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THE BLOCH SPACE ON THE UNIT BALL OF A HILBERT SPACE:
MAXIMALITY AND MULTIPLIERS

PABLO GALINDO† AND MIKAEL LINDSTRÖM∗

Abstract. We prove that, as in the finite dimensional case, the space of Bloch functions on
the unit ball of a Hilbert space contains under very mild conditions any semi-Banach space of
analytic functions invariant under automorphisms. The multipliers for such Bloch space are
characterized and some of their spectral properties are described.

1. Introduction and preliminaries

All over (X, ‖ · ‖) denotes a semi-Banach space of analytic functions on the unit ball of a
Hilbert space H that is invariant under automorphisms ϕ of the ball BH in the sense that for
all f ∈ X, we have

f ◦ ϕ ∈ X and ‖f ◦ ϕ‖ = ‖f‖.
A function f : BH → C is said to be a Bloch function [2] if

‖f‖B := sup
x∈BH

(1− ‖x‖2)‖∇f(x)‖ <∞.

By B(BH), we denote the space of Bloch functions defined on BH . We will consider besides the
semi-norm ‖ · ‖B, the semi-norm

‖f‖inv := sup
x∈BH

‖∇̃f(x)‖ <∞

where the invariant gradient ∇̃f is defined by ∇̃f(a) = ∇(f ◦ϕa)(0) for any a ∈ BH (see below
the definition of the automorphism ϕa.) Both semi-norms were shown to be equivalent [2,
Theorem 3.8] and render B(BH) a semi-Banach space. The latter semi-norm ‖f‖inv is invariant
under automorphisms. So B(BH) is invariant under automorphisms of BH . Associated to these
semi-norms there are the corresponding (equivalent) norms,

‖f‖ := |f(0)|+ ‖f‖B <∞, and |||f ||| := |f(0)|+ ‖f‖inv.
In this note it is proved that any other invariant space (X, ‖ · ‖) possesing a nontrivial linear

functional continuous for the compact open topology is continuously embedded in B(BH).
This was already proved in 1982 by R. Timoney [7] for finite dimensional Hilbert spaces and
recalled in K. Zhu’s book [9], whose proof inspired strongly ours, in spite that there is a missing
assumption in the result’s statement. Also the multipliers of the Bloch space are characterized
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and the invertibility, spectrum and essential spectrum of the linear operators they give raise to
are described.

A summary about automorphisms of the unit ball BH follows: The analogues of Möbius
transformations on H are the mappings ϕa : BH → BH , a ∈ BH , defined according to

ϕa(x) = (saQa + Pa)(ma(x))(1)

where sa =
√

1− ‖a‖2, ma : BH → BH is the analytic map

ma(x) =
a− x

1− < x, a >
,(2)

Pa : H → H is the orthogonal projection along the one-dimensional subspace spanned by a,
that is,

Pa(x) =
〈x, a〉
〈a, a〉

a

and Qa : H → H, is its orthogonal complement, Qa = Id − Pa. Recall that Pa and Qa are
self-adjoint operators since they are projections, so 〈Pa(x), y〉 = 〈x, Pa(y)〉 and 〈Qa(x), y〉 =
〈x,Qa(y)〉 for any x, y ∈ H.

The automorphisms of BH turn to be compositions of such analogous Möbius transformations
with unitary transformations U of H, that is, self-maps of H satisfying 〈U(x), U(y)〉 = 〈x, y〉
for all x, y ∈ H.

The pseudo-hyperbolic and hyperbolic metrics on BH are respectively defined by

ρH(x, y) := ‖ϕx(y)‖ and βH(x, y) :=
1

2
log

1 + ρH(x, y)

1− ρH(x, y)
.

By H(BH) we denote the space of complex-valued analytic functions on BH , and by H∞(BH)
the subspace of H(BH) of bounded functions endowed with the norm, denoted ‖·‖∞, of uniform
convergence on BH . It is known that H∞(BH) ⊂ B(BH) with continuous inclusion [2]. For
background on analytic functions we refer to [8].

2. Maximality

Before proving our main result Theorem 2.1, we show some others that we need.

Lemma 2.1. (a) Every term in the Taylor series of f ∈ X, belongs to X as well.
(b) If there is a non-constant function g ∈ X, then every linear continuous functional on H lies
in X.

