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Alexandru Amărioarei 1,2 , Frankie Spencer 3, Gefry Barad 2, Ana-Maria Gheorghe 2 , Corina Iţcuş 2 , Iris Tuşa 2,
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Abstract: Current advances in computational modelling and simulation have led to the inclusion of
computer scientists as partners in the process of engineering of new nanomaterials and nanodevices.
This trend is now, more than ever, visible in the field of deoxyribonucleic acid (DNA)-based nanotech-
nology, as DNA’s intrinsic principle of self-assembly has been proven to be highly algorithmic and
programmable. As a raw material, DNA is a rather unremarkable fabric. However, as a way to achieve
patterns, dynamic behavior, or nano-shape reconstruction, DNA has been proven to be one of the
most functional nanomaterials. It would thus be of great potential to pair up DNA’s highly functional
assembly characteristics with the mechanic properties of other well-known bio-nanomaterials, such
as graphene, cellulos, or fibroin. In the current study, we perform projections regarding the structural
properties of a fibril mesh (or filter) for which assembly would be guided by the controlled aggregation
of DNA scaffold subunits. The formation of such a 2D fibril mesh structure is ensured by the mecha-
nistic assembly properties borrowed from the DNA assembly apparatus. For generating inexpensive
pre-experimental assessments regarding the efficiency of various assembly strategies, we introduced
in this study a computational model for the simulation of fibril mesh assembly dynamical systems.
Our approach was based on providing solutions towards two main circumstances. First, we created
a functional computational model that is restrictive enough to be able to numerically simulate the
controlled aggregation of up to 1000s of elementary fibril elements yet rich enough to provide actionable
insides on the structural characteristics for the generated assembly. Second, we used the provided
numerical model in order to generate projections regarding effective ways of manipulating one of the
the key structural properties of such generated filters, namely the average size of the openings (gaps)
within these meshes, also known as the filter’s aperture. This work is a continuation of Amarioarei et al.,
2018, where a preliminary version of this research was discussed.

Keywords: DNA nanotechnology; DNA-guided assembly; self-assembly system; computational
modeling; numerical simulations; structure prediction

1. Introduction

Nanoengineered materials have become a main object of focus for many industrial
and academic communities alike. Current developments in the field include molecular
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sieving membranes for highly efficient gas separation [1], hybrid carbon nanostructure for
supercapacitors [2], nanocomposite gels for repair of damaged bones [3], nanotextured
surfaces with antibacterial properties [4], metalenses—flat surfaces that use nanostructures
to focus light [5], exceptionally strong and tough ultrafine fibers [6], nanostructured surface
coatings with antifouling properties [7], etc. In some cases, it is the material itself that
possesses high functionality, e.g., the super-conductance of graphene [2], the high mag-
netization limit of certain alloys [8], etc. However, in most cases, it is the high-resolution
arrangements of the material’s nanocomponents that give its exceptional characteristics,
e.g., the highly aligned calcium silicate hydrate nanoplatelets with bending strength of
nacre [9], the nanoengineered ultralight materials based on electroactive graphene aerogel
with a high storage capacity of Li+/Na+ ions [10], etc. In this framework, deoxyribonucleic
acid (DNA)-based nanotechnology was able to demonstrate great engineering potential
due to its versatility and addressability at the nanolevel; laboratory developments in the
field include highly addressable scaffolds [11], precise pattering [12], 2- and 3D pattern and
shape reconstruction [13,14], and even robotic-like constructs [15,16].

As a raw material, DNA has little intrinsic mechanical properties: it is not partic-
ularly rigid, or strong, or tough. Also, it does not conduct electricity and it loses all its
interaction properties in dry/dehydrated environments. However, by pairing the DNA
addressability properties with that of a strong nanomaterial and by guiding the precise
assembly of the latter, we envision a substantial enhancement of the material’s mechanical
properties and its applicability. In recent experimental trials, we considered the pairing of
DNA nanoconstructs with nanocellulose fibrils in order to create strong and highly aligned
nanocellulose meshes for precision filters and membranes. While these experimental trials
did not produce the desired results due to the nanocellulose highly random aggregation
tendency, other tentative fibril-like proteins are available. For example, one can consider
fibroin and vimentin (intermediate) filaments, both of these possessing significant mechan-
ical properties as well as available DNA-aptamers (DNA-aptamers are 20–50 base long
single-stranded DNA sequences with natural binding affinity towards a specific material
or molecule) for selective binding [17,18].

The use of DNA as an addressable lattice was previously illustrated on many ex-
perimental settings using a large variety of pattering elements: gold and silver nanopar-
ticles [12,19]; protein complexes such as steptavidin [11]; various bioactive components
such as drugs, antibodies, or adjuvants [20–22], etc. Moreover, the possibility of align-
ing rod-like structures on top of supporting 2D DNA scaffolds was also experimentally
shown; see [23,24] where the authors attached pairs of perpendicular carbon nanotubes
on top of DNA origami constructs. In our purporting designs, we want to achieve a new
nanomaterial where individual fibril units are placed on top of DNA origami structures
and achieve a highly order fabric-like alignment using the specific interstructural DNA
assembly interactions. Once an alignment is achieved, the fabric is chemically treated
such that the fabric retains its structure after alteration/degradation of the supporting
DNA scaffolding.

