artificial neural networks (ANNs), SVM, and decision tree 
algorithms (Subasi, 2020). 

Unsupervised learning is an alternative approach to supervised 
learning, which provides no labels (outputs) to the machine learning 
algorithm. ML models based on unsupervised learning are more con-
voluted and time-consuming. This approach is based on uncovering 
hidden clusters or patterns through common similarities in its input 
data. Two widespread unsupervised learning methods are clustering and 
principal components analysis (PCA). Cluster analysis is utilized for 
revealing similarities between unlabeled and unclassified data points. 
The purpose of this approach is to unearth distinct clusters within a 
dataset where samples in the same cluster possess analogous charac-
teristics to each other. Clustering methods comprise two main methods, 
for instance, k-means clustering (k-means) and hierarchical clustering 
(HC) (Talabis et al., 2015). Meanwhile, PCA is an unsupervised learning 
algorithm used to reduce the dimensions of a dataset while maintaining 
most of the relevant information. PCA converts interconnected variables 

Fig. 1. Schematic of the non-invasive cancer prediction from urine using e-tongues.  
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into uncorrelated variables called principal components (PCs) while 
preserving most of the variation found in the original dataset. PCs are 
linear combinations of the original variables. The order of PCs is 
extremely important as the first few PCs explain almost all the variance 
present in a dataset (Roessner et al., 2011). Unsupervised ML techniques 
like PCA, HC, and k-means have been widely investigated in discrimi-
nating and correlating edible vegetable oils based on their physico-
chemical properties (Herculano et al., 2021), detecting forensic 
documents fraud (Farid et al., 2021), and spotting the exposure of 
pregnant women to a variety of environmental chemical substances 
(Chen et al., 2021). 

The aforementioned development of e-tongues has also led to several 
commercial products over the last few years. Firstly, the SA402B and TS- 
5000Z systems were developed by Insent Inc. (Atsugi-Shi, Japan) and 
are established on Toko’s idea (Toko, 1996). Both instruments comprise 
potentiometric electrodes with lipid-polymeric membranes (Tahara and 
Toko, 2013). Another system known as α-Astree was built by AlphaMOS 
(Toulouse, France), consisting of seven ion-selective field effect tran-
sistors (ISFET). McScience Inc. (Suwon, Korea) also constructed a sensor 
array based on selective polyvinyl chloride and polyurethane mem-
branes for H+, Na+, K+, Ca2+, NH4+, NO3−, Cl− (Ciosek and Wróblewski, 
2007a). These e-tongues have found extensive applications in food 
quality (Cui et al., 2013; Zhang et al., 2015), pharmaceutical analysis 
(Choi et al., 2015; Nakamura et al., 2015), and process monitoring 
(Jambrak et al., 2017; Yan et al., 2017). Importantly, e-tongue systems 
have been applied in cancer diagnosis, for instance, in examining several 
biological fluids such as serum (Lin et al., 2011; Pichardo-Molina et al., 
2007), plasma (Feng et al., 2010, 2011), blood (Kalaivani et al., 2008), 
bile (Untereiner et al., 2014) and sputum (Lewis et al., 2010; Menzies 
et al., 2014) samples. In addition, portable optical e-tongues in the form 
of handheld systems were built by various companies including BWTEK, 
Rikagu Analytical Devices, Metrohm, Agilent in the last few decades. 
These point-of-care diagnostics (POCD) devices can be defined as rapid 
acquisition of medical tests at or near the patient site in order to achieve 
effective treatment in the shortest possible time (Ayatollahi, 2021). 
Today, health-care systems may well be better than in the past, but they 
still have several drawbacks, including (i) consumption of extensive 
financial resources, (ii) inconvenience or sometimes inaccessibility to 
large proportions of the population, particularly those in rural areas and 
developing countries and (iii) struggle in detecting diseases at early 
stages due to limited health status screening. The World Health Orga-
nization (WHO) suggested the establishment of e-Health systems and set 
e-Health as a major priority (WHO, 2018). E-Health can be described as 
the implementation of information communication technologies (ICTs) 
in the health care sector. It offers health care services where distance is a 
critical factor, with the aim of exchanging data to improve patients’ 
management, diagnosis and monitoring (Rodrigues et al., 2016). Unlike 
conventional medical testing devices, e-tongues can be considered as 
e-Health diagnostic devices because of their minimal user involvement, 
low-cost, ability to analyze raw biological samples and manage and 
monitor patient health conditions in underserved area (Christodouleas 
et al., 2018). Such approach makes e-tongues promising for future 
e-Health systems allowing them to achieve efficient real-time online--
based detection of diseases with the help of ML, big data and Internet of 
things (IoT) technologies (Kumar and Panda, 2022). 

2. Analysis of urine using e-tongues for cancer diagnosis 

Cancer is a large group of diseases comprising more than 100 
different and unique diseases. Even though there are various types of 
cancer, they all involve uncontrollable and abnormal cell growth. 
Naturally, normal cells grow and split in a regulated way to deliver 
healthier cells and maintain the body’s health. They could also get 
replaced with new cells when they become old or damaged. Unlike 
normal cells, cancerous cells continue to grow and produce new 
anomalous cells. They could also grow in an uncontrolled way and form 

a mass of tissue (tumor) or invade other organs (metastases) (Mitra 
et al., 2018). According to the WHO, cancer is the second leading cause 
of death. In 2020, cancer accounted for approximately 9.9 million 
deaths. The deadliest cancer types were lung (2.21 million deaths), liver 
(830000) and stomach cancers (769000). Whereas, the most widely 
diagnosed cancer types were breast cancer (2.26 million cases), lung 
(2.21) and prostate cancers (1.41) (Ferlay et al., 2021). 

Common cancer risk factors include age, obesity, physical inactivity, 
excessive red and processed meat consumption, alcohol, tobacco 
smoking, family history, and air pollution. Modifying or avoiding these 
risk factors could prevent 30%–50% of cancer deaths. The mortality rate 
can also be reduced through existing prevention strategies and early 
detection (Akhtar and Bansal, 2017; Makhoul, 2018; Yu et al., 2018). 
Cancer detection could be achieved through physical examination, 
laboratory tests, imaging, or biopsy. Physical examination has often 
been used for cancer detection using palpation to look for lumps, dif-
ferences in skin color, or swelling of an organ. However, physical ex-
amination has several drawbacks, such as expertise and skills of the 
examiner, non-objective findings, lack of reproducibility, many false 
negatives, and incapability of spotting non-palpable cancers (Foster, 
1994; Morimoto et al., 1993). Clinical tests are also used to diagnose 
cancer; these tests are based on urine or blood analysis which may help 
pinpoint anomalies that can be triggered by cancer (Sharma, 2009). 
Cancer prognosis and diagnosis could also be attained using a large 
variety of imaging techniques including mammography, ultrasound, 
Doppler imaging, computerized tomography (CT), magnetic resonance 
imaging (MRI), positron emission tomography (PET), microwave im-
aging, and their variations and combinations. These techniques allow 
cancer detection through an examination of bones and internal organs 
(Hayat, 2008). However, they present several disadvantages such as 
high cost, radiation exposure, long acquisition time, low spatial reso-
lution, cannot be used for whole-body imaging, limited tissue depth 
penetration, and poor soft-tissue contrast (Sivasubramanian et al., 
2014). A biopsy is considered as the only definite approach to identify 
cancer since it involves collecting cells and their analysis in a microscope 
to look for dissimilarities between normal and cancerous cells. These 
differences could be observed in the form of non-uniformity, cells size, 
and organization (Woods and Reichart, 2017). Nevertheless, tissue 
collection is unsafe, painful, and unpleasant for the patient and some-
times is inaccessible. Additionally, solid biopsy is costly, 
time-consuming, and non-repeatable (Marrugo-Ramírez et al., 2018). 
Hence, an urgent demand for non-invasive, portable, and low-cost 
cancer diagnosis methods. 