Proof. (a) Recall that for f ∈ X, the m-homogeneous term in its Taylor series at 0 of f is given

by fm(z) = 1
2πi

∫
|λ|=1

f(λz)
λm+1dλ. By putting λ = eiθ, it turns out that fm(z) = 1

2π

∫ 2π

0
f(eiθz)
eimθ

dθ.

And this function belongs to X because the suitable Riemann sums are functions in X since
z  eiθz are automorphisms of BH .

(b) Recall also that f1(z) =< z,∇f(0) > . Suppose ∇f(0) = 0 for all f ∈ X. This means
that ∇f(z) = 0 for all f ∈ X : indeed for all automorphisms ϕa, we have

d(f ◦ ϕa)(a)(w) =
(
df(0) ◦ dϕa(a)

)
(w) =< dϕa(a)(w),∇f(0) >= 0.
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Thus, ∇(f ◦ ϕa)(a) = 0, for all f ∈ X. And since ϕa ◦ ϕa = id, we get

∇f(a) = ∇
(
(f ◦ ϕa) ◦ ϕa

)
(a) = 0.

Consequently, every f ∈ X is constant. This is in contrary to the assumption, so there is a
norm one linear functional υ in H which belongs to X.

Since the dual space of a Hilbert space is also a Hilbert space, any norm one linear functional
in H can be obtained by composing υ with a suitable unitary transformation that is, of course,
an automorphism of the ball. �

Recall that a (continuous) finite type polynomial on a normed space E is a linear combination
of powers of functionals in the dual space E∗.

Proposition 2.1. If there is a non-constant function g ∈ X, then all finite polynomials lie in
X.

Proof. According to Lemma 2.1 (b), for each a ∈ BH , the linear functional a∗(z) =< z, a > is
an element of X. Thus a∗ ◦ ϕa ∈ X. Since

(3)
(a∗ ◦ ϕa)(z) = Pa

(
a−z

1−<z,a>

)
=
〈

a−z
1−<z,a> , a

〉
=

‖a‖2−<z,a>
1−<z,a> = ‖a‖2 +

∑∞
n=0(‖a‖2 − 1) < z, a >n+1,

we apply Lemma 2.1 (a) to assure that the powers of the linear functional a∗ are in X. Hence
the finite type polynomials belong to X. �

Theorem 2.1. Assume that in the semi-Banach space X there is a nonconstant function and
that there is a nonzero linear functional L on X that is continuous for the compact open topology
τ0. Then X ⊂ B(BH). If further L(1) 6= 0, then X ⊂ H∞(BH).

Proof. We first assume that L(1) = 0. Let e be a vector in some orthonormal basis of H. We
show by contradiction that there exists an automorphism ϕ of BH such that for the linear
functional Lϕ := L ◦ Cϕ, one has Lϕ(e∗) 6= 0, where Cϕ is the composition operator given by
right composition with ϕ.

So assume that Lϕ(e∗) = 0 for all automorphisms ϕ of BH . Set a = re, 0 < r < 1, and
consider the Taylor series of e∗ ◦ ϕa = 1

r
a∗ ◦ ϕa obtained from (3):

e∗ ◦ ϕa(z) = r +
∞∑
n=0

(r2 − 1)

r
< z, a >n+1= r + (r2 − 1)

∞∑
n=0

rn < z, e >n+1 .

Since this series is τ0 convergent, we have for all 0 < r < 1,

0 = Lϕa(e
∗) = L(e∗ ◦ ϕa) = rL(1) + (r2 − 1)

∞∑
n=0

rnL(< ·, e >n+1).

Hence L((e∗)k) = L(< ·, e >k) = 0 for all k ∈ N.
For any other element w ∈ H, w 6= 0, ‖w‖ = 1, there is an isometric isomorphism- and

also an automorphism of the ball- ψ of H exchanging e and w, so for all automorphisms ϕ,
Lϕ(w∗) = Lϕ(e∗ ◦ψ) = Lψ◦ϕ(e∗) = 0. Therefore we argue as in the paragraph above to conclude
that L((w∗)k) = 0 for all k ∈ N.
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Then by linearity, L(P ) = 0, for all finite type polynomials P in H. And bearing in mind
that the finite type polynomials are τ0-dense in the space H(BH) ([8, 28.1 Theorem]), then
L(f) = 0 for all f ∈ X. This is a contradiction.