The primary objective of this study was to generate pre-experimental insights on
possible ways to control the characteristics of a self-assembled DNA-linked fibril mesh. In
particular, we were interested in predicting and even being able to regulate the average
opening window in between the individual fibrils of the mesh, also known as the aperture
of the mesh. To do this, we needed to create accurate computational models of the assembly
dynamical system, which we then had to subject to parameter scans and analysis. Our
conjecture was that, by manipulating a relatively small set of the system’s parameters,
e.g., the ratio between the input number of fibril proteins and the guiding DNA-based
constructs, or the length distribution of the individual fibrils, we might be able to control
the average aperture of these meshes.

From the computational modeling perspective, capturing the complexity of a struc-
tural self-assembly system is a notoriously difficult task. This is due to the intrinsic nature
of these systems which, provided a continuous supply of elementary components, could
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theoretically generate an arbitrarily large number of different configurations. This, in turn,
gives rise to a problematic kinetic modelling of such systems, using e.g., systems of ordi-
nary differential equations. Indeed, according to the classical mathematical/computational
kinetic modelling methodology, each possible different configuration, being it an input
elementary component or a more complex generated assembly, needs to be assigned to
a different variable (aka specie) in the model. Even if we bound the number of input
elementary components to some reasonable threshold, in the case of self-assembly systems,
the total required number of species becomes easily intractable due to the combinatorial
explosion of the number of possible different complexes generated by the system. This
leads to the secondary objective of our study, namely to abstract a tractable computational
model of the mesh assembly process, which, though not completely following the bio-
logical reality, would be close enough and versatile enough to allow for a more involved
mathematical and computational study. In a preliminary study [25], we overcame the
above modelling challenge by employing a rule-based modeling methodology, which had a
fundamentally different approach of capturing the different “species” of the system [26,27].
Although that methodology was able to solve some of the difficulties in capturing the
evolution of the DNA-fibril dynamical system, the method was proven not to be flexible
enough for capturing some important structural properties of such systems. In the present
research, we briefly present the rule-base modeling approach used in [25] as well as some
of the results generated within. Then, we introduce a second computational model, which
enforces the conclusions from [25] as well as generates new insights into the assembly
process and its control.

2. Materials and Methods
DNA-Guided Assembly of Nanocellulose Meshes

In this study, we wanted to model the guided assembly of nanosized (bio-)fibril rods
(R) with the help of DNA-based macrostructures (O), i.e., DNA origamis [28] (or simply
denoted as origamis), acting as a smart-ligand in between two rods. Moreover, using
precise sequence matching and positioning, one can hope to obtain a perfect orthogonal
positioning of each two intersecting rods, as exemplified in Figure 1. While experimental
implementations of such systems are currently on incipient stages in our laboratories, in
this research, we wanted to study the possibility of controlling the size of the autonomously
generated average aperture of these meshes, i.e., the average in-between rod gaps, by
varying a series of parameters that are achievable from an experimental point of view.

Figure 1. DNA origami functionalized by orthogonally aligned specific aptamers, placed on opposite
sides, and connected to rod-like structures.

A somewhat simplified discrete dynamical model of the above process can be de-
scribed as follows: The origamis (O) are functionalized by two contiguous and perpen-
dicular lines of identical-type aptamers (the number of aptamers per line is irrelevant but
can be assumed to be at least 5), each of them being able to indiscriminately bind to the
“body” of the rods. Moreover, the aptamers are positioned such that those placed on the
horizontal line face the upper side, i.e., they bind a rod coming from above, while all those
positioned on the vertical line face the lower side, see Figure 1. Note that, since the origamis
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can be reflected or rotated in the solution, the two lines might change their direction, but
they will always remain orthogonal and all aptamers on the same line will face the same
side of the origami. Positioning the aptamers on the correct side of the origami can be
achieved by selecting the appropriate set of staple strands to be extended by the aptamer
sequence, as it can be easily determined which staple-strands are ending facing upwards,
downwards, or facing the plane of the origami. Note that such a 2-sided positioning of
structures has been previously achieved experimentally; see, e.g., [23], where the authors
demonstrate the positioning of orthogonal carbon nanotubes, placed each on a separate
side of an origami surface.

