
 

This is an electronic reprint of the original article. This reprint may differ from the original 
in pagination and typographic detail. 

 
Enabling fast exploration and validation of thermal dissipation requirements for
heterogeneous SoCs
Öhrling, Joel; Truscan, Dragos; Lafond, Sebastien

Published in:
Proceedings - 2021 IEEE 14th International Conference on Software Testing, Verification and Validation
Workshops, ICSTW 2021

DOI:
10.1109/ICSTW52544.2021.00030

Published: 01/05/2021

Document Version
Accepted author manuscript

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Öhrling, J., Truscan, D., & Lafond, S. (2021). Enabling fast exploration and validation of thermal dissipation
requirements for heterogeneous SoCs. In Proceedings - 2021 IEEE 14th International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2021 (pp. 114-123). Article 9440167 IEEE.
https://doi.org/10.1109/ICSTW52544.2021.00030

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 19. Apr. 2024

https://doi.org/10.1109/ICSTW52544.2021.00030
https://research.abo.fi/en/publications/1c527d38-afd5-4e4c-87e7-eef01d2f1cea
https://doi.org/10.1109/ICSTW52544.2021.00030


Enabling Fast Exploration and Validation of
Thermal Dissipation Requirements for

Heterogeneous SoCs
Joel Öhrling, Dragos Truscan, and Sebastien Lafond

Department of Information Technology
Åbo Akademi University

Turku, Finland
joelohrling@gmail.com, dragos.truscan@abo.fi and sebastien.lafond@abo.fi

Abstract—The management of the energy consumption and
thermal dissipation of multi-core heterogeneous platforms is
becoming increasingly important as it can have direct impact
on the platform performance. This paper discusses an approach
that enables fast exploration and validation of heterogeneous
system on chips (SoCs) platform configurations with respect
to their thermal dissipation. Such platforms can be configured
to find the optimal trade-off between performance and power
consumption. This directly reflects in the head dissipation of
the platform, which when increases over a given threshold will
actually decrease the performance of the platform. Therefore, it
is important to be able to quickly probe and explore different
configurations and identify the most suitable one. However, this
task is hindered by the large space of possible configurations
of such platforms and by the time required to benchmark each
configurations. As such, we propose an approach in which we
construct a model of the thermal dissipation of a given platform
using a system identification methods and then we use this model
to explore and validate different configurations. The approach
allows us to decrease the exploration time with several orders of
magnitude. We exemplify the approach on an Odroid-XU4 board
featuring an Exynos 5422 SoC.

Index Terms—thermal dissipation, heterogeneous SoC, system
identification, thermal profiling, thermal prediction

I. INTRODUCTION

In the age of ever-increasing demand for mobile data traffic
and the number of Internet-connected devices growing every
day, new technologies to meet these demands on throughput
and availability are continuously being researched and de-
ployed. With ever more dire climate reports presented every
year, it is also crucial to consider the climate impact of these
telecommunications systems. In 2016, it was estimated that
around 5% of the world’s CO2 emissions originated from
information and communication technology [1]. The same
year YouTube alone contributed with 10 million tons of CO2-
equivalent emissions [2], roughly twice the annual carbon
footprint of the Helsinki Metropolitan Area [3].

Over the past 15 years, however, there has been a shift
towards increasing the number of cores instead of the clock
frequency [4]. Today, there exists a wide range of chips that
integrate several types of components into the same casing.
These are referred to as a System-on-a-Chip (SoC). An SoC

is typically a fully functioning computer on a single chip.
Components that have traditionally been discrete parts in a
large computing system are now being integrated on the same
chip. For heterogeneous systems, this means that multiple
types of processing units are integrated into the same chip.
These types of chips are generally referred to as heterogeneous
SoCs or heterogeneous processors. Heterogeneous processors
can, for example, be found in most of today’s mobile phones
and are becoming progressively more prevalent in all types
of computers [5]. This is also the case for information
and communications systems [6]. The primary motivation
for deploying heterogeneous processors in these systems is
to provide better efficiency, as different types of cores are
optimized for different types of instructions or workloads [7].

A heterogeneous SoCs is a standardized specification that
allows for the integration of different types of processors
on the same bus. Architectures that combine two or more
multi-core CPUs are conventional in many energy-constrained
devices today. The purpose of these architectures is to provide
better energy efficiency by combining cores that have different
power consumption characteristics and performance.