Urine is a transparent, sterile and amber-colored biological fluid 
formed using filtration, reabsorption, and tubular secretion from the 
kidney. It contains more than 95% of water, inorganic salts (chloride, 
sodium and potassium), and small soluble organic molecules such as 
urea (most abundant organic metabolite found in urine), hydroxy acids 
and derivatives (like citric acid), ammonia, creatinine, hippuric acid, 
amino acids and derivatives, carbohydrates and carbohydrate conju-
gates (Bouatra et al., 2013; Sensabaugh, 2015; Zhang et al., 2020) which 
are present due to two pharmacokinetic processes (metabolism and 
excretion). In short, these endogenous molecules are converted into 
more water-soluble molecules under a process named metabolism prior 
to their excretion into urine (Saghir, 2019). The diverse and rich urine 
composition in patients diagnosed with cancer may help unravel novel 
cancer biomarkers that could be useful in cancer prognosis and diagnosis 
(Sadana and Sadana, 2015). Even though blood analysis has now 
replaced numerous urine tests in clinical laboratories, urinalysis still 
presents some advantages, including (a) convenient collection, espe-
cially for screening uses, (b) high concentration of metabolites 
comparing to blood, which ease their detection (c) unnecessity of sample 
preparation before urinalysis as it is often free of interfering molecules 
like lipids and proteins compared to blood (d) physical characteristics of 
urine such as volume, color, turbidity or smell. Abnormalities in these 
characteristics may designate disease or metabolic imbalances 

M. Zniber et al.                                                                                                                                                                                                                                  



Biosensors and Bioelectronics 219 (2023) 114810

4

(Challand and Jones, 1994). By using e-tongue, this review provides a 
perspective on cancer diagnosis from urine in non-invasive, portable, 
and low-cost manner. Therefore, nuclear magnetic resonance (NMR) 
and mass spectrometry (MS) based e-tongues are excluded from the 
review due to expensive instrumentation, complex sample 
pre-treatment, and well-qualified technicians. Herein, the focus are 
spectroscopic (Raman, infrared, and fluorescence) and electroanalytical 
(potentiometry and voltammetry) techniques, which present little to no 
sample preparation, fast, non-destructive, and on-site analysis, and 
miniaturization. 

2.1. Raman spectroscopy 

Raman spectroscopy is an attractive analytical technique that ex-
tracts chemical information by investigating individual chemical bond 
vibrations of molecules. This technique employs the inelastic scattering 
of light to generate Raman spectra (Old et al., 2014). As soon as light 
interacts with a molecule, a portion of the light is scattered with an 
identical wavelength as the incident light. This phenomenon is well 

known as Rayleigh scattering. The intensity of this scattering varies 
strongly with wavelength. However, a significantly smaller fraction of 
light will reveal a minor shift in wavelength (about 10− 6 of the original 
light) due to the interaction between the vibrating bonds and the inci-
dent photons. The wavelength of the scattered photons can be higher or 
lower wavelength comparing to that of the incident light. These wave-
length shifts are recognized as stokes and anti-stokes, respectively, and 
establish the core of Raman spectroscopy (Kloprogge, 2016). Raman 
spectroscopy is a non-destructive and non-invasive technique that does 
not necessitate any sample preparation. Raman spectra have charac-
teristic peaks specific to chemical bonds in the sample, and their in-
tensities are proportional to the concentration of the analyte being 
analyzed (Giridhar et al., 2017). Raman spectroscopy’s tolerance to 
water due to the weak Raman signal of water molecules –OH vibrational 
modes makes it suitable for analyzing water-containing samples with 
biological origins (Çulha, 2015). The range of applications of Raman 
spectroscopy extends from crucial biomolecules such as lipids, proteins, 
nucleic acids, and carbohydrates to body fluids, including urine, cell 
cultures, and tissue samples. Raman spectroscopy produces a unique 

Table 1 
Summary of e-tongues based on electroanalytical (potentiometry and voltammetry) and spectroscopic (Raman, infrared and fluorescence) methods for cancer 
diagnosis from urine.  

Method Cancer Algorithm Accuracy Sensitivity Specificity Reference 

Raman spectroscopy Cervical LDA 100% 100% 100% Pappu et al. (2017) 
Raman spectroscopy Adenocarcinoma GA-QDA 95.6% 94.4% 100% Maitra et al. (2020) 
Raman spectroscopy Oral PCA-LDA 75% 80% 70% Brindha et al. (2016) 
Raman spectroscopy Oral PCA-LDA 90.9% 86.3% 92.9% Elumalai et al. (2015) 
Raman spectroscopy Oral PCA-LDA 93.7% 98.6% 87.1% Brindha et al. (2017) 
Raman spectroscopy Oral PCA-LDA 93.7% 98.6% 87.1% Elumalai et al. (2014) 
Raman spectroscopy Breast PCA-LDA 91% (concentrated 

urine, tumor groups) 
N/A N/A Bhattacharjee et al. 

(2015) 
Raman spectroscopy Bladder PCA, -LDA, -DFA 

and -ANN 
N/A 100% 100% Kerr et al. (2014) 

SERS Breast PCA-LDA 88% 81% 95% Moisoiu et al. (2019) 
SERS Prostate GA-PLS-LDA 86.6% 86% 87.1% Ma et al. (2020) 
SERS Prostate PCA-LDA 95% 100% 89% Mistro et al. (2015) 
SERS Prostate and bladder PCA-LDA 89% N/A N/A Cui et al. (2020) 
SERS Esophagus PCA-LDA 82.05% 72.3% 96.8% Huang et al. (2014b) 
SERS Esophagus PCA-LDA 86.3% 89.3% 83.3% Huang et al. (2014a) 
SERS Nasopharyngeal and 

esophageal 
PLS-DA 96.7% 93.5% 100% Feng et al. (2017) 

Infrared spectroscopy 
(FEWS ATR-FTIR) 

Bladder PLSDABM, PLSDAJ, 
PLSDAB 

82.35% 83.3% 87.5% Bensaid et al. (2017) 

Infrared spectroscopy 
(ATR-FTIR) 

Esophageal PCA-QDA 100% 100% 100% Maitra et al. (2019) 

Infrared spectroscopy 
(ATR-FTIR) 

Prostate PCA-LDA N/A 83% 60% Yap et al. (2019) 

Infrared micro- 
spectroscopy 

Bladder PCA N/A N/A N/A Bird et al. (2008) 

Infrared spectroscopy Bladder PCA N/A N/A N/A Gok et al. (2016) 
Infrared spectroscopy 

(ATR-FTIR) 
Endometrial and ovarian PLS-DA, PCA-SVM 

(best model) and 
GA-LDA 

Endometrial (95%), 
Ovarian (100%) 

Endometrial (95%), 
Ovarian (100%) 

Endometrial 
(100%), 
Ovarian 
(96.3%) 

Paraskevaidi et al. 
(2018) 

Fluorescence (emission 
spectra and Stokes shift 
spectra) 

Cervical SLDA 82% 80% 78% Masilamani et al. 
(2012) 

Fluorescence (emission 
spectra and Stokes shift 
spectra) 

Breast, cervical, colon, 
leukemia, esophagus, liver 
and bladder 

DCA 86.7% 76% 92% Masilamani et al. 
(2010) 

Fluorescence (excitation 
emission matrices) 

Head and neck, breast and 
cervical cancer 

SLDA 94% 95% 94.4% Rajasekaran et al. 
(2013) 

Fluorescence (laser 
confocal microscopy) 

Bladder Naive Bayes N/A 93% 100% Fu et al. (2007) 

Fluorescence (photo- 
bleaching) 

Oral NMC 82% 78% 86% Dutta et al. (2019) 

Potentiometry Prostate PCA, SIMCA, PLS- 
DA, RF and LR 

(LR) 93% 100% 93% Solovieva et al. 
(2019) 

Voltammetry Bladder AHC N/A N/A N/A Doménech-Carbó 
et al. (2018) 

Voltammetry Prostate PLS-DA N/A 91% 73% Pascual et al. (2016) 
Potentiometry Bladder FPB-NN, PLS-DA 92.2% N/A N/A Lvova et al. (2009)  
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fingerprint based on the various components found in biological 
samples. 

