

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage

Shen, Zhenghui; Kwon, Soojin; Lee, Hak Lae; Toivakka, Martti; Oh, Kyudeok

Published in: International Journal of Biological Macromolecules

DOI: 10.1016/j.ijbiomac.2022.10.075

Published: 01/12/2022

Document Version Accepted author manuscript

Document License CC BY-NC-ND

Link to publication

Please cite the original version:

Shen, Z., Kwon, S., Lee, H. L., Toivakka, M., & Oh, K. (2022). Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage. *International Journal of Biological Macromolecules*, 222(B), 3001-3013. https://doi.org/10.1016/j.ijbiomac.2022.10.075

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Supplemental Data

Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage

Zhenghui Shen ^{a,b}, Soojin Kwon ^c, Hak Lae Lee ^b, Martti Toivakka ^d, Kyudeok Oh ^{e*}

- ^a Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- ^b Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- [°] Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27695, United States

^d Laboratory of Natural Materials Technology, Åbo Akademi University, Turku 20500, Finland

^e Department of Bio Based Materials, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea

Corresponding author:

*E-mail: kyudeok.oh@cnu.ac.kr (Kyudeok Oh). Tel: +82-10-9767-0057.

Including:

Fig. S1–S4, Table S1–S3.

Fig. S1. Images of CNF-based foams upon the contact with water droplet: (a) pristine CNF foam, (b) CNF_{APTMS} foam (c) CNF_{MTMS} foam; digital images of (d) pristine CNF foam, (e) CNF_{APTMS} foam and (f)CNF_{MTMS} foam after 1 min magnetic mixing at 300 rpm in water.

Fig. S2. The WCA of CNFMTMS foam depending on time.

Table S1. The effect of CNF/CNT foams on the absorption capacity and leakage profile of

Foam	Foam density (kg/m ³)	Foam porosity (%)	Absorption capacity (%)	PEG Leakage percentage (%)
CNF _{APTMS} /CNT ₁₀	61.52	94.72	94.20	2.47
CNF _{APTMS} /CNT ₂₀	63.08	94.66	94.13	2.37
CNF _{APTMS} /CNT ₃₀	64.86	94.58	93.77	1.88
CNF _{APTMS} /CNT ₅₀	67.26	94.52	93.63	1.81

polyethylene glycol (PEG).

Fig. S3. Distribution of CNTs in the CNF/CNT₅₀ foam.

Table S2. Melting points, freezing points and enthalpies of PEG-based PCM samples after 100melting/freezing cycles.

	Heating process			Cooling process		
PCM sample	Melting point (°C)	Enthalpy (kJ/kg)	Enthalpy reduction (%)	Freezing point (°C)	Enthalpy (kJ/kg)	Enthalpy reduction (%)
PEG	23.6	133.9	11.6	21.3	133.4	11.8
CNF _{APTMS} -PEG	23.6	123.9	14.3	22.6	123.9	14.0
CNF _{APTMS} /CNT ₅₀ -PEG	25.4	126.2	11.9	22.4	126.1	11.9

Table S3. Melting points, freezing points and enthalpies of Pw-based PCM samples after100melting/freezing cycles.

	Heating process			Cooling process		
PCM sample	Melting point (°C)	Enthalpy (kJ/kg)	Enthalpy reduction (%)	Freezing point (°C)	Enthalpy (kJ/kg)	Enthalpy reduction (%)
Pw	58.8	186.8	7.9	57.3	186.8	7.8
CNF _{MTMS} -Pw	53.5	182.4	1.9	57.4	182.4	1.9
CNF _{MTMS} /CNT ₅₀ -Pw	54.1	173.7	5.9	58.5	173.7	5.9

Fig. S4. Time course of the open-circuit voltage of the thermoelectric generator without sandwich PCMs on it (heat sink was immersed in iced water).