With the increase of heterogeneous SoCs, extra functional
properties (EFP) of cyber-physical systems (CPS), like en-
ergy consumption and thermal dissipation are becoming in-
creasingly important. In addition to a direct increase in the
associated cooling costs, an increase of energy consumption
and thermal dissipation above platform specific thresholds
can result in degraded application performance which in turn
can reflect in financial and reputation losses for the service
provider.

Testing and verification of the thermal characteristics of
a heterogeneous multi-core processor can be an exhaustive
process with many parameters to consider. Even for a single-
core processor, there is a large number of variables that
impact how much heat a processor generates, for example,
the ambient temperature, the workload application and the
core frequency. For heterogeneous multi-core platforms, this
number grows even further as each processing element comes
with its own unique characteristics. Performing exhaustive
testing on these types of systems becomes unfeasible, as the

1



number of possible configurations is vast.
For example, standard use cases could require several years

of testing time to exhaustively explore all possible configura-
tion of a eight cores ARM big.LITTLE architecture. Construct-
ing models of a system is, therefore, an alternative that can
be considered. Building a model can enable the prediction of
thermal dissipation in a system and can help speed up the test
and verification process. The need for constructing accurate
models for the validation of extra-functional properties of
the cyber physical systems has been advocated by many
authors [8]. Using explicit models of the system is not always
feasible as such models require detailed low-level knowledge
of the system implementation. Such information is in most
cases only available to the silicon manufacturers.

Therefore in this paper, we provide an approach for fast
exploration and validation of thermal dissipation requirements
for heterogeneous SoCs which takes advantage of system
identification methods to create a thermal model of the system.
The obtained model can be used not only for fast exhaustive
exploration for platform configurations, but also for validating,
for example at runtime, that different selected configurations
satisfy the thermal dissipation requirements of the system. We
exemplify the proposed approach on image processing appli-
cation executed on a Exynos 5422 SoC, and demonstrate that
an approach relying on the state-space system identification
algorithm can produce accurate prediction in terms of heat
generation and temperature of the processor die.

II. MOTIVATING EXAMPLE AND PROPOSED APPROACH

As a motivating example, let us consider an Odroid-XU4
board manufactured by Samsung and featuring an Exynos
5422 SoC and 2 GB of DDR3 memory. The block diagram of
the Exynos processor is shown in Figure 1. Even if it is a quite
simple board, it is a good representative example of a hetero-
geneous SoCs platform. The board has eight cores configured
in two clusters and runs the Ubuntu operating system based
on the Linux 4.14 kernel. The Exynos 5422 implements the
big.LITTLE heterogeneous computing architecture developed
by ARM. In this architecture, one cluster is more potent
in terms of computing power, but also thirstier in terms of
power dissipation. The other cluster is smaller and has less
computing power, while being more energy-efficient. In this
heterogeneous processor, an ARM Cortex-A15 is implemented
as the big cluster and an ARM Cortex-A7 is implemented as
the little cluster.

Different configurations of the board can be created by
changing parameters such as CPU and GPU cluster frequency,
utilization level for each core, etc. in order to obtain the best
trade off between power consumption and the performance of
the platform. However, the large amount of parameters and
their ranges result in a very large configuration space, which
will make the exploration and selection of valid configurations
difficult.

For instance, the cluster frequency for each of the two
CPU clusters on the Odroid-XU4 can range between 200MHz
and 1500MHz for the little cluster and between 200MHz and

2000MHz for the big cluster, and the utilization threshold can
be varied between 0 and 100%. This will result in 234 * 106

combinations.
This is even more time consuming when evaluating the

head dissipation for a given configuration. On this particular
board, and depending on the class of application being run, the
steady state temperature of a given configuration is reached on
average after 100 seconds. If one were to explore all previous
configurations with respect to head dissipation of each, it
will require 234*108 seconds, which represent roughly 742
years. Of course, different optimizations can be applied in
order to reduce the number of combinations, e.g., sampling
the processor frequencies in 100 MHz increments, or removing
some already known infeasible parameter configurations, still
the configuration space remains impractical to explore.

GPU
600 MHz

ARM
Mali-T628

128 kB
L2-Cache

Cortex-A7 Quad
1500 MHz

Cortex-A15
2000 MHz

LPDDR3
2 GB

Core 2Core 1

Core 3 Core 4

L2-Cache 2 MB

Core 2Core 1

Core 3 Core 4

L2-Cache 512 kB

DRAM
933 MHz

Fig. 1: Internal block diagram of the Exynos 5422 SoC.

