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Abstract. The falling rod paradox, i.e. the fact that the tip of an almost horizontal

rod falls with an acceleration ”higher than g”, when the other end is hinged or

supported, is a popular physics demonstration. It can be visualized by placing e.g.

a coin on the tip of the rod and fixing a cup next to the coin. When the rod is released

the free-falling coin is left behind and, if the vertical projection of its position is well

aimed, the coin ends up in the cup. In this work we aim at visualizing the falling-rod

paradox using a high speed camera and experimentally determine the point on the

rod where the acceleration a = g for various setups. To enhance the visualization

we use evenly spaced beads on top of the rod. The experiments can be performed by

pupils in the upper secondary school. Theoretical understanding may require first-year

university classes in mechanics.
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1. Introduction

The falling-rod (or -stick) paradox, i.e. the fact that the tip of an approximately

horizontal rod hinged at the other end accelerates with a = 3g/2 has been discussed in

several publications over the years.[1, 2, 3, 4, 5, 6] There isn’t really anything paradoxical

about the rod. As one end is hinged, the rod is not in free fall and the description of

the dynamics is entirely governed by Euler’s (torque) law applied to the hinged end:

τ = mg
L

2
sin θ = Iα, (1)

where τ is the torque due the weight mg of the rod, L the length of the rod,

I = mL2/3 the moment of inertia around the hinge, θ the angle between the rod and

the gravitational force on the rod, and α the angular acceleration. For a homogeneous

straight rod α = 3g/(2L) when the rod is horizontal and hence the tip accelerates

with a = αL = 3g/2. The fact that the tip of the rod is forced to accelerate ”faster

than g” has well-known consequences: Falling chimneys usually spontaneously break

into two parts[4] and falling trees bend upwards when cut down. Also the coin-on-

the-tip-of-rod demonstration, described in the abstract (and mentioned in some of the

references), is a popular class-room example frequently employed. The acceleration of

the coin on the falling rods has also been recorded using high-speed video cameras.[7]

The exact dynamics of the falling rod involves elliptic integrals and is therefore beyond

the scope of the upper-secondary curriculum. Adaptation and approximations to make

the experiment accessible to pre-university curricula has been discussed.[5] With the

development of high-speed cameras and mobile phones with good-quality high-frame

rate cameras experiments in dynamics are nowadays readily accessible to pupils.

In this work we focus on visualizing the acceleration of a falling rod by placing

evenly spaced beads on the falling rod and recording the fall with a high-speed video

camera. The experiment can be performed as a class-room demonstration on upper-

secondary level and the physics presented is also accessible to the pupils, provided

the school syllabus includes the concepts of torque, moment of inertia and rotational

dynamics. Similar experiments with weights attached to falling rods have been used for

stimulating students’ physical thinking.[8]

2. Experimental

The experimental setup was the following: A steel rod of length L = 1.000±0.005 m and

mass m = 306, 3± 0, 6 g with 40 evenly spaced (r0 = 2.50± 0.05 cm) premanufactured

holes was placed on a wooden block at an angle of ∼ 35◦ with the horizontal. A nail

prevented unwanted horizontal movement and acted as a simple hinge for the end of

the rod resting on the block (Fig. 1). Identical non-magnetized steel beads from a ball

bearing were placed on the rod prior to its release. The beads had a diameter of 10,0 mm

and a mass of 4, 08 ± 0, 1 g. An additional mass of 1,0 kg was placed, in some of the

experiments, on the rod in order to vary the acceleration of the tip. For recording the
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Figure 1. The steel rod used in the experiments. The rod is resting on a wooden

block and a nail prevents the rod from moving laterally on the block. Prior to release,

the beads were placed in the oval holes and moved towards edges facing the hinged-end

of the rod.

falling rod a Photron FASTCAM SA3 120K black-and-white high-speed video camera

was used at a frame rate set at 1000 fps. From the video footage, the ”a = g point” was

readily determined by stopping at the frame in which the rod was horizontal. Beyond

that point the steel beads become airborne at positions defined by the initial inclination

of the rod, whereas beads closer to the hinge remain resting on the rod. Owing to the

elevation provided by the wood block the rod could continue its fall below the horizontal

level. For quantitative analysis, the known length of the rod was used for calibrating

distance measurements in the video footage.