The rods (R) are inorganic, or protein-based filamentary structures, all assumed to
have an approximate equal length lrod. Although the aptamers placed along the origamis
generically stick to the rods, since these aptamers are positioned on one contiguous di-
rection (per each face of the origami), it is expected that the entire rod will align on the
origami according to this direction, as depicted in Figure 1. Thus, a docking position along
a rod stands for one continuous section ldoc of this rod of length equal to the origami’s
width. In order to translate this behavior into a discrete mathematical model, we asserted
that each rod is provided with an integer number l ≤ lrod

ldoc
of consecutive docking positions,

each being able to independently bind to an origami (O) construct.
The structural dynamical framework employed to model the mesh assembly consists

of two types of objects, origamis (O) and rods (R), and is defined by the following interaction
rules. Each O has exactly two R-binding locations (a.k.a. docking positions), placed on the
two opposite faces of the O’s 2D structure. Moreover, if both of these docking positions
are occupied by two (distinct) R objects, their placement is confided to an orthogonal
positioning to one another, as exemplified in Figure 1; the nano-engineering constrained
backing such an abstraction have been described above. Once an O object is bounded on
one of the R’s free docking positions, another R can dock onto this O, thus enlarging the
assembly; in this study, we assumed that the R–O binding interactions are irreversible.
By subsequent assemblies of R and O elements, the rods ultimately assemble into an
orthogonal mesh structure, as all the R objects are aligned either horizontally or vertically
(relative to one another). Every four interlocking R-objects defines an in-between empty
space, also known as the holes within the mesh, and the average size of these pockets
determine the aperture of the mesh structure. As in previous studies of self-assembly
systems, we assumed that only elementary structures, i.e., R and O, can attach to an
assembly and that partial assemblies do not interact with one another (as the free-floating
capacity of larger structures decreases proportional to their increasing sizes). While we
acknowledge that some partial assemblies might interact with one another, at this moment,
it is not clear for us if a stability/binding-strength threshold should be added in order to
enable such merger, e.g., in between large partial assembled meshes, as well as how—or
if—such interactions can be captured in a tractable computational model. On the other
hand, undesired binding in between origami structures, e.g., due to stacking/interactions,
can be avoided by classical experimental techniques, such as adding single-strand 4T
hairpin loops to the staple-strands (Within the DNA origami design principles, staple-
strands are algorithmically designed and synthetically synthesized single-stranded DNA
sequences that have the role of directing the assembly of a long single-stranded DNA
sequence, known as the scaffold strand, into the desired 2D conformation) located at the
border of the origami structure or even completely omitting the staple-strands normally
positioned at the border of the origami; see e.g., [28,29].

Depending on the modelling assumptions enforced, we distinguished between several
possible variants for the abstract model. On one hand, we called this model variant M1;
we can assume that the minimum gap between two parallel rods is at least the size of an
origami. Indeed, such close parallel rods would be placed on top of two origamis, each on
consecutive docking positions of a third rod, which is perpendicular to both of them (see
e.g., Figure 2a). Thus, in our model M1, in between every two parallel Rs, there should be at
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least one minimum space/gap, which is discretized as size 1 (in comparison to the discrete
size l, i.e., the number of docking positions, of all the rods considered in the system).

On the other hand, we called this model variant M0; it could be that the two origamis
which are docked on consecutive positions along the perpendicular rod have done so, with
the first on one side of the rod and the latter on the opposite side (see Figure 2b). Thus,
the two origamis could visually overlap, as they are on slightly different planes. Thus,
according to this model variant, the distance in between two parallel rods could be as close
to 0 as possible, i.e., will generate a “gap” of size 0 in the discrete universe of this model.
Generalizing, we denoted by Md the model in which the minimum distance between two
parallel rods has discrete value d in relation to the total discrete value l of the length of the
rods. In this study, we concentrated over the models M0, M1, M2, and M3.

(a) (b)

Figure 2. Possible origami positioning along a fibril: (a) both origamis are positioned on the same side of the fibril, in which
case a minimum (one-origami wide) inter-fibril gap has to be present, and (b) the origamis are positioned on opposite sides
of the fibril, in which case, in between two parallel fibrils, there could be almost no space at all.

As previously mentioned, one of the objectives of this study was to gain actionable
information on how to control, or influence, the average aperture size of the final assembled
meshes, i.e., the average size of those spaces that are obtained by interlocking rods and
that are completely surrounded by these rods. The model parameters identified by us as
experimentally achievable and with a good chance of having an effect over the average
gap size are the ratio between the number of origamis and rods in the system, and the
discrete length l of these rods, respectively. The reasoning for choosing these parameters
is as follows. In the classical DNA origami assembly, one important setting for achieving
good experimental results is to correctly set the proportion between the concentration of
scaffold strand and staple strands. Inspired by this fact, we believed that the ratio between
the R and O elements could prove to be an efficient control mechanism for the size of
the average mesh aperture. For the second parameter, the discretized length l of a rod,
i.e., compared to the size of an origami, had an influence over the inter-rod spaces as it
changes the probability of consecutive docking positions along an R object being occupied
by O elements.

3. Results
3.1. Coarse-Grained Computational Modeling of the DNA-Fibril Dynamical System

We briefly present first a rule-based modeling approach for capturing the assembly
of the DNA-fibril mesh. The model, first introduced in [25], is based on the BioNetGen
modeling language [26,27] and implemented using the NFsim [30] and RuleBender [31]
computational platforms.