Raman analysis of biological fluids is often difficult due to the 
complexity of samples. Raman spectra from biological fluids such as 
urine, blood, and saliva are dense and comprise various biomolecules. 
Moreover, the differences between healthy and cancer samples are very 
small and hard to detect in raw spectra. Therefore, data processing of 
these complex spectra can help obtain meaningful information for 
diagnosing cancer (Gautam et al., 2015; Kuhar et al., 2018). Numerous 
studies have shown the ability of Raman spectroscopy and ML to 
discriminate urine samples of patients diagnosed with cancer and 
healthy controls with high accuracy, specificity, and sensitivity. 

Raman spectroscopy has been implemented in studies involving the 
detection of different types of cancers. Raman spectroscopy was utilized 
by (Bhattacharjee et al., 2015) for preliminary breast cancer diagnosis 
on animal models in combination with PCA-LDA. This approach led to 
classification efficiencies of 80% and 72% using unprocessed urine and 
78% and 91% using concentrated urine for controls (C) (obtained by 
vacuum dehydration) and breast tumor-bearing rats (T), respectively 
(Table 1). Moreover, the discrimination was achieved between urine 
samples collected from prior breast tumor development (TT) in rats and 
rats that did not develop tumors despite carcinogen treatment (NTT). 
Concentrated urine of NTT rats could be classified as ‘normal’ (C or NTT) 
with ~83% efficiency, whereas concentrated urine from visibly and 
palpably normal rats that eventually developed tumor (TT rats) could be 
classified as ‘abnormal’ (TT or T) with ~72.5% efficiency (Table 1). 

In cancer diagnosis of human samples, (Pappu et al., 2017) employed 
Raman spectroscopy and LDA to discriminate between patients diag-
nosed with cervical cancer and healthy controls from urine samples. 
LDA was utilized to analyze the Raman spectra, and the established 
model achieved an accuracy of 100% for cervical cancer detection 
(Table 1). Raman spectroscopy and genetic algorithm quadratic 
discriminant analysis (GA-QDA) were utilized by (Maitra et al., 2020) to 
distinguish normal, squamous epithelium, inflammatory, Barrett’s, 
low-grade dysplasia, high-grade dysplasia and esophageal adenocarci-
noma from plasma, serum, saliva, and urine. The model accomplished 
100% discrimination for all saliva and urine samples categories using 
only 16 wavenumbers (Table 1). Raman spectroscopy was also used by 
(Brindha et al., 2016) to discriminate oral malignant patients and 
healthy volunteers (n = 10) from blood, saliva, and urine samples using 
PCA-LDA. This approach led to classification models with similar results 
for blood, saliva, and urine (accuracy 75%, specificity 80%, and sensi-
tivity 70%) (Table 1). To obtain higher accuracy, sensitivity, and spec-
ificity, a higher number of patients (n = 121) has been used (Elumalai 
et al., 2015) (Kumar and Sharma, 2018) to diagnose oral cancer and 
healthy controls as the number of samples is important for obtaining 
accurate and reliable results. The same approach has been used by 
(Elumalai et al., 2014) to differentiate normal and oral cancer subjects 
(n = 167), leading to a classification model with a sensitivity and 
specificity of 98.6% and 87.1%, respectively, and overall accuracy of 
93.7% (Table 1). 

Even though low- and high-wavenumber Raman spectroscopy 
showed a good classification accuracy for the diagnosis of oral cancer 
(Brindha et al., 2017), the high-wavenumber (of 2600–3500 cm−1) had 
shown a slight advantage over the fingerprint region to discriminate 
urine samples from normal subjects, oral premalignant and malignant 
patients (n = 80). Discriminant analysis was performed using PCA-LDA 
across normal and oral premalignant, normal and oral malignant, and 
between the three groups. The diagnostic accuracy was 94.9%, 92.1%, 
and 89.1%, respectively (Table 1). Urinary metabolites such as flavo-
proteins, tryptophan, and phenylalanine were responsible for the spec-
tral differences between these three groups. In another study, 
classification sensitivity and specificity of the e-tongue in urine analysis 
of bladder cancer cells can be optimized by excitation wavelengths and 
sample substrates (Kerr et al., 2014). The results confirmed that the 
excitation wavelength of 473 nm surpasses that of 532 nm, while the 

glass and fused silica gave comparable and consistent results comparing 
to calcium fluoride. This study also showed that the combination of ANN 
and discriminant function analysis (DFA) with PCA achieved the best 
results. 

The cross-section of Raman scattering is extremely small, leading to 
very low scattering efficiency and therefore limiting its sensitivity. 
However, the weak Raman signal can be significantly enhanced using 
surface-enhanced Raman spectroscopy (SERS). SERS was unintention-
ally discovered by (Fleischmann et al., 1974) when they attempted to 
perform Raman analysis using pyridine (Py) on a roughened silver (Ag) 
electrode to produce a high surface area on the roughened metal surface. 
Surprisingly, the quality of the acquired Raman spectra was very high. 
Therefore, assuming that the increase of the surface area mainly triggers 
the increase of the Raman intensity. Nevertheless (Albrecht and 
Creighton, 1977; Jeanmaire and Van Duyne, 1977), comprehended that 
the rise of the surface area is not the main reason for the Raman 
enhancement until (Jeanmaire and Van Duyne, 1977) suggested that an 
electromagnetic effect is responsible for this enhancement. Their prop-
osition is based on the excitation of localized surface plasmons, while 
(Albrecht and Creighton, 1977) advocated that it is mainly due to a 
charge transfer effect of the adsorbed molecule on the metal surface. It is 
still challenging to separate these two effects experimentally, and the 
precise mechanism of the enhancement effect of SERS is still a matter of 
controversy in the literature (Sur, 2010). Nevertheless, SERS has been 
proven as a novel e-tongue for urine screening of breast, bladder, 
esophagus, nasopharyngeal, and prostate cancers (Cui et al., 2020; Feng 
et al., 2017; Huang et al., 2014a, 2014b; Ma et al., 2020; Mistro et al., 
2015; Moisoiu et al., 2019) using silver nanoparticles (AgNP) and gold 
nanoparticles (AuNP) as SERS substrates. Various algorithms such as 
PCA-LDA, genetic algorithms partial least squares linear discriminant 
analysis (GA-PLS-LDA), and PLS-DA have been used to discriminate 
urine of cancer patients from that of healthy controls. All models ach-
ieved a sensitivity of >81%, a specificity of >97%, and overall accuracy 
of >86% (Table 1). It is worth mentioning that urinary modified nu-
cleosides are degradation products of nucleic acids and are a typical 
tumor marker for different cancer types presented in human urine 
(Schram, 1998). Therefore, their usage led to better results compared to 
raw urine samples suggesting that the combination of urinary modified 
nucleosides, SERS, and PLS-DA is powerful for the clinical diagnosis of 
esophageal and nasopharyngeal cancer. 

2.2. Infrared spectroscopy 

Nearly all chemical vibrations arise at the infrared region’s energy 
levels and produce a distinctive vibrational fingerprint. Chemical vi-
brations are visible in the infrared regions as long as there is a change in 
the molecule’s dipole moment (Haris and Chapman, 1992). Such vi-
brations can be visualized using a spectrum of wavenumbers usually 
measured in the mid-infrared range (4000–400 cm−1) (Lewis et al., 
2010; Panikuttira and O’donnell, 2018). Consequently, the infrared 
spectrum is constructed throughout the measurement of the absorbed 
and transmitted light after passing through a sample. In the case of 
biological samples, the resulting infrared spectrum is convoluted due to 
the large number and size of molecules present in the sample. Infrared 
spectroscopy presents numerous advantages, including a 
non-invasiveness, wide variety of applications, minimal preparation and 
amount of sample, short acquisition time (Barth, 2007). When working 
with tissue samples, infrared spectroscopy is advantageous as infrared 
spectra normally have a higher signal-to-noise ratio than Raman spectra 
(Kendall et al., 2009). Nevertheless, it is quite challenging to use 
infrared spectroscopy in vivo applications since most biological samples 
contain a high water content, as water is extremely absorptive in 
infrared spectroscopy (Kendall et al., 2009; Mackanos and Contag, 
2010). 