Therefore, in this paper we propose an approach for fast
exploration and validation of thermal dissipation requirements
for heterogeneous SoCs as shown in Figure 2. The approach
relies on the system identification theory to build a model of
the SoC under evaluation by performing a series of external
(black box) observations that covers only a fraction of the
configuration space of the platform. The created model is
later on used to explore exhaustively entire configuration space
in search of best configurations for a given platform and
application or to answer questions such as ”what will be the
generated heat of this heterogeneous CPU platform (HCP) for
a particular configuration”. The answer to the above questions
would allow not only find the best configuration but also to
validate that the system satisfies its thermal requirements.

III. PRELIMINARIES

A. Power and heat generation

Although heterogeneous SoCs introduce many new possibil-
ities for the power and thermal management of computers, the
same principles that dictate the power and thermal dissipation
of a single-core CPU still applies.

The power that a processor dissipates originates from the
large number of transistors that are switching as the CPU
executes instructions. The total power consumption of a CPU
core can be described as the sum of three types of power con-
sumption: the dynamic power consumption, the static power
consumption and the short-circuit power consumption. The
short-circuit power has, however, been shown to be practically
negligible in modern CPUs [9]. Therefore, Equation (1) is the
formula commonly used to describe the power consumption,

2



Fig. 2: Overview of the experimental setup

where P is the total power, Pdyn is the dynamic power and
Psta is the static power.

P = Pdyn + Psta (1)

The heat produced by a CPU is closely coupled to its
power dissipation. As shown by the conduction equation (2)
and the convection equation (3), the amount of heat that is
transferred from a processor to the ambient is dependent on the
temperature difference between the processor and the ambient.

Q = −kAdT

dx
(2)

Q = hA
dT

dx
(3)

with Q is the heat transfer rate (W ), k is the thermal
conductivity of the material (W/mK), A is the cross-section
area in the heat flow direction (m2) and dT

dx is the temperature
gradient (K/m) in the direction of heat flow. Conduction is the
main source of heat transfer inside a processor die [10]. h is a
heat transfer coefficient that depends on many factors, such as
the geometry of the object’s surface and the fluid’s viscosity.
Inside a processor, convection does generally not occur, as
there are no fluid components. Convection is, however, the
main source of heat dissipation between the processor and the
ambient environment, usually through the air [11].

The heat produced by a CPU is closely coupled to its power
dissipation. As shown in Equation (2) and (3), the amount
of heat that is transferred from a processor to the ambient is
dependent on the temperature difference between the processor
and the ambient. Hence, the heat dissipation can be viewed as
a dynamic system that can be represented by the following
differential equation:

C
dT

dt
+

T − Tamb

R
= P (4)

Here, Tamb is the ambient temperature and R and C
represent the thermal resistance and conductivity of the chip,
respectively. Based on this, the thermal-electric analogy can
be utilized to model the temperature dynamics of a processor
as an nonlinear RC-circuit.

B. System Identification

The area of system identification (SI) [12] is a research
domain which creates mathematical models of dynamical
systems through statistical and machine learning approaches.
System identification also deals with how to model a system
using limited amounts of data.

In SI, a system is a conceptualization of a real-world
process, such as a physical process or the mechanisms of
economics on the stock market, while a model is a relation
between measured quantities. Most commonly, this relation
expresses how one or more inputs map to one or more outputs.
The relationship is typically expressed as a mathematical
formula, but it can be any type of function, such as a lookup
table. A model is, thus, a manageable representation of a
system that seeks to approximate the system. The difference
between a model and the system the model represents is
commonly known as the approximation error or prediction
error and it reflects in the difference between the output of
the actual system and the approximation of the system that
the model represents.

A regressor is an independent variable used as input when
estimating a model. A regressor can also be known as a fea-
ture, a term that is commonplace in machine learning contexts.
A regressand is a dependent variable that the regressors are
used to predict the outcome of.

In data-driven modeling and machine learning, training,
validation and test sets are commonly utilized. The training
set is the data the model learns from and tries to mimic. The
validation set is used to tune the hyperparameters of the model.