As in the case of the mathematical dynamical system described before, our numerical
model consists of 2 types of objects, rods (R) and origamis (O). As the NFsim numerical
framework employed in the study was designed to operate with particle numbers, instead
of concentrations of species, we fixed the number of R objects at 1000 copies while the
number of O object may vary during the various numerical experiments depending on the
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value of the ratio s = O/R we wanted to analyze; this ratio s is one of the two parameters
that we used in order to adjust/analyze the model dynamics. For example, for the case,
when we studied the model where s = 0.1, the number of O objects was fixed to 100.

The discrete length l of the rods was the second parameter in the study. Each R object
has thus an l number of consecutive docking positions for the O elements, while each O
has 2 docking positions for the R elements, each placed on a different side of the structure
and orthogonal to one-another. While in this course-grain model we assumed the discrete
length l of the rod objects to be uniform for the entire R population, the influence of a
varying length distribution over the average gap size was analyzed in our subsequent
approach discussed in the next session. As in the case of other studies dealing with
computational simulations of the self-assembly process, we captured the growth of only
one of the assemblies emerging from the system and, moreover, we assumed a lack of
interactions on behalf of partial assemblies, i.e., only elementary R and O units interact
with a partial assembly. This approach can be explained also as modelling only a very
small portion of the entire volume of the experiment (see the relative small particle number
of R and O objects), in which case the probability of two large assemblies coexisting so
close is very small. The assembly starts from a preselected seed of type R and grows
through multiple subsequent associations of O and R elements. We direct readers who are
particularly interested in this rule-based approach to [25], where more technical details
about this model are discussed.

By postprocessing the output NFsim data, we can reconstruct the entire state of the
system at any desired time point, including the structure of the emerging assembly. Once
extracted, the structural arrangement of interlocking R and O objects can be represented as
a 2D integer matrix, called the mesh distribution matrix, for which the entry on point (i, j)
has value k, k ≥ 0, iff there are exactly k superimposed R objects on the (discrete) position
(i, j). In order to trim the output, we cropped this matrix according to the mesh surface
determined by the area between the coordinates of the top and bottom horizontal R, and
the left-most and right-most vertical R. The mesh distribution matrix can subsequently be
displayed as a 2D heat map of the generated structure; see e.g., Figure 3.

During successive in silico experiments, we spanned the parameters s = O/R through
the values 0.1, 0.5, 1, 5, and 10 and l through the values 5, 10, 15, and 20 while we kept
the concentration (i.e., particle number) of free-floating Rs set to 1000. Also, we simulated
each of these scenarios until the number of Rs captured within the mesh reached 1000
(Note: Even if the designing assumption is that of a closed dynamical model, with no
copies of R and O objects being created or destroyed, we have to acknowledge that we
are modelling a very small part/volume of this dynamical system. Thus, when one copy
of an R or an O object become embedded in the assembly, the number of remaining free-
floating copies in the entire volume, which is in the order of 1020, could be considered
unchanged, and this assumption would remain the same in the case of subsequent 1000 of
such additions. However, within the small volume that we are observing in our system,
1000 additions, or even 100, would substantially modify the reaction rates of the assembly
process. To compensate between this difference between local concentration (within the
modelled volume) and global concentration of the reactants, whenever an R on O object is
embedded in the assembly, a new similar free-floating object is introduced, thus leaving the
concentration of the reactants and their ratio s = O/R constant. Thus, the state when the
assembly contains 1000 R objects is achievable in a reasonable time interval, even if we start
with only 1000 free-floating copies of R). In each of the above experiments, we tracked the
mean aperture of the holes in the mesh by averaging over the entire structure. In Figure 3a,
we display these median values obtained after 30 independent runs of the computational
model for each different (O/R, l) pair of parameters. For a visual assessment, in Figure 3b,
we display the heat map of one of these simulations for the case when O/R = 0.1 and
l = 10.

The data captured in these experiments suggests that modifications in the rod’s length
parameter l generates overall larger differences in the average mesh aperture values than
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modifications of the O/R parameter. However, this latter parameter also influences, at a
lower fine-grained resolution, the average gap values, with slight value increases at the
lower and upper limits of the scanned interval [0.1, 10].
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Figure 3. Results of the coarse-grained model: (a) dynamics of the assembly averaged gap size per O/R and rod length
variation. Each data point is a median of approximately 30 independent runs. The horizontal axes represents the O/R
parameter, and the vertical one is the average size of the hole. (b) The heat map of the 2D matrix representations of the R
object interconnections generated within one run instance of the coarse-grained model for the case when O/R = 0.1 and
l = 10. All assemblies contain 1000 rods.