In combination with ML, infrared spectroscopy has been widely used 
in diagnosing ovarian, breast, colorectal, oral, and lung cancers from 
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different biological samples, including blood serum, plasma and saliva 
(Backhaus et al., 2010; Barlev et al., 2016; Bel’skaya et al., 2019; Fer-
reira et al., 2020; Gajjar et al., 2013; Zlotogorski-Hurvitz et al., 2019). 
(Bird et al., 2008; Gok et al., 2016) reported an automatic method for 
bladder cancer screening from cells found in human urine. Infrared 
spectroscopy and PCA revealed distinct spectral classes which correlate 
with visual cytology and cystoscopy. Both techniques reached satisfac-
tory results in clustering bladder cancer patients and healthy controls. 
Whereas (Bensaid et al., 2017) used a new system based on fiber-optic 
evanescent wave spectroscopy (FEWS) technology to acquire spectra 
from voided urine and bladder wash samples from bladder cancer pa-
tients and healthy controls. PLS-DA was used with three new rules 
Bayesian (PLSDAB), joint (PLSDAJ), and best model (PLSDABM). A 
comparative study with SVM and k-means clustering was conducted, 
and an optimal accuracy was achieved by joint PLSDAJ and best model 
PLSDABM (82.35%) (Table 1). The proposed statistical methods were 
implemented in an e-tongue that is very encouraging in automatic 
bladder cancer detection. 

(Maitra et al., 2019) used infrared spectra acquired from urine, 
plasma, saliva, and serum to discriminate between four different classes 
of esophageal disease: Barrett’s, inflammation, high-grade dysplasia, 
low-grade dysplasia, and esophageal adenocarcinoma. The GA-QDA 
model achieved 100% accuracy (Table 1), specificity, and sensitivity 
using the urine dataset. The same results were achieved by (Maitra et al., 
2020) when using Raman spectroscopy. Both techniques showed 
promising results for esophageal cancer discrimination. 

Additionally (Paraskevaidi et al., 2018), used attenuated total 
reflectance infrared spectroscopy (ATR-FTIR) to discriminate between 
endometrial and ovarian cancer patients and healthy volunteers from 
urine samples using multivariate classification algorithms. PLS-DA, 
PCA-SVM, and GA-LDA approach led to classification models with 
different sensitivity, accuracy, and specificity of which PCA-SVM ach-
ieved high levels of accuracy for both endometrial and ovarian cancer 
(Table 1). In addition to this (Yap et al., 2019) implemented ATR-FTIR to 
investigate urine extracellular vesicles as potential biomarkers for 
prostate cancer detection. Preliminary results of a PCA-LDA model 
performed on a small dataset (11 patients) showed a potential devel-
opment of an ATR-FTIR diagnostic approach for prostate cancer. The 
model achieved a sensitivity of 83% and a specificity of 60% (Table 1). 

2.3. Fluorescence spectroscopy 

Fluorescence spectroscopy is a strong and efficient technique to 
explore the chemical and physical characteristics of molecules. The 
Jablonski diagram suggests a useful explanation of the relevant transi-
tions and excited states. The excitation process is initiated by a fast 
transition from the ground state to the excited state. Following excita-
tion, the compound is rapidly relaxed to its lowest vibrational level of 
the excited electronic state. The process of vibrational relaxation hap-
pens on a timescale of femtoseconds to picoseconds. Fluorescence 
emission occurs as soon as the fluorophore decays from the singlet 
excited state to a permissible vibrational level in the ground state. The 
fluorescence emission and excitation spectra indicate the vibrational 
levels in the ground and the excited states, respectively (Lakowicz, 
2006). 

The key advantage of fluorescence spectroscopy is its high sensitivity 
(10–100 folds compared to UV-VIS spectroscopy) and its capability to 
quantify traces of fluorophores using a very low amount of sample. This 
high sensitivity makes fluorescence one of the best existing techniques 
for trace analysis (Itagaki, 2000). Fluorescence spectroscopy is an 
effective tool broadly utilized for medical, forensic, genetic, and 
biotechnological applications to obtain quantitative and qualitative in-
formation (Chirayil et al., 2017). Thus, several fluorescence-based 
e-tongues have been applied for cancer diagnosis through urine, e.g. 
in cervical cancer diagnosis (Masilamani et al., 2010, 2012). The fluo-
rescence emission spectra (FES) and Stokes shift spectra (SSS) are 

analyzed to discriminate urine and blood samples of cervical cancer 
patients against those of breast, colon, leukemia, esophagus, liver and 
bladder cancer patients and healthy controls (Table 1). This technique 
showed that the relative fluorescence intensities of porphyrin, flavin, 
NADH, and collagen are distinctly different in cervical cancer patients. 
Not only fluorescence intensity but also the fluorescence 
excitation-emission matrices (EEM) have been used to discriminate be-
tween patients diagnosed with head and neck, breast, and cervical 
cancer from healthy controls (Rajasekaran et al., 2013). EEM is a 
three-dimensional matrix consisting of an excitation-emission-intensity 
spectrum. This technique is rapid, selective, and highly sensitive. It 
can acquire a large amount of data by simultaneously varying the 
emission and excitation wavelengths (Heidari et al., 2018). EEMs were 
used as an input for stepwise linear discriminant analysis (SLDA), 
leading to a classification model with a sensitivity, specificity, and 
overall accuracy of 95%, 94.4%, and 94%, respectively (Table 1). 

Fluorescence cytology of urine was also capable of detecting bladder 
cancer (Fu et al., 2007). Urinary cells were extracted and incubated with 
a novel photosensitizer called hypericin to improve the fluorescence 
contrast between healthy and cancerous cells, and laser confocal mi-
croscopy (LCM) was used to capture fluorescence images. Bayes classi-
fier was applied on the fluorescence images, leading to a discrimination 
model with 93% and 100% sensitivity and specificity, respectively 
(Table 1) and outperforming urine cytology in discriminating benign 
and low-grade tumor (sensitivity of 87% and specificity of 40%). Further 
(Dutta et al., 2019), used fluorescence photo-bleaching of human urine 
samples to evaluate its ability to discriminate between oral cancer pa-
tients and healthy volunteers. The spectral differences between oral 
patients and healthy volunteers were attributed to flavin adenine 
dinucleotide (FAD), nicotinamide adenine dinucleotide (NADH) and 
porphyrins. Photo-bleaching constants were explored by a near mean 
classifier (NMC) based algorithm using leave-one-out cross-validation. 
The NMC model achieved an overall accuracy of 82%, sensitivity of 78% 
and a specificity of 86% in classifying the two classes of urine samples 
and showing the potential of photo-bleaching as an alternative approach 
for oral cancer diagnosis (Table 1). 

2.4. Electrochemistry 

Electrochemical tongues are one of the most common approaches for 
chemical analysis by monitoring electrochemical signals of a working 
electrode responsive to the change of the analyte concentration (Ciosek 
et al., 2006; Ciosek and Wróblewski, 2007b; del Valle, 2010). According 
to their operation mode, sensor array of electrochemical tongues can be 
divided into four categories: potentiometric, voltammetric/ampero-
metric, conductometric, and impedimetric sensors (Fraden, 2010). 