Therefore we may assume since all Lϕ are also τ0-continuous that L(e∗) 6= 0.
Let f ∈ X. For any compact subset K ⊂ BH , the series

∑∞
m=0 e

imtfm(z) is uniformly con-
vergent in [0, 2π]×K (use Cauchy inequalities). Thus the series

∑∞
m=0 e

imtfm is τ0-convergent
to f(eit·). So, L(f(eit·)) =

∑∞
m=0 e

imtL(fm), and

∣∣ ∞∑
m=0

eimtL(fm)
∣∣ =

∣∣L(f(eit·)
∣∣ ≤ ‖L‖ · ‖f‖.

This allows us to use the Lebesgue domination convergence theorem to guarantee that L(f(eit·))
defines an element in L1([0, 2π]). The fact that L is τ0-continuous implies that there is compact
subset M of BH , which we can suppose to be balanced, and A > 0, such that

|L(f)| ≤ A sup
z∈M
|f(z)|.

This leads to |L(f(eit·)| ≤ A supz∈M |f(z)|. So the linear map f ∈ X  L(f(eit·)) ∈ L1([0, 2π])
is τ0-continuous.

Further the linear functional Λ : L1([0, 2π])→ C given by Λ(h) = 1
2π

∫ 2π

0
h(t)
eit
dt is a continuous

one, hence the linear functional, F, on X given by

f ∈ X F
 Λ(L(f(eit·))) =

1

2π

∫ 2π

0

L(f(eit·))
eit

dt

is τ0-continuous. This together with the fact that
∑∞

m=0 e
imtfm is τ0-convergent to f(eit·), leads

to

F (f) =
1

2π

∫ 2π

0

L(f(eit·))
eit

dt =
1

2π

∞∑
m=0

∫ 2π

0

eimt
L(fm)

eit
dt =

1

2π

∞∑
m=0

L(fm)

∫ 2π

0

ei(m−1)tdt = L(f1).

Since f1(z) =< z,∇f(0) >= ∇f(0)∗(z), we conclude that F (f) = L(∇f(0)∗), and that there
is a constant C > 0 such that

(4) |L(∇f(0)∗)| ≤ C‖f‖.

Now, we fix an orthonormal basis {ej}j∈J in H, and we claim that
∑
L(e∗j)ej defines an

element in H. For (αj) ∈ H, the net of partial sums
(∑

j∈γ αjej
)
γ∈Γ

(Γ the ordered set of

finite subsets of J) is known to converge in H to (αj). This leads to limγ

∑
j∈γ αj(e

∗
j)(z) =

limγ

(∑
j∈γ αj(e

∗
j)
)
(z) = (αj)

∗(z) uniformly on BH , hence limγ

∑
j∈γ αje

∗
j = (αj)

∗ also in the

compact open topology, so limγ

∑
j∈γ αjL(e∗j) = L((αj)

∗). Further,∣∣∣∑
j∈γ

αjL(e∗j)
∣∣∣ =

∣∣∣L(
∑
j∈γ

αje
∗
j)
∣∣∣ ≤ A sup

z∈M

∣∣∣∑
j∈γ

αje
∗
j(z)

∣∣∣ = A sup
z∈M

∣∣∣∑
j∈γ

αjzj

∣∣∣ ≤ A
∥∥∥(αj)

∥∥∥.
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Thus by the uniform boundedness principle, the linear form (αj) ∈ H  
∑
αjL(e∗j) is a

continuous one. That is $ = (L(e∗j)) ∈ H and $ 6= 0 since L(e∗1) 6= 0, and L((αj)
∗) =∑

αjL(e∗j) =< (αj), $ > . Put υ = $
‖$‖ .

Next, for any f ∈ X with ∇f(0) 6= 0, we may find an isometric isomorphism φ, hence an

automorphism of the ball exchanging υ and ∇f(0)
‖∇f(0)‖ . Then for g := f◦φ, we have g′(0) = f ′(0)◦φ,

so < ∇g(0), z >=< ∇f(0), φ(z) > . Therefore,

|L(∇g(0)∗)| = | < ∇g(0), $ > | = ‖$‖| < ∇g(0), υ > | =

‖$‖| < ∇f(0), φ(υ) > | = ‖$‖ < ∇f(0),
∇f(0)

‖∇f(0)‖
> | = ‖$‖‖∇f(0)‖.