3.2. Tailored Stochastic Modeling of Assembly Formation and Dynamics

The previously considered course-grained modelling approach captures very well the
binding of free-floating R and O objects within the assembly. However, it does not record
the intersections that these objects generate with other objects in the assembly, i.e., other
than their initial docking partners. Indeed, in order to analyze the size and distribution of
the generated gaps, we have to further process the output data and recreate the structural
composition of the generated assembly. Since not all R-O intersections within the assembly
are recorded, it implies that these undetected overlaps would generate an increased number
of O (and subsequently R) overlapped docking positions, which in reality would not be
reachable, as they would become encapsulated in the surrounding overlapped objects.
Thus, the model would tend to over-agglomerate the assembly. In order to deal with this
bias, we developed a special tailored stochastic modeling approach which keeps track
of the overlying mesh structure during its dynamical evolution. Moreover, in this more
flexible approach, we are able to amend the assumption of a fixed length value for the initial
population of filament proteins by assuming instead that this parameter is distributed
according to a given probability distribution. Finally, this modeling methodology has
also the advantage of being able to take into consideration yet another important design
parameter, namely d, the minimal length in between two possible O docking positions. The
range of the d variable is from 0, i.e., two consecutive Os can dock on an R on abutting
positions, to l − 2 (with l as the discrete length of R), i.e., the two Os would dock on
opposite heads of an R. This parameter corresponds to the design characteristic of the
assembly-guiding DNA origami structures; large origamis, with respect to the width of a
protein filament, generate larger d values, while smaller structural designs for O generate
small d values. In this study, we concentrated over the cases when d = 0, d = 1, d = 2, and
d = 3, giving the model the name Model d.
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As previously mentioned, one of the advantages of the tailored stochastic model
is that it can generate a population of R objects having a length l randomly distributed
over the set {lmin, lmin + 1, . . . , lmax} with any given distribution. We considered here five
different initial distributions for the rod lengths: uniform distribution (uniform), which
gives equal weight to all sizes within the considered interval; truncated right skewed
geometric distribution (geometric (RS)), which puts more weight on rods with small lengths;
truncated left skewed geometric distribution (geometric (LS)), which puts more weight on
rods with large lengths; binomial distribution (binomial), for rod lengths of medium sizes;
and beta-binomial distribution (beta-binomial), in order to include extreme, both small and
large, cases. See e.g., Figure 4.

Uniform Geometric (RS) Geometric (LS) Binomial Beta−binomial

Figure 4. The five initial rod lengths distributions. From left to right: uniform, truncated right
skewed geometric (geometric (RS)), truncated left skewed geometric (geometric (LS)), binomial, and
beta-binomial.

The simulation process, i.e., the generation of the mesh distribution matrix, starts
with an empty mesh, containing only one R with length randomly generated over
{lmin, lmin + 1, . . . , lmax} according to the selected initial distribution. As in the previous
modeling approach, we assumed that there are always 1000 free floating R objects
and 1000 × s free floating O objects, where s = O/R is the stoichiometry ratio, a
model parameter which we valued at 2.5, 5, 7.5, and 10 during subsequent in vitro
experiments. At each iteration, we randomly selected an object, i.e., R or O, to place
next, with probability PR and PO, respectively, where

PR =
#R× DockR

#R× DockR + #O× DockO
, (1)

PO = 1− PR =
#O× DockO

#R× DockR + #O× DockO
.

In the above equation, #R and #O are the number of free floating R and O objects;
DockR is the number of free R-docking positions within the assembly, i.e., the number of
O objects within the assembly that are connected only to one R element; and DockO is
the maximum number of possible O-docking positions within the assembly, taking into
consideration the minimum gap d allowed in between two consecutive docking positions
along the same R object. When a rod object is selected, its length is randomly generated
following the selected initial distribution. After a selection is made, the object is placed
within the assembly on a position, which is randomly chosen (uniformly distributed) from
the currently available free positions for that object in the assembly, and the values for
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DockO and DockR are updated accordingly (Note that, according to our assumption, the
#R and #O values are constant). The process continues until the assembled mesh contains
1000 rods or there are no available positions within the assembly for origami or rod objects
(DockO + DockR = 0).

In order to asses the effect and possibly the actionable control pathway of each of the
considered parameters over the average gap size of the mesh, namely, the O/R ratio, the
type of length distribution for the initial rod length (considered always within the lmin = 10
and lmax = 40 bounds), and the minimal length d in between two possible docking positions,
we performed a number of independent simulation runs for these models. In particular,
for statistical relevance, for each different set of parameters, we always considered 100
independent iterations of the simulation process, while for computing the average gap
size, we used the trimmed mean function (For almost all the statistical analysis presented
in this section, we used all three central tendency measure functions, average, mean, and
truncated mean, without obtaining any significant changes in the conclusions), excluding
the top and bottom 10% of the values in order to filter out the outliers.