Potentiometric sensors are established on measuring the potential 
between a reference electrode and a working electrode at zero current or 
with a small anodic or cathodic current applied to the indicator elec-
trode (Allen, 2010). The potential of the reference electrode is constant 
during measurement, while that of the working electrode varies with the 
concentration of the analyte (Isildak and Özbek, 2020). At zero current, 
the potential-current formula can be written in the form of the Nernst 
equation, which oversees almost every operation in potentiometric 
sensors (Janata and Janata, 2009a). Potentiometric sensors are 
non-destructive, selective, low cost, easy to fabricate, and their mode of 
operation is well-studied. However, their potential measurements are 
affected by temperature, deactivation of the sensing surface due to the 
adsorption on the working electrode, precipitation, or corrosion (Miró 
and Frenzel, 2019). These sensors are widely found in electrochemical 
tongues and used in various fields and applications (Śliwińska et al., 
2014). However, their application in cancer diagnosis from urine is very 
scarce. Solovieva et al. (2019) used a potentiometric e-tongue contain-
ing twenty-eight sensors to distinguish urine samples obtained from 
prostate cancer patients and healthy volunteers using different ML al-
gorithms (PCA, SIMCA, PLS-DA, RF, and LR). Following variable 
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selection, an optimized sensor set containing nineteen sensors and lo-
gistic regression allowed constructing a classification model with 100% 
sensitivity, 97% accuracy, and 93% specificity (Table 1). On the other 
hand (Lvova et al., 2009) reported a potentiometric e-tongue containing 
metallic sensors and ion-selective electrodes with PVC solvent polymeric 
membranes. The e-tongue with dedicated sensors distinguished bladder 
cancer samples from the controls using PLS-DA and forward 
back-propagation neural networks. 

Voltammetric and amperometric sensors are focused on measuring 
the electrical current generated throughout a redox reaction. The in-
formation is extracted from the relationship between the generated 
current and the concentration of the analyte (Janata and Janata, 2009b). 
Amperometric sensors are based on a constant potential, while the 
applied potential in the case of voltammetric sensors is varied. A 
three-electrode system comprising a working, a counter, and a reference 
electrode, is usually employed in these sensors, although a two-electrode 
system can also be utilized. The main advantage of a three-electrode 
system is its ability to apply and monitor the potential through the 
reference electrode accurately and measure the current by way of the 
counter electrode (Zhang and Hoshino, 2019). (Pascual et al., 2016) 
demonstrated the use of a simple voltammetric e-tongue based on 
metallic electrodes and PLS-DA. This method discriminated between 
urine samples from patients with prostate cancer and non-cancer urine 
samples (patients after radical prostatectomy and patients diagnosed 
with BPH) with a sensitivity of 91% and a specificity of 73% (Table 1). 
Direct electrochemical analysis of urine was also performed by 
(Doménech-Carbó et al., 2018) using a dual voltammetric sensor array 
based on gold and glassy carbon electrodes and ascendant hierarchical 
classification (AHC) to cluster urine samples obtained from bladder 
cancer patients and healthy controls. The obtained voltammetric pro-
files for urine displayed significant differences using AHC as a pattern 
recognition algorithm. 

3. Conclusion and future trends 

E-tongues have shown great potential in dealing with complex bio-
logical fluids and reducing their interfering effect. E-tongue systems 
offer rapid, little-to-no-sample preparation, non-destructive, miniaturi-
zation, and on-site capabilities, unlike other expensive and time- 
consuming analytical techniques. In this review, the authors reported 
e-tongues developed for solving difficult and increasing challenges 
related to early cancer diagnosis. Table 1 exhibits the list of cancers 
diagnosed by e-tongues and bladder and prostate cancers are the two 
focus type of cancers. Different spectroscopic and electrochemical 
techniques (Table 1) have been used as e-tongues. They have shown 
remarkable capabilities to discriminate urine samples of the cancer pa-
tients from those of healthy individuals. The review also showed that 
bladder cancer, prostate, oral, cervical, and breast cancer are the most 
widely studied cancer types by e-tongues. Among techniques, Raman 
and SERS have been broadly employed in non-invasive cancer diagnosis 
from urine compared to the other analytical techniques due to their 
prominent usage in chemical analysis of biological fluids, rich chemical 
information and non-invasiveness. Hence, its widely use in cancer 
screening, diagnosis, and intraoperative surgical guidance in the past 
ten years (Cui et al., 2018). In addition, innovation in data collection and 
pattern recognition algorithms of the e-tongues (e.g. PCA-LDA and 
PLS-DA) have displayed good classification efficiencies. 

Previous studies focused more on invasive biological fluids such as 
blood and serum, while non-invasive study with urine offers comparable 
diagnostic capabilities. However, a relatively lower number of samples 
knowing that the size of data highly impacts the quality of the mapping 
function and performance of the model. Furthermore, the complexity of 
the data and the problem suggests using advanced signal analysis al-
gorithms compared to the ones used in these studies. Lastly, the litera-
ture about the development of point-of-care devices is very scarce. 
Therefore, we believe that more studies of e-tongues related to different 

kind of cancer types, large number of patients, point-of-care or lab-on-a- 
chip device (Daikuzono et al., 2015; Kumar and Panda, 2022), and more 
advanced ML algorithms such as boosting algorithms (Gradient Boost, 
AdaBoost, XGBoost and CatBoost) and neural networks, are absolutely 
essential for bringing them closer to consumers as portable and low-cost 
early cancer diagnosis devices. 

Credit author statement 

M. Zniber: idea and writing - original draft, P. Vahdatiyekta: 
writing-reviewing, T.-P. Huynh: idea and writing-reviewing and 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

TPH would like to acknowledge the Academy of Finland (Grant No. 
323240). PY thanks the financial support from the EDUFI Fellowship. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bios.2022.114810. 

References 

Akhtar, N., Bansal, J.G., 2017. Risk factors of lung cancer in nonsmoker. Curr. Probl. 
Cancer. https://doi.org/10.1016/j.currproblcancer.2017.07.002. 

Albrecht, M.G., Creighton, J.A., 1977. Anomalously intense Raman spectra of pyridine at 
a silver electrode. J. Am. Chem. Soc. 99, 5215–5217. https://doi.org/10.1021/ 
ja00457a071. 

Allen, J. Bard, Faulkner, Larry R., 2010. Electrochemical Methods: Fundamentals and 
Applications, second ed. 

Ayatollahi, H., 2021. Point-of-care diagnostics with smartphone. Smartphone-Based 
Detect. Devices 363–374. https://doi.org/10.1016/B978-0-12-823696-3.00017-9. 

Bachmann, T.T., Schmid, R.D., 1999. A disposable multielectrode biosensor for rapid 
simultaneous detection of the insecticides paraoxon and carbofuran at high 
resolution. Anal. Chim. Acta 401, 95–103. https://doi.org/10.1016/S0003-2670(99) 
00513-9. 

Backhaus, J., Mueller, R., Formanski, N., Szlama, N., Meerpohl, H.G., Eidt, M., Bugert, P., 
2010. Diagnosis of breast cancer with infrared spectroscopy from serum samples. 
Vib. Spectrosc. 52, 173–177. https://doi.org/10.1016/j.vibspec.2010.01.013. 

Bagnasco, L., Cosulich, M.E., Speranza, G., Medini, L., Oliveri, P., Lanteri, S., 2014. 
Application of a voltammetric electronic tongue and near infrared spectroscopy for a 
rapid umami taste assessment. Food Chem. 157, 421–428. https://doi.org/10.1016/ 
j.foodchem.2014.02.044. 

Barlev, E., Zelig, U., Bar, O., Segev, C., Mordechai, S., Kapelushnik, J., Nathan, I., 
Flomen, F., Kashtan, H., Dickman, R., Madhala-Givon, O., Wasserberg, N., 2016. 
A novel method for screening colorectal cancer by infrared spectroscopy of 
peripheral blood mononuclear cells and plasma. J. Gastroenterol. 51, 214–221. 
https://doi.org/10.1007/s00535-015-1095-7. 

Barth, A., 2007. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 
https://doi.org/10.1016/j.bbabio.2007.06.004. 

Becker, E.M., Christensen, J., Frederiksen, C.S., Haugaard, V.K., 2003. Front-face 
fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of 
riboflavin. J. Dairy Sci. 86, 2508–2515. https://doi.org/10.3168/jds.s0022-0302 
(03)73845-4. 