Now inequality (4) yields

‖$‖‖∇f(0)‖ ≤ C‖g‖ = C‖f‖ that is, ‖∇f(0)‖ ≤ C

‖$‖
‖f‖.

An inequality also valid if ∇f(0) = 0. And now for the invariant gradient,

‖∇̃f(z)‖ = ‖∇(f ◦ ϕz)(0)‖ ≤ C

‖$‖
‖f ◦ ϕz‖ =

C

‖$‖
‖f‖

which shows that f ∈ B(BH).

Assume now that L(1) 6= 0. Instead of Λ : L1([0, 2π])→ C we consider the linear functional

Ω given by Ω(h) = 1
2π

∫ 2π

0
h(t)dt and argue analogously. Then, the linear functional, G, on X

given by

f ∈ X G
 Ω(L(f(eit·))) =

1

2π

∫ 2π

0

L(f(eit·))dt

is τ0-continuous and G(f) = L(f0) = f(0)L(1). In addition, there is a constant B > 0 such that
|f(0)L(1)| = |G(f)| ≤ B‖f‖. Now, replacing f by f ◦ϕz, we get |f(z)L(1)| ≤ B‖f ◦ϕz‖ = ‖f‖.
That is, f is bounded and ‖f‖∞ ≤ B

|L(1)|‖f‖. �

3. multipliers

Recall that a function f is said to be a multiplier for the Bloch space if fg ∈ B(BH) for all
g ∈ B(BH).

The key to characterize the multipliers for the Bloch space in the n-ball Bn is the following
result that for x, y ∈ Bn we have

β(x, y) = sup {|f(x)− f(y)| : ||f ||B ≤ 1} ,
where β is the Bergman or hyperbolic metric in Bn and f : Bn → C is an analytic function on
Bn.

The same result was established for arbitrary Hilbert spaces H in [3, Corollary 3.5]. And
accordingly, the characterization of the multipliers for B(BH) follows in the very same way as
in the finite dimensional case, see [9, Theorem 3.21].
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Theorem 3.1. Let f ∈ H(BH). Then f is a multiplier of the Bloch space B(BH) if and only
if f ∈ H∞(BH) and the function z ∈ BH  (1− ‖z‖2)‖∇f(z)‖ log 1

1−‖z‖2 is bounded.

Proof. If f is a multiplier of the Bloch space, then the closed graph theorem shows that there
is a constant C > 0 such that ‖fg‖ ≤ C‖g‖ for all g ∈ B(BH). To check that f ∈ H∞(BH) it
suffices to realize that

|f(z)||δz(g)| = |f(z)g(z)| = |δz(fg)| ≤ ‖fg‖‖δz‖ ≤ ‖δz‖C‖g‖,

and taking supremum for ‖g‖ ≤ 1, we get |f(z)|‖δz‖ ≤ ‖δz‖C, thus |f(z)| ≤ C. That is,
f ∈ H∞(BH).

Since ∇(fg)(z) = f(z)∇g(z) + g(z)∇f(z), we get

(5) |g(z)|‖∇f(z)‖(1− ‖z‖2) ≤ ‖f‖∞‖g‖+ C‖g‖ for all g ∈ B(BH) and all z ∈ BH .

As mentioned above, for x, y ∈ BH we have

βH(x, y) = sup {|g(x)− g(y)| : ||g||inv ≤ 1} ,

where β denotes the hyperbolic distance in BH . So by taking supremum on g in the unit ball
of B(BH) and g(0) = 0, we obtain that (1− ‖z‖2)‖∇f(z)‖ log 1

1−‖z‖2 is bounded.

We omit the proof of the reverse condition as it mimics the one for B(Bn). �

By B0(BH) we denote the little Bloch space

{f ∈ B(BH) : lim
‖x‖→1−

(1− ‖x‖2)|Rf(x)| = 0}

as defined in [4]. Recall that Rf(x) :=< x,∇f(x) > is the radial derivative of f at x.

The growth of a function in B0(BH) behaves in the same way as in the finite dimensional
case.

Lemma 3.1. If g ∈ B0(BH), then lim‖x‖→1−
g(x)

log 1
1−‖x‖2

= 0.