For an initial assessment of the outcome predicted by this current tailored stochastic
approach, we analyzed the trend of the trimmed mean gap size for all the considered values
of O/R differentiated by model and initial rod lengths distribution; see Figure 5, displaying
these values. The locally estimated scatter plot smoothing (loess) fitted curves illustrates a
stationary profile with a slow increase tendency with respect to O/R ratio for all models
with extreme values for truncated geometric distribution: lower profile for right skewed
and upper profile for left skewed. In accordance with the conclusions drawn from the
analysis of our initial course grain model and despite the initial empirical assumption that
the O/R ratio can influence the average gap size of the mesh structure, consistent numerical
simulations showed that this parameter does not bring about a significant change over the
considered statistic of the gap size. Thus, for model (and visualization) simplicity, for the
remainder of this study, we concentrate only on the middle value, i.e., O/R = 5.
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M
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M
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Figure 5. Loess tendency of the trimmed mean gap size for all O/R ratios differentiated by initial distribution of the rod
lengths and all models characterized by the minimum gap d allowed in between two consecutive docking positions.
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For a visual assessment of the different trends imposed by different model parameters,
in Figure 6, we present the heat maps of the mesh distribution matrix for one representative
assembled mesh in the case of each of the considered model variants Md and each initial
rod length distribution. It can be remarked that the level of structurally superimposed
R objects decreases with the increase in the minimum length parameter d in between
two possible docking positions, regardless of the initial distribution of the rod lengths.
Additionally, we can observe that the granularity of the assembled meshes increases both
with the rod length and the distance d.

Uniform Geometric (RS) Geometric (LS) Binomial Beta−binomial

M
odel 0

M
odel 1

M
odel 2

M
odel 3

Intersection
1
2
3

4
5
6

7
8
9

10
11
12

13

O/R = 5

Figure 6. Heat maps of 2D representations of the mesh structure for each model and each initial rod length distribution in
the case of O/R = 5 colored with respect to the intersection degree of R objects.

Another observation from Figure 6, supported also by the initial empirical assumption,
is that the sizes of the gaps within the mesh are bound to be influenced by their relative
position within the mesh, i.e., central locations are expected to exhibit smaller gap sizes.
Thus, we further provided a localized statistics of the average gap size, based on a user-
defined zoning granulation of the mesh distribution matrix and by assigning gaps within
these zones according to the position of their center of mass. In this study, we focused on a
4× 4 zoning, where the areas are labeled as bellow:

zone 1 zone 2 zone 3 zone 4

zone 5 zone 6 zone 7 zone 8

zone 9 zone 10 zone 11 zone 12

zone 13 zone 14 zone 15 zone 16

In Figure 7, we displaythe evolution of the trimmed mean gap size differentiated by
central zones, i.e., zones 6, 7, 10, and 11 and rod lengths distributions for the considered
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mesh assembly models with (d = 2 and O/R = 5). One can observe that, at the initial
stages of the assembly process, the gap sizes are large, dropping fast to zero at latter stages,
regardless of the initial distribution. This behavior can be intuitively explained by the
forming process: since the assembly growth is radial, the available docking positions from
the central zones are the first to be filled, generating a rapid aggregation of R objects and
thus a fast decrease of the average gap size.
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Figure 7. Time-dependent evolution of the trimmed mean gap size for the mesh assembly in the case of d = 2 and O/R = 5,
when the dynamics of the system is frozen once the total number of rods in the structure reaches 1000. The evolution is
spitted for each initial distribution of the rod lengths and each of the four central zones.

Furthermore, in Table 1, we present a numerical comparison of the trimmed mean
gap size values for the selected central zones (z6, z7, z10, and z11) as well as for the entire
structure (all) for each of the five initial distributions of the length of the rods. Despite the
initial assumption, it can be noticed that, on average, the central zones are representative
for the average gap size for the entire mesh. Additionally, similar to the conclusions drawn
from analyzing the heat maps of the assemblies, we noticed a strong correlation between
the rod lengths and the average gap sizes: assemblies in which the initial rod length
distribution favors short R objects, i.e. geometric (RS), lead to smaller average gap sizes,
while assemblies in which the initial rod length distribution allow even for a moderate
number of long R objects, i.e. uniform, beta-binomial, and geometric (LS), lead to larger
average gap sizes.

In order to test the goodness of fit of the distribution of the (trimmed) average gap
size formed in the generated mesh to a hypothesized continuous cumulative distribution,
a series of fifteen continuous cumulative distribution functions with positive support
were considered (see Table A1 in the Appendix A). For each proposed distribution, the
parameters were estimated using the Maximum Likelihood Estimation method (MLE) [32].
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The fitting process was done with the help of three classical goodness of fit techniques
based on empirical distribution functions [33]: Kolmogorov–Smirnov, Cramer–von Mises and
Anderson–Darling. We used the Anderson–Darling’s statistic to select the best distribution
among those fitted since it weights equally both the tails and the body of the distribution [34].

Table 1. Trimmed mean gap size values of 100 independent runs of the in silico experiments in the
case of d = 2 and O/R = 5 evaluated for each initial rod length distribution, for each of the four
central zones, as well as for the entire assembly.

Distribution z6 z7 z10 z11 all

Uniform 3.2675 3.4093 3.2805 3.5288 3.5151
Geometric (RS) 2.7425 3.0276 2.1810 2.5424 2.6354
Geometric (LS) 3.5283 3.3386 3.4199 3.3275 3.6453

Binomial 3.1354 2.9235 3.1980 3.0020 3.2363
Beta-binomial 3.3983 3.4945 3.5101 3.4127 3.5035

The computational methods and the estimation of the parameters of the test dis-
tributions were made by adapting the corresponding functions from the R packages:
fitdistrplus [35], actuar [36], and VGAM [37].