Bel’skaya, L.V., Sarf, E.A., Gundyrev, I.A., 2019. Study of the IR spectra of the saliva of 
cancer patients. J. Appl. Spectrosc. 85, 1076–1084. https://doi.org/10.1007/ 
s10812-019-00762-z. 

Bensaid, S., Kachenoura, A., Costet, N., Bensalah, K., Tariel, H., Senhadji, L., 2017. 
Noninvasive detection of bladder cancer using mid-infrared spectra classification. 
Expert Syst. Appl. 89, 333–342. https://doi.org/10.1016/j.eswa.2017.07.052. 

Beullens, K., Kirsanov, D., Irudayaraj, J., Rudnitskaya, A., Legin, A., Nicolaï, B.M., 
Lammertyn, J., 2006. The electronic tongue and ATR-FTIR for rapid detection of 
sugars and acids in tomatoes. Sensor. Actuator. B Chem. 116, 107–115. https://doi. 
org/10.1016/j.snb.2005.11.084. 

Bhattacharjee, T., Khan, A., Maru, G., Ingle, A., Krishna, C.M., 2015. A preliminary 
Raman spectroscopic study of urine: diagnosis of breast cancer in animal models. 
Analyst 140, 456–466. https://doi.org/10.1039/c4an01703j. 

M. Zniber et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.bios.2022.114810
https://doi.org/10.1016/j.bios.2022.114810
https://doi.org/10.1016/j.currproblcancer.2017.07.002
https://doi.org/10.1021/ja00457a071
https://doi.org/10.1021/ja00457a071
http://refhub.elsevier.com/S0956-5663(22)00850-8/sref3
http://refhub.elsevier.com/S0956-5663(22)00850-8/sref3
https://doi.org/10.1016/B978-0-12-823696-3.00017-9
https://doi.org/10.1016/S0003-2670(99)00513-9
https://doi.org/10.1016/S0003-2670(99)00513-9
https://doi.org/10.1016/j.vibspec.2010.01.013
https://doi.org/10.1016/j.foodchem.2014.02.044
https://doi.org/10.1016/j.foodchem.2014.02.044
https://doi.org/10.1007/s00535-015-1095-7
https://doi.org/10.1016/j.bbabio.2007.06.004
https://doi.org/10.3168/jds.s0022-0302(03)73845-4
https://doi.org/10.3168/jds.s0022-0302(03)73845-4
https://doi.org/10.1007/s10812-019-00762-z
https://doi.org/10.1007/s10812-019-00762-z
https://doi.org/10.1016/j.eswa.2017.07.052
https://doi.org/10.1016/j.snb.2005.11.084
https://doi.org/10.1016/j.snb.2005.11.084
https://doi.org/10.1039/c4an01703j


Biosensors and Bioelectronics 219 (2023) 114810

8

Bird, B., Romeo, M.J., Diem, M., Bedrossian, K., Laver, N., Naber, S., 2008. Cytology by 
infrared micro-spectroscopy: automatic distinction of cell types in urinary cytology. 
Vib. Spectrosc. 48, 101–106. https://doi.org/10.1016/j.vibspec.2008.03.006. 

Bouatra, S., Aziat, F., Mandal, R., Guo, A.C., Wilson, M.R., Knox, C., Bjorndahl, T.C., 
Krishnamurthy, R., Saleem, F., Liu, P., Dame, Z.T., Poelzer, J., Huynh, J., Yallou, F. 
S., Psychogios, N., Dong, E., Bogumil, R., Roehring, C., Wishart, D.S., 2013. The 
human urine metabolome. PLoS One 8. https://doi.org/10.1371/journal. 
pone.0073076. 

Brindha, E., Rajasekaran, R., Aruna, P., Koteeswaran, D., Ganesan, S., 2016. Raman 
spectroscopy of bio fluids: an exploratory study for oral cancer detection. Opt. 
Biopsy XIV Towar. Real-Time Spectrosc. Imaging Diagnosis 9703, 97031T. https:// 
doi.org/10.1117/12.2212684. 

Brindha, E., Rajasekaran, R., Aruna, P., Koteeswaran, D., Ganesan, S., 2017. High 
Wavenumber Raman Spectroscopy in the Characterization of Urinary Metabolites of 
Normal Subjects, Oral Premalignant and Malignant Patients, Spectrochimica Acta - 
Part A: Molecular and Biomolecular Spectroscopy. Elsevier B.V. https://doi.org/ 
10.1016/j.saa.2016.06.048. 

Challand, G.S., Jones, J.L., 1994. The chemical analysis of urine. In: Scientific 
Foundations of Biochemistry in Clinical Practice. Elsevier, pp. 317–324. https://doi. 
org/10.1016/b978-0-7506-0167-2.50023-6. 

Chen, Q., Zhao, J., Liu, M., Cai, J., Liu, J., 2008. Determination of total polyphenols 
content in green tea using FT-NIR spectroscopy and different PLS algorithms. 
J. Pharm. Biomed. Anal. 46, 568–573. https://doi.org/10.1016/j.jpba.2007.10.031. 

Chen, H., Zhang, W., Zhou, Y., Li, J., Zhao, H., Xu, S., Xia, W., Cai, Z., Li, Y., 2021. 
Characteristics of exposure to multiple environmental chemicals among pregnant 
women in Wuhan, China. Sci. Total Environ. 754, 142167 https://doi.org/10.1016/ 
j.scitotenv.2020.142167. 

Chirayil, C.J., Abraham, J., Mishra, R.K., George, S.C., Thomas, S., 2017. Instrumental 
techniques for the characterization of nanoparticles. In: Thermal and Rheological 
Measurement Techniques for Nanomaterials Characterization. Elsevier, pp. 1–36. 
https://doi.org/10.1016/B978-0-323-46139-9.00001-3. 

Choi, K.H., Sajid, M., Aziz, S., Yang, B.S., 2015. Wide range high speed relative humidity 
sensor based on PEDOT:PSS-PVA composite on an IDT printed on piezoelectric 
substrate. Sensors Actuators, A Phys. 228, 40–49. 

Christensen, J., Povlsen, V.T., Sørensen, J., 2003. Application of fluorescence 
spectroscopy and chemometrics in the evaluation of processed cheese during 
storage. J. Dairy Sci. 86, 1101–1107. https://doi.org/10.3168/jds.S0022-0302(03) 
73692-3. 

Christodouleas, D.C., Kaur, B., Chorti, P., 2018. From point-of-care testing to eHealth 
diagnostic devices (eDiagnostics). ACS Cent. Sci. 4, 1600–1616. https://doi.org/ 
10.1021/ACSCENTSCI.8B00625. 
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Aromatic profile and sensory characterisation of ultrasound treated cranberry juice 
and nectar. Ultrason. Sonochem. 38, 783–793. https://doi.org/10.1016/j. 
ultsonch.2016.11.027. 

Janata, Jiri, Janata, Jií, 2009a. Potentiometric sensors. In: Principles of Chemical 
Sensors. Springer US, pp. 119–199. https://doi.org/10.1007/b136378_6. 

Janata, Jiri, Janata, Jií, 2009b. Amperometric sensors. In: Principles of Chemical 
Sensors. Springer US, pp. 201–239. https://doi.org/10.1007/b136378_7. 

Jeanmaire, D.L., Van Duyne, R.P., 1977. Surface Raman spectroelectrochemistry. Part I. 
Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver 
electrode. J. Electroanal. Chem. 84, 1–20. https://doi.org/10.1016/S0022-0728(77) 
80224-6. 

Kalaivani, R., Masilamani, V., Sivaji, K., Elangovan, M., Selvaraj, V., Balamurugan, S.G., 
Al-Salhi, M.S., 2008. Fluorescence spectra of blood components for breast cancer 
diagnosis. Photomed. Laser Surg 26, 251–256. https://doi.org/10.1089/ 
pho.2007.2162. 

Kendall, C., Isabelle, M., Bazant-Hegemark, F., Hutchings, J., Orr, L., Babrah, J., 
Baker, R., Stone, N., 2009. Vibrational spectroscopy: a clinical tool for cancer 
diagnostics. Analyst. https://doi.org/10.1039/b822130h. 