3. Theory

Although the basic physics of the falling rod is described by Eq. 1 there are some

subtleties in the experiment outlined above. Due to the steel beads the falling rod and

the beads can no longer be consider forming a solid body. Indeed, when beads near the

free end become airborne the combined center of mass of the rod and the beads is shifted

towards the hinge. Furthermore, the support force between the rod and remaining beads

vary depending on how close or far the bead is from the hinge, due to varying linear

acceleration of the rod. Let us begin by discussing what happens if an additional weight

is attached to the rod. The problem has been discussed before.[9] Upon introducing a

point-like mass M at the distance r from the hinge, Eq. 1 becomes:

(Mr +m
L

2
)g sin θ = I ′α, (2)

where I ′ = Mr2 +mL2/3 is the modified moment of inertia. Solving for α we obtain

α = g sin θ
mL/2 +Mr

mL2/3 +Mr2
.
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The value for α can be greater or smaller than 3g/2L depending on where the point-like

mass M is placed. It is also interesting to maximize α by varying r, as discussed e.g.

in Refs [10] and [11]. By taking the derivative of α with respect to r and treating all

other quantities as constants the r value that gives the largest angular acceleration is

obtained as

r =
(m2/4 +mM/3)1/2 −m/2

M
L. (3)

Using similar reasoning it is rather straight forward to show that if two equal point-like

masses are fixed to the rod their combined effect cancel if their positions r1 and r2 fulfill

the equation

3

2
r21 − Lr1 = Lr2 −

3

2
r22. (4)

For all real solutions with r1 and r2 located on the rod, α = 3g/(2L) always holds.

Next, we will explore the effect of putting the steel beads on the rod. We examine

the rod when it has reached the horizontal position. If the ith bead remains at rest on

the rod, its dynamics is readily obtained from Newton’s second law as

mbg −Ni = αrimb, (5)

where mb is the mass of the bead, ri the distance to the hinge and Ni the support force

between the rod and the bead. As the rod is horizontal all motion is momentarily along

the vertical direction. The distance ri can be given as ri = (i − 1)r0 + r∗, where r0 is

the distance between adjacent beads and r∗ is the distance from the first hole to the

hinged end. The total torque acting on the rod due the support forces from the beads

remaining on the rod and from the weight of the rod itself casts Eq. 1 into the following

form:

τ = mgL/2 +
n′∑
i=1

(mbg −mbαri)ri =
1

3
mL2α, (6)

where n′ indicates the last bead for which the support force Ni ≥ 0. Upon solving Eq. 6

for α we get:

α = g
mL/2 +mb

∑n′

i=1 ri
1
3
mL2 +mb

∑n′
i=1 r

2
i

. (7)

This is really a recursive equation as the upper limit of the sum n′ depends on α, through

the support force in Eq. 5. Upon Setting Ni = 0, ri = (n′ − 1)r0 + r∗ and solving for n′

we get n′ = g/(αr0), which is not necessarily an integer, but for all i ≥ n′ the support

force Ni is zero and the corresponding beads airborne.

4. Results and discussion

Several rounds of experiments were done with the rod either partially or fully loaded

with a maximum of 40 beads. In the first round the rod was released with 40 beads from

the angle of ∼ 35◦ and it was found that 14 beads were airborne at the moment when the
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rod reached the horizontal level (Fig. 2). Students familiar with the y ∝ t2 dependence

of falling objects, might be astonished to see that the airborne beads are linearly aligned

and not forming a parabola. However, the beads start linearly aligned on the rod and

loose contact with the rod immediately after its release and subsequently accelerate

with g. Therefore, they travel equal distances in equal times and thus retain the initial

linear alignment. Using a ruler, the ”a = g point” can be estimated from a print-out

Figure 2. The falling rod loaded with 40 steel beads as it reaches the horizontal level.

of Fig. 2 as the vertex point formed between the airborne and resting beads, and it is

found to be 38 cm from the free end. Alternatively, the point can be determined rather

exactly by determining the intersection of the lines fitted to the airborne beads and the

resting beads. The result was that the ”a = g point” is located at 37.5 ± 0.3 cm from

the free end. Theoretically, for a rod without the beads, the point should be located

at exactly one third or 33.33 cm from the free end. Considering that air resistance and

minute frictional losses at the ”hinge” should slow down the rod a bit, a result that

gives a larger acceleration than predicted by theory is remarkable. However, as outlined

by Eqs. (2)-(7) and discussed in the next paragraph the inner beads give rise to an

additional torque that speeds up the rod. Therefore, in the second round only 15 beads

were placed on the rod, starting from the free end, resulting in 13 airborne beads when

the experiment was repeated (Fig 3). In this case the ”a = g point” was obtained at

Figure 3. The falling rod loaded with 15 steel beads as it reaches the horizontal level.