Considering the geometric (RS) case for the initial rod lengths distribution, in Figure 8,
we present histograms of the trimmed average gap size distribution and the top three
proposal distributions ranked according to Anderson–Darling criterion for the entire
assembled mesh (all) and for each of the four central zones (z6, z7, z10, and z11). We can
observe that, for this case, i.e., when the initial distribution of the rod lengths is truncated
right skewed geometric, the Dagum distribution is a suitable candidate to model the
distribution of the trimmed average gap size when O/R = 5 and d = 2.
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Figure 8. Histogram representation of the trimmed mean gap size for each of the four central zones and the entire assembly
along with the top three corresponding fitted distributions.
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Similar numerical results were obtained for each model and each initial rod length
distribution by considering the top five fitted distributions ranked according to Anderson–
Darling statistic for each central zone as well as for the whole structure; Table A2 in the
Appendix summarizes our findings for the case of d = 2 and O/R = 5. Based on these
results, in Table 2, we synthesize our findings and we present the most significant fitted
distribution evaluated according to a weighted scheme.

Table 2. The most representative fitted distributions for each initial rod length distribution evaluated
by employing a linear weighting scheme on the top five fitted distributions for all four central zones
and for the entire structure, as presented in Table A2.

Distribution Model O/R Ratio Fitted Distribution

Beta-binomial 2 5 gev
Binomial 2 5 gumbel

Geometric (LS) 2 5 lnorm
Geometric (RS) 2 5 dagum1

Uniform 2 5 gumbel

4. Discussion

The combination of structural and dynamical modelling of biochemical systems,
particularly those generated from a self-assembly construct, is known as a very challenging
and complex computational task. One has to deal with the combinatorial explosion of the
different expected species on one hand and to link the dynamical interaction process by the
constantly changing structural state of the system on the other. In order to handle the above
two challenging tasks, in this study, we employed two modeling methodologies, both with
specific advantages and weaknesses. The rule-based modelling methodology, represented
in this study by the BioNetGen modelling formalism and the NFsim numerical simulation
platform, is specifically design in order to capture systems with a profound local interaction
mechanism. This makes it well adjusted to capture the local structural constraints but has
its shortcomings in accounting for those subsequent structural interactions developing
further away from the local threshold established by the modeller. In the case of our
self-assembly dynamical system, the developed numerical model is able to capture its
time dynamics; it is governed by the Mass Action kinetics laws; and its simulations have
acceptable run times, even for larger settings, e.g., when the fibril length is 40. On the other
hand, the model cannot keep track of subsequent R object overlapping and, moreover, it is
not able to disable the O docking sites on these overlapped sites. Thus, new R attachments
have an abnormally high probability to attach to already agglomerated (and multiple
overlapped) areas; this behavior can be observed for example also in Figure 3b, where we
record values of up to 30+ overlaps on a single discrete position. As a consequence, lateral
growth of the assembly is inhibited to some extent.

Within the tailored stochastic model, we have more control over the underlying
structure, and thus, we can de-activate the unreachable docking positions. As seen in
Figure 6, the assemblies obtained here are larger and with less overlaps. However, in
this setting, we lose any notion of time dynamics, as the model does not take time into
consideration. Additionally, for this computational model, simulation time becomes quickly
prohibitive.

Another unexpected difference between our two computational implementations
concerns the layout features of the meshes generated by the two models. As a direct
consequence of the rod representation within the coarse-grained approach, i.e., as a linear
sequence of equally spaced docking sites, within this model, the R fibrils never crosses
the inter-docking spaces, thus generating meshes with a minimum gap of size 1 on every
other position. On the tailored stochastic model, on the other hand, the requirement for
consecutive O docking sites is that they should be at least d-positions apart. Thus, even for
the d = 1 model, we could have some odd (≥3) distances in between consecutive placed O
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objects, which could make some (or, as it can be seen in Figure 6 many) of the (even, even)-
type positions within the mesh crossed by R fibrils. Deciding which of the two situations
better predicts the real assembly process can be determined only after experimentally
implementing the system, a task which we are currently working on.

Although our objective is to design a multi-filament mesh by use of DNA origami
construct assembly, one aspect of our approach seems not to benefit our ultimate goal.
Particularly, in the current setting, one could argue that the origamis themselves might
block the openings of the mesh, thus “clogging” the entire structure. We see the approach
described here as a first step in generating such a mesh. After the rods are positioned
within the structure with the help of the origamis, the mesh further transforms as the
rods clamp each other and fix themselves in their current position while the nucleic acids
proceed towards a process of denaturation. This could be achieved both by treating the
network with a rod-ligand substance, e.g., as sericin does for silk-fibroin filaments [38], and
by considering the native entanglement of the rods generated during the mesh assembly.
In this latter direction, the fact that, during the mesh assembly, the origamis might bind
in flipped orientations and form irregular stacks of Os and Rs is unexpectedly further
advantageous.
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Appendix A

Appendix A.1. Table of Reference Distributions

Table A1. List of the fifteen reference distributions with positive support used to test the goodness of fit for the empirical
distribution of the trimmed mean gap size.