Kerr, L.T., Adams, A., O’Dea, S., Domijan, K., Cullen, I., Hennelly, B.M., 2014. 
Classification of bladder cancer cell lines using Raman spectroscopy: a comparison of 
excitation wavelength, sample substrate and statistical algorithms. Biophotonics 
Photonic Solut. Better Heal. Care IV 9129, 91290E. https://doi.org/10.1117/ 
12.2051780. 

Kloprogge, J.T., 2016. Characterisation of halloysite by spectroscopy. In: Developments 
in Clay Science. Elsevier B.V., pp. 115–136. https://doi.org/10.1016/B978-0-08- 
100293-3.00006-6 

Kuhar, N., Sil, S., Verma, T., Umapathy, S., 2018. Challenges in application of Raman 
spectroscopy to biology and materials. RSC Adv. https://doi.org/10.1039/ 
c8ra04491k. 

Kumar, A., Panda, U., 2022. Microfluidics-based devices and their role on point-of-care 
testing. Biosens. Based Adv. Cancer Diagnostics 197–224. https://doi.org/10.1016/ 
B978-0-12-823424-2.00011-9. 

Kumar, R., Sharma, V., 2018. Chemometrics in forensic science. TrAC, Trends Anal. 
Chem. https://doi.org/10.1016/j.trac.2018.05.010. 

Lakowicz, J.R., 2006. Principles of Fluorescence Spectroscopy, Principles of Fluorescence 
Spectroscopy. Springer. https://doi.org/10.1007/978-0-387-46312-4. 

Lavine, B., Workman, J., 2008. Chemometrics. Anal. Chem. https://doi.org/10.1021/ 
ac800728t. 

Lewis, P.D., Lewis, K.E., Ghosal, R., Bayliss, S., Lloyd, A.J., Wills, J., Godfrey, R., 
Kloer, P., Mur, L.A.J., 2010. Evaluation of FTIR Spectroscopy as a diagnostic tool for 
lung cancer using sputum. BMC Cancer 10, 640. https://doi.org/10.1186/1471- 
2407-10-640. 

Lin, D., Feng, S., Pan, J., Chen, Y., Lin, J., Chen, G., Xie, S., Zeng, H., Chen, R., 2011. 
Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman 
spectroscopy of blood serum and statistical analysis. Opt Express 19, 13565. https:// 
doi.org/10.1364/oe.19.013565. 

Liu, K.Z., Shaw, R.A., Man, A., Dembinski, T.C., Mantsh, H.H., 2002. Reagent-free, 
simultaneous determination of serum cholesterol in HDL and LDL by infrared 
spectroscopy. Clin. Chem. 48, 499–506. https://doi.org/10.1093/clinchem/ 
48.3.499. 

Lvova, L., Martinelli, E., Dini, F., Bergamini, A., Paolesse, R., Di Natale, C., D’Amico, A., 
2009. Clinical analysis of human urine by means of potentiometric Electronic 
tongue. Talanta 77, 1097–1104. https://doi.org/10.1016/j.talanta.2008.08.021. 

Ma, Y., Chi, J., Zheng, Z., Attygalle, A., Kim, I.Y., Du, H., 2020. Therapeutic prognosis of 
prostate cancer using surface-enhanced Raman scattering of patient urine and 
multivariate statistical analysis. J. Biophot. https://doi.org/10.1002/ 
jbio.202000275. 

Mackanos, M.A., Contag, C.H., 2010. Fiber-optic probes enable cancer detection with 
FTIR spectroscopy. Trends Biotechnol. https://doi.org/10.1016/j. 
tibtech.2010.04.001. 

Maitra, I., Morais, C.L.M., Lima, K.M.G., Ashton, K.M., Date, R.S., Martin, F.L., 2019. 
Attenuated total reflection Fourier-transform infrared spectral discrimination in 
human bodily fluids of oesophageal transformation to adenocarcinoma. Analyst 144, 
7447–7456. https://doi.org/10.1039/c9an01749f. 

Maitra, I., Morais, C.L.M., Lima, K.M.G., Ashton, K.M., Date, R.S., Martin, F.L., 2020. 
Raman spectral discrimination in human liquid biopsies of oesophageal 
transformation to adenocarcinoma. J. Biophot. 13 https://doi.org/10.1002/ 
jbio.201960132. 

Makhoul, I., 2018. Therapeutic strategies for breast cancer. In: The Breast: 
Comprehensive Management of Benign and Malignant Diseases. Elsevier Inc., 
pp. 315–330. https://doi.org/10.1016/B978-0-323-35955-9.00024-6 e7.  

Marrugo-Ramírez, J., Mir, M., Samitier, J., 2018. Blood-based cancer biomarkers in 
liquid biopsy: a promising non-invasive alternative to tissue biopsy. Int. J. Mol. Sci. 
19, 2877. https://doi.org/10.3390/ijms19102877. 

Masilamani, V., Vijmasi, T., Al Salhi, M., Govindaraj, K., Vijaya-Raghavan, A.P., 
Antonisamy, B., 2010. Cancer detection by native fluorescence of urine. J. Biomed. 
Opt. 15, 057003 https://doi.org/10.1117/1.3486553. 

Masilamani, V., AlSalhi, M.S., Vijmasi, T., Govindarajan, K., Rathan Rai, R., Atif, M., 
Prasad, S., Aldwayyan, A.S., 2012. Fluorescence spectra of blood and urine for 
cervical cancer detection. J. Biomed. Opt. 17, 0980011 https://doi.org/10.1117/1. 
jbo.17.9.098001. 

Menzies, G.E., Fox, H.R., Marnane, C., Pope, L., Prabhu, V., Winter, S., Derrick, A.V., 
Lewis, P.D., 2014. Fourier transform infrared for noninvasive optical diagnosis of 
oral, oropharyngeal, and laryngeal cancer. Transl. Res. 163, 19–26. https://doi.org/ 
10.1016/j.trsl.2013.09.006. 

Miró, M., Frenzel, W., 2019. Flow analysis | flow injection analysis: detection techniques. 
Encycl. Anal. Sci. 154–163. https://doi.org/10.1016/B978-0-12-409547-2.14508-1. 

Mistro, G. Del, Cervo, S., Mansutti, E., Spizzo, R., Colombatti, A., Belmonte, P., 
Zucconelli, R., Steffan, A., Sergo, V., Bonifacio, A., 2015. Surface–enhanced Raman 
spectroscopy of urine for prostate cancer detection: a preliminary study. Anal. 
Bioanal. Chem. 407, 3271–3275. https://doi.org/10.1007/s00216-015-8610-9. 

Mitra, S., Ganguli, S., Chakrabarti, J., 2018. Introduction. In: Cancer and Noncoding 
RNAs. Elsevier, pp. 1–23. https://doi.org/10.1016/b978-0-12-811022-5.00001-2. 

Moisoiu, V., Socaciu, A., Stefancu, A., Iancu, S.D., Boros, I., Alecsa, C.D., Rachieriu, C., 
Chiorean, A.R., Eniu, D., Leopold, N., Socaciu, C., Eniu, D.T., 2019. Breast cancer 
diagnosis by surface-enhanced Raman scattering (SERS) of urine. Appl. Sci. 9 
https://doi.org/10.3390/app9040806. 

Moncayo, S., Manzoor, S., Navarro-Villoslada, F., Caceres, J.O., 2015. Evaluation of 
supervised chemometric methods for sample classification by Laser Induced 
Breakdown Spectroscopy. Chemometr. Intell. Lab. Syst. 146, 354. https://doi.org/ 
10.1016/j.chemolab.2015.06.004. 

Morimoto, T., Komaki, K., Mori, T., Sasa, M., Ooshimo, K., Miki, H., Monden, Y., Inui, K., 
Saoyama, N., Yoshida, H., 1993. The quality of mass screening for breast cancer by 
physical examination. Surg. Today 23, 200–204. https://doi.org/10.1007/ 
BF00309228. 