Proof. We can assume WLOG that g(0) = 0 and ‖g‖ = 1. Let ε > 0. Then there is 1
2
< s < 1

such that (1− ‖y‖2)|Rg(y)| ≤ ε if ‖y‖ > s2.
So,

|g(sx)| = |δsx(g)| ≤ log
1 + ‖sx‖
1− ‖sx‖

≤ log
1 + s

1− s
.

Choose now r > s such that for ‖x‖ > r, we have log 1
1−‖x‖2 >

log 1+s
1−s
ε

and hence |g(sx)|
log 1

1−‖x‖2
≤ ε.

Moreover if ‖x‖ > s,

|g(x)− g(sx)| =

∣∣∣∣∫ 1

s

g′(xt)(x)dt

∣∣∣∣ =

∣∣∣∣∫ 1

s

1

t
Rg(xt)dt

∣∣∣∣ =

∣∣∣∣∫ 1

s

1

t

Rg(xt)(1− ‖xt‖2)

1− ‖xt‖2
dt

∣∣∣∣
≤ ε

‖x‖2

∫ 1

s

‖x‖
1− ‖x‖2|t|2

dt ≤ 2ε log
1 + ‖x‖
1− ‖x‖

.
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Since log 1+‖x‖
1−‖x‖ = O

(
log 1

1−‖x‖2

)
when ‖x‖ → 1, it follows that∣∣∣ g(x)

log 1
1−‖x‖2

∣∣∣ ≤ |g(sx)|
log 1

1−‖x‖2
+Kε ≤ ε(1 +K) if ‖x‖ > r.

�

Corollary 3.1. The function f is a multiplier of the Bloch space B(BH) if and only if f is a
multiplier of the little Bloch space B0(BH).

Proof. Let g ∈ B0(BH). Suppose that f is a multiplier of B(BH). Since lim‖x‖→1−(1−‖x‖2)|Rg(x)| =
0, also

lim
‖x‖→1−

(1− ‖x‖2)|f(x)||Rg(x)| = 0.

On the other hand,

(1− ‖x‖2)|g(x)||Rf(x)| ≤ |g(x)|
log 1

1−‖x‖2
(1− ‖x‖2)‖∇f(x)‖ log

1

1− ‖x‖2
.

Hence using Lemma 3.1 and Theorem 3.1, we get that lim‖x‖→1− g(x)(1 − ‖x‖2)R(f)(x) = 0.
And since R(fg)(x) = g(x)Rf(x) + f(x)Rg(x), we deduce that

lim
‖x‖→1−

(1− ‖x‖2)R(fg)(x) = 0.

Thus fg ∈ B0(BH).
For the converse, suppose that f is a multiplier of B0(BH). Then there is C > 0 such that

‖fh‖ ≤ C‖h‖ for all h ∈ B0(BH). Let g ∈ B(BH). Using [3, Theorem 3.1] it suffices to prove
that

sup

{∣∣(fg)(x)− (fg)(y)
∣∣

βH(x, y)
: x, y ∈ BH , x 6= y

}
<∞.

Consider for 0 < r < 1 the functions gr(x) := g(rx), which belong to B0(BH). Thus fgr ∈
B0(BH) by assumption and, moreover, ‖gr‖ ≤ ‖g‖, hence ‖fgr‖ ≤ C‖gr‖ ≤ C‖g‖. Appealing
again to [3, Theorem 3.1] and the equivalence of the semi-norms ‖ · ‖B and ‖ · ‖inv, there is a
constant A > 0 such that

sup

{∣∣(fgr)(x)− (fgr)(y)
∣∣

βH(x, y)
: x, y ∈ BH , x 6= y

}
≤ A.

Letting r → 1−, we obtain

sup

{∣∣(fg)(x)− (fg)(y)
∣∣

βH(x, y)
: x, y ∈ BH , x 6= y

}
≤ A,

as needed. �

Remark 3.1. The vector space B0(BH)
⋂
H∞(BH) is a Banach subalgebra of H∞(BH).
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Proof. If f, g ∈ B0(BH)
⋂
H∞(BH), then it follows in an easier way than in the above corollary

that fg ∈ B0(BH)
⋂
H∞(BH).

Any ‖ · ‖∞-Cauchy sequence in B0(BH)
⋂
H∞(BH) is also a Cauchy sequence in B(BH).