Distribution Acronym PDF Parameters

Beta beta f (x) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1− x)β−1 α, β > 0

Burr burr f (x) =
αk
(

x
β

)α−1

β
[
1+
(

x
β

)α]k+1 x ≥ 0, α, β, k > 0

Dagum dagum1 f (x) =
αk
(

x
β

)αk−1

β
[
1+
(

x
β

)α]k+1 x ≥ 0, α, β, k > 0

Gumbel gumbel f (x) = 1
σ e−(

x−µ
σ +e−

x−µ
σ ) µ ∈ R, σ > 0

Logistic logis f (x) = e−
x−µ

σ

σ

(
1+e−

x−µ
σ

)2 µ ∈ R, σ > 0

Log-Logistic llogis f (x) =
β( x

α )
β−1

α
[
1+( x

α )
β
]2 α, β > 0

Gamma gamma f (x) = 1
Γ(α)βα xα−1e−

x
β α, β > 0

Pareto 1 pareto1 f (x) = α
βα

xα+1 x > β, α, β > 0

Weibull weibull f (x) = α
β

(
x
β

)α−1
e−
(

x
β

)α

, x > 0 α, β > 0



Mathematics 2021, 9, 404 15 of 17

Table A1. Cont.

Distribution Acronym PDF Parameters

Inverse Weibull invweibull f (x) = α
(

β
x

)α e
−
(

β
x

)α

x , x > 0 α, β > 0

Normal norm f (x) = 1√
2πσ

e−
(x−µ)2

2σ2 µ ∈ R, σ > 0

Log-Normal lnorm f (x) = 1
xσ
√

2π
e−

(log x−µ)2

2σ2 µ, σ > 0

Generalized Extreme Value gev f (x) =

 1
σ e−(1+ξ

x−µ
σ )
− 1

ξ
(1 + ξ

x−µ
σ )
−1− 1

ξ , ξ 6= 0
1
σ e−

x−µ
σ −e−

x−µ
σ , ξ = 0

{
1 + ξ

x−µ
σ > 0, ξ 6= 0

x ∈ R, ξ = 0
; µ, ξ ∈ R, σ > 0

Nakagami naka f (x) = 2mm

Γ(m)Ωm x2m−1e−
m
Ω x2

x ≥ 0, m ≥ 0.5, Ω > 0

Rayleigh rayleigh f (x) = x
σ2 e−

x2

2σ2 x ≥ 0, σ > 0

Note: In the above probability density functions we have used Γ(x) to denote the Gamma function, i.e., Γ(x) =
∫ ∞

0 tx−1e−t dt for x > 0.

Appendix A.2. Table of Top Ranked Fitted Distributions

Table A2. Top five fitted distributions according to Anderson–Darling statistic on each of the four central zones and the
entire assembly differentiated by the initial distribution of the rod length.

Distribution Zones Rank_Dist_1 Rank_Dist_2 Rank_Dist_3 Rank_Dist_4 Rank_Dist_5

Uniform z6 gumbel gev lnorm beta dagum1
Uniform z7 dagum1 burr gumbel llogis lnorm
Uniform z10 burr dagum1 gev gumbel llogis
Uniform z11 gumbel dagum1 lnorm burr llogis
Uniform all gamma lnorm nakagami burr normal

Geometric (RS) z6 burr llogis dagum1 gumbel lnorm
Geometric (RS) z7 gev dagum1 burr gumbel llogis
Geometric (RS) z10 lnorm gev dagum1 llogis burr
Geometric (RS) z11 dagum1 gumbel gev burr llogis
Geometric (RS) all burr dagum1 gumbel llogis invweibull
Geometric (LS) z6 gev gumbel dagum1 lnorm burr
Geometric (LS) z7 gev lnorm gumbel gamma dagum1
Geometric (LS) z10 burr gumbel dagum1 llogis lnorm
Geometric (LS) z11 llogis burr dagum1 lnorm gamma
Geometric (LS) all gamma lnorm nakagami normal burr

Binomial z6 dagum1 burr llogis gumbel gev
Binomial z7 gumbel gev lnorm dagum1 burr
Binomial z10 gumbel gev lnorm dagum1 burr
Binomial z11 dagum1 gumbel lnorm burr llogis
Binomial all gumbel dagum1 invweibull burr lnorm

Beta-binomial z6 gev lnorm gamma dagum1 llogis
Beta-binomial z7 burr dagum1 gev invweibull gumbel
Beta-binomial z10 burr dagum1 gumbel llogis lnorm
Beta-binomial z11 gev lnorm gumbel dagum1 llogis
Beta-binomial all gev lnorm burr llogis dagum1
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