Muehlethaler, C., Massonnet, G., Esseiva, P., 2011. The application of chemometrics on 
Infrared and Raman spectra as a tool for the forensic analysis of paints. Forensic Sci. 
Int. 209, 173–182. https://doi.org/10.1016/j.forsciint.2011.01.025. 

Nakamura, H., Uchida, S., Sugiura, T., Namiki, N., 2015. The prediction of the 
palatability of orally disintegrating tablets by an electronic gustatory system. Int. J. 
Pharm. 493, 305–312. https://doi.org/10.1016/j.ijpharm.2015.07.056. 

Nery, E.W., 2019. Use of a Potentiometric and Hybrid Electronic Tongue for the Analysis 
of Beer and Wine. https://doi.org/10.1016/B978-0-08-100596-5.22492-X. 

Nie, J., Wu, H., Wang, X., Zhang, Y., Zhu, S., Yu, R., 2008. Determination of testosterone 
propionate in cosmetics using excitation-emission matrix fluorescence based on 
oxidation derivatization with the aid of second-order calibration methods. Anal. 
Chim. Acta 628, 24–32. https://doi.org/10.1016/j.aca.2008.08.022. 

Nie, J.F., Wu, H.L., Zhu, S.H., Han, Q.J., Fu, H.Y., Li, S.F., Yu, R.Q., 2008. Simultaneous 
determination of 6-methylcoumarin and 7-methoxycoumarin in cosmetics using 
three-dimensional excitation-emission matrix fluorescence coupled with second- 
order calibration methods. Talanta 75, 1260–1269. https://doi.org/10.1016/j. 
talanta.2008.01.026. 

Old, O.J., Fullwood, L.M., Scott, R., Lloyd, G.R., Almond, L.M., Shepherd, N.A., Stone, N., 
Barr, H., Kendall, C., 2014. Vibrational spectroscopy for cancer diagnostics. Anal. 
Methods. https://doi.org/10.1039/c3ay42235f. 

Panikuttira, B., O’donnell, C.P., 2018. PROCESS ANALYTICAL TECHNOLOGY FOR THE 
FRUIT JUICE INDUSTRY. https://doi.org/10.1016/B978-0-12-802230-6.00040-0. 

Pappu, R., Prakasarao, A., Dornadula, K., Singaravelu, G., 2017. Raman spectroscopic 
characterization of urine of normal and cervical cancer subjects. Adv. Biomed. Clin. 
Diagnostic Surg. Guid. Syst. XV 10054, 1005404. https://doi.org/10.1117/ 
12.2255878. 

Paraskevaidi, M., Morais, C.L.M., Lima, K.M.G., Ashton, K.M., Stringfellow, H.F., Martin- 
Hirsch, P.L., Martin, F.L., 2018. Potential of mid-infrared spectroscopy as a non- 
invasive diagnostic test in urine for endometrial or ovarian cancer. Analyst 143, 
3156–3163. https://doi.org/10.1039/c8an00027a. 

Pascual, L., Campos, I., Vivancos, J.L., Quintás, G., Loras, A., Martínez-Bisbal, M.C., 
Martínez-Máñez, R., Boronat, F., Ruiz-Cerdà, J.L., 2016. Detection of prostate cancer 
using a voltammetric electronic tongue. Analyst 141, 4562–4567. https://doi.org/ 
10.1039/c6an01044j. 

Pein, M., Kirsanov, D., Ciosek, P., del Valle, M., Yaroshenko, I., Wesoły, M., Zabadaj, M., 
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tongue-A tool for all tastes? Biosensors. https://doi.org/10.3390/bios8010003. 

Quideau, S., 2017. Understanding wine chemistry. By andrew L. Waterhouse, gavin L. 
Sacks and david W. Jeffrey. Angew. Chemie Int. Ed. 56 https://doi.org/10.1002/ 
anie.201700489, 2839–2839.  

Rajasekaran, R., Aruna, P.R., Koteeswaran, D., Padmanabhan, L., Muthuvelu, K., Rai, R. 
R., Thamilkumar, P., Murali Krishna, C., Ganesan, S., 2013. Characterization and 
diagnosis of cancer by native fluorescence spectroscopy of human urine. Photochem. 
Photobiol. 89, 483–491. https://doi.org/10.1111/j.1751-1097.2012.01239.x. 

Ramya, V., 2020. How to Select the Right Machine Learning Algorithm. Lionbridge AI 
[WWW Document]. URL. https://lionbridge.ai/articles/how-to-select-the-right- 
machine-learning-algorithm/, 2.1.21.  

Richardson, P.I.C., Muhamadali, H., Ellis, D.I., Goodacre, R., 2019. Rapid quantification 
of the adulteration of fresh coconut water by dilution and sugars using Raman 
spectroscopy and chemometrics. Food Chem. 272, 157–164. https://doi.org/ 
10.1016/j.foodchem.2018.08.038. 

Rodrigues, J.J.P.C., Sendra Compte, S., de la Torra Diez, I., 2016. Introduction. E-Health 
Syst. Xv–Xxxiv. https://doi.org/10.1016/B978-1-78548-091-1.50016-6. 

Rodríguez-Méndez, M.L., Apetrei, C., De Saja, J.A., 2010. Electronic tongues purposely 
designed for the organoleptic characterization of olive oils. In: Olives and Olive Oil 
in Health and Disease Prevention. Elsevier Inc., pp. 525–532. https://doi.org/ 
10.1016/B978-0-12-374420-3.00057-7 

Roessner, U., Nahid, A., Chapman, B., Hunter, A., Bellgard, M., 2011. 1.31 - 
metabolomics – the combination of analytical biochemistry, biology, and 
informatics. In: (Third E, M.B.T.-C.B. (Ed.), Moo-Young. Pergamon, Oxford, 
pp. 435–447. https://doi.org/10.1016/B978-0-444-64046-8.00027-6. 

Roggo, Y., Degardin, K., Margot, P., 2010. Identification of pharmaceutical tablets by 
Raman spectroscopy and chemometrics. Talanta 81, 988–995. https://doi.org/ 
10.1016/j.talanta.2010.01.046. 

Roper, S., 1995. Olfactory/taste receptor transduction. In: Cell Physiology Source Book. 
Elsevier, pp. 514–522. https://doi.org/10.1016/b978-0-12-656970-4.50044-0. 

Sadana, A., Sadana, N., 2015. Introduction. In: Biomarkers and Biosensors. Elsevier, 
pp. 1–21. https://doi.org/10.1016/b978-0-444-53794-2.00001-x. 

Saghir, S.A., 2019. Excretion. In: Reference Module in Biomedical Sciences. Elsevier. 
https://doi.org/10.1016/b978-0-12-801238-3.11312-1. 

Schram, K.H., 1998. Urinary nucleosides. Mass Spectrom. Rev. 17, 131–251. https://doi. 
org/10.1002/(SICI)1098-2787(1998)17:3<131::AID-MAS1>3.0.CO;2-O. 

Sensabaugh, G., 2015. Serology: overview. In: Encyclopedia of Forensic and Legal 
Medicine, second ed. Elsevier Inc., pp. 254–266. https://doi.org/10.1016/B978-0- 
12-800034-2.00337-2 

Sharma, S., 2009. Tumor markers in clinical practice: general principles and guidelines. 
Indian J. Med. Paediatr. Oncol. 30, 1. https://doi.org/10.4103/0971-5851.56328. 

Shimizu, F.M., Braunger, M.L., Riul Jr., A., Oliveira Jr., O.N., 2020. Electronic tongues. 
Smart Sensors Environ. Med. Appl., Wiley Online Books. https://doi.org/10.1002/ 
9781119587422.ch4. 

Sivasubramanian, M., Hsia, Y., Lo, L.W., 2014. Nanoparticle-facilitated functional and 
molecular imaging for the early detection of cancer. Front. Mol. Biosci. https://doi. 
org/10.3389/fmolb.2014.00015. 
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