34.6 cm from the free end using a ruler or at 33.3± 0.3 cm, when using the intersecting

lines. The latter value is in excellent agreement with theory for the the unloaded rod,

indicating that the effect of the two beads remaining on the rod had negligible effect on

the falling rod.
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Returning to the experiment with 40 beads on the rod, we can check if the ”a = g

point” located at 37.5 cm is consistent with Eq. (7), that includes the additional

accelerating effect of the beads on the rod. The number of beads still resting on the rod

in Fig. 2 is n′ = 26. The ”a = g point” is obtained as L−Lα/g, where α is numerically

obtained from the equation, yielding 37.62 cm, which is very close to the experimental

value. This would indicate that losses from air resistance and friction in the ”hinge” are

negligible in the experiments.

As our experiment is basically a crude accelerometer, we were also interested in

speeding up the falling rod, with a well-defined additional weight. For that purpose a

mass M = 1, 0 kg was attached to the rod. Upon inserting the values for M and m into

Eq. (3) the optimum distance maximizing α was found to be r = 20.1 cm, giving rise

to a theoretical angular acceleration of α = 2.4852g/L and an ”a = g point” located at

59.75 cm from the free end. In this case, 23.3 beads should be airborne, when counting

from the free end, assuming negligible effect of the beads on the acceleration of the rod.

Fig (4) shows the corresponding experiment conducted with 26 steel beads, of which

24 are airborne. From the figure, the ”a = g point” is interpolated to 61.3 ± 0.3 cm

Figure 4. The falling rod loaded with 26 steel beads and a fixed weight of 1,0 kg,

located 20.1 cm from the hinged end, as it reaches the horizontal level.

from the free end. This value slightly exceeds the theoretical value. The theoretical

value can be ”improved” by considering not only the weight M but also the two beads

resting on the rod. This increases the theoretical value very slightly to 59.78 cm for the

”a = g point”, and is still smaller than the experimentally obtained. However, when an

additional heavy weight M is used the rod bends a little prior to the release and the

potential energy stored as tension in the bent rod may give a slight jerk to the free end

during the release. This could increase the initial acceleration of the free end, which

could be the reason for obtaining a value slightly exceeding the theoretical one.

For the sake of argument, we attached the mass M to the free end of the rod leading

to an almost null result with only one bead being airborne as expected (Fig. 5). We

also tested filming the rod with the camera of an ordinary ”smart” phone using a frame

rate of 60 fps (Fig 6.), which produced similar results as described above. Therefore,

the experiment can be easily performed in a class room without the need of any special

high-frame-rate equipment. However, with a much lower frame rate it is not possible to
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Figure 5. The falling rod loaded with 26 steel beads and a fixed weight of 1,0 kg,

located at the free end, as it reaches the horizontal level.

freeze the motion of the rod nor the beads. A brighter light source could perhaps reduce

the shutter speed and reduce motional blurring. On the other hand, the blurring of the

rod nicely illustrates the increase in linear velocity for points closer to the free end.

Figure 6. The falling rod loaded with 15 steel beads as it reaches the horizontal

level. Frame extracted from a mobile phone filming at 60 fps the same experiment as

in Fig. 3.

5. Conclusions

By putting equally spaced steel beads on a falling rod, the ”a = g point” is easily

visualized using a high-speed video camera. By inserting weights at various positions

on the rod, the acceleration of the free end of the rod can be explored. Inserted weights

affect the dynamics of the rod both by adding to the total torque and the moment of

inertia, yielding results that might be hard for the students to predict before doing the

experiments as the torque grows linearly with the distance to the hinge and the moment

of inertia quadratically.

References

[1] Sutton R.M 1938 Demonstration Experiments in Physics (McGraw-Hill, New York)

[2] Hilton W.A 1971 Physics Demonstration Experiments at William Jewell College (William Jewell

College, Liberty)

[3] Freier G.D and Anderson F.J 1981 A Demonstration Handbook for Physics (American Association

for Physics Teachers, College Park)

[4] Varieschi Gabriele and Kamiya Kaoru 2005 Toy Models for the Falling Chimney American Journal

of Physics 71 1025



Falling beads on a falling rod 8
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