Hence its limit belongs to both B0(BH) and H∞(BH). �

Lemma 3.2. The multiplication operator Mf : B(BH) → B(BH) given by Mf (g) = gf, is
invertible if and only if 1

f
∈ H∞(BH).

Proof. If Mf is invertible, there is h ∈ B(BH) such that fh = 1. Thus, f(x) 6= 0 for all x ∈ BH

and so, 1
f
∈ H(BH). Further, 1

f
is a multiplier for B(BH) since for each g ∈ B(BH), there is

h ∈ B(BH) such that fh = Mf (h) = g, hence M 1
f
g = 1

f
g = h ∈ B(BH). Now, apply Theorem

3.1.
If 1

f
∈ H∞(BH), then there is a > 0 such that a ≤ |f(x)| for all x ∈ BH . In order to prove

that Mf is invertible, it suffices to check that 1
f

is a multiplier for B(BH). That is, to verify

that 1
f

satisfies the condition in Theorem 3.1. Indeed:

Since ∇ 1
f
(x) = −1

f2(x)
∇f(x), we have∥∥∇( 1

f

)
(x)
∥∥ =

∣∣ −1

f 2(x)

∣∣∥∥∇f(x)
∥∥ ≤ 1

a2

∥∥∇f(x)
∥∥

which together with the fact that f fulfills the condition in Theorem 3.1 yields the result. �

Theorem 3.2. Assume dim(H) > 1. The spectrum σ(Mf ) and the essential spectrum σe(Mf )

of the multiplication operator Mf : B(BH) → B(BH) coincide with f(BH). Further σe(Mf ) =⋂
0<r<1 f(BH \ rBH) = σ(Mf ).

Proof. Notice that Mf − λId = Mf−λ. By Lemma 3.2, Mf−λ is invertible if and only if, f − λ
is bounded below, which is equivalent to λ /∈ f(BH).

For the essential spectrum, we show that f(BH) ⊂ σe(Mf ). First, we notice that the set
of evaluations at points in BH is linearly independent in B(BH)∗ : Indeed, if

∑m
j=1 αjδxj = 0

and because every finite subset of BH is linear interpolating for H∞(BH), we may find Fj ∈
H∞(BH) ⊂ B(BH), such that Fl(xj) = δlj, thus 0 =

(∑m
j=1 αjδxj

)
Fl = αl.

Fix λ ∈ f(BH). We may assume f 6= 0. Since f has no isolated zeroes, there is an infinite
number of them, say {xj}. It turns out that all δxj ∈ KerM∗

f−λ, the adjoint map of Mf−λ.
Hence M∗

f−λ is not a Fredholm operator, so neither is Mf−λ. Therefore, λ ∈ σe(Mf ), as wanted.
To conclude, recall that the essential spectrum is a closed subset of the spectrum.

For the second statement, let λ /∈
⋂

0<r<1 f(BH \ rBH). Then there are r ∈ (0, 1) and δ > 0
such that |λ − f(x)| ≥ δ for all r ≤ ||x|| < 1. Then g(x) = (f(x) − λ)−1 is analytic and
bounded on BH \ rBH . By Hartogs’ extension type theorem from [5, Theorem 5] extend g
to g̃ analytic on BH such that g̃(x) = (f(x) − λ)−1 for all x ∈ BH \ rBH . Notice that if g
is bounded, then Hartogs’ extension g̃ is also bounded because for the restriction g̃|rBH

and

x ∈ rBH , we have |g̃(x)| ≤ sup‖u‖=r |g̃(u)| ≤ 1
δ

thanks to the maximum norm theorem (see [1,

Proposition 10.2]). Clearly h(x) := g̃(x)(f(x) − λ) ∈ H(BH) and h(x) = 1 if x ∈ BH \ rBH .
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Now the identity principle [8, Proposition 5.7], gives that g̃(x) = (f(x) − λ)−1 for all x ∈ BH

and (f − λ)−1 ∈ H∞(BH). Hence Mf−λ is invertible by Lemma 3.2, so λ /∈ σ(Mf ).
�

We are able to extend [6, Corollary 1] to our arbitrary dimensional setting. Indeed, from
Theorem 3.2 we conclude directly that Mf acting on B(BH) is not compact unless f = 0.
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