3



Hyperparameters represent parameters that are not learned.
These are often factors that impact the model structure itself or
how it is trained. The test set is utilized to provide an unbiased
evaluation of the model’s ability to generalize to unseen data.
The model’s performance is generally assessed using the test
set. The test set is sometimes also known as the holdout set.

In system identification, modeling approaches are usually
categorized into one of three groups: white-box modeling,
gray-box modeling and black-box modeling. White-box mod-
eling is an entirely theoretical modeling approach, where the
model is constructed based on knowledge about the system
and does not rely on data. White-box approaches require
a complete knowledge of all the properties, parameters and
uncertainties of a system. Black-box modeling is the complete
contrast to white-box modeling. Black-box approaches depend
solely on observations of a system without relying on insights
into the underlying process. Data-driven modeling is another
name to describe black-box modeling. The third group of
system identification techniques is gray-box modeling. Gray-
box techniques rely on parts of both black- and white-box
modeling.

IV. RELATED WORK

Many approaches have been proposed in the field of thermal
modeling from theoretical white-box models to black-box
models using neural networks. A common approach to thermal
modeling is to utilize power consumption measurements from
the processor and exploit the relationship between power
and thermal dissipation. Heterogeneous SoCs are, however,
not commonly equipped with sensors measuring the power
consumption for each individual core. Therefore, our work
will consider modeling approaches that strictly rely on the
core frequencies and each core’s utilization percentage to make
predictions about thermal dissipation. This section presents a
review of previous research that has been performed in the
fields of nonlinear system identification and thermal modeling
of processors.

Approaches towards the black-box end of the system iden-
tification spectrum that utilize neural networks have been
proposed, for instance, by Vincenzi et al. [13] and Sridhar et al.
[14]. Both have suggested two similar implementations where
the thermal dynamics of an integrated circuit is predicted using
ARX linear neural networks. These approaches were shown
to be effective at simulating heat flow in 3D-dimensional and
highly granular, integrated circuits. An approach to simulating
the heat dissipation in processors using a feed-forward neural
network has also been proposed in [15]. The researchers
compared the performance of a Gaussian process model, a
neural network (NN) model and a linear regression model. The
results showed that the neural network model outperformed the
linear model in terms of prediction accuracy by 30%, but was
approximately three times as computationally expensive. The
Gaussian process model also showed good prediction accuracy.
However, it had twice as much computational overhead as the
NN model.

Another interesting approach was tested by Pérez et al.
[16] in an article from 2018. They compared recurrent and
feedforward neural network structures for thermal prediction
of immersive cooling computer systems. A simple feedfor-
ward ANN structure was compared with two other structures
utilizing LSTM and GRU layers in an FIR configuration. The
temperature predictions in this study were based on the core
frequency and processor utilization measurements from the
past minute. The results revealed that the shallow GRU and
LSTM structures produced the lowest prediction error.

Many of the approaches to thermal modeling presented in
the previous section rely on power measurements to predict
the temperature of a processor. There are examples in the
literature of research that proposes methods for predicting the
power dissipation of a processor. Walker et al. [17]–[19] utilize
core frequencies, core voltages and event counters to train a
linear regression model to predict the power consumption of a
multi-core processor. The events used were, for example, cycle
counter, bus and cache accesses. Zhang et al. [20] implement
a similar approach. They also build a linear regression model
based on data collected from a CPU. Unlike, Walker et al,
however, they utilize the idle states and idle time of each
core. Another similar approach has been suggested by Balsini
et al [21]. The latter approach deploys a genetic algorithm
to find the optimal parameters for a function that represents
the theoretical relationship between power dissipation and
quantities such as the core voltage and clock frequency.

A neural network-based approach to modeling the power
of CPU has been proposed in [22]. In this paper, Djedidi et
al. construct a power model for an ARM-based mobile device
using a NARX structure. The model is constructed based on
data such as core frequency, screen activity and network usage.

The works above presented in this section reveal that a
wide range of methods has been applied to model or simulate
temperature development in processors, computing systems
and adjacent areas. Most approaches have relied on more
classical gray-box system identification techniques. However,
articles published in recent years have focused more on
machine learning techniques and especially neural network
approaches.

Using neural networks for exploration of heterogeneous
SoCs has also been proposed in [23]. There, the authors
use a discriminator network to efficiently find configurations
that satisfy processing requirements and power consummation
constraints by exploring only a fraction of the configuration
space. The approach was also easy to integrate in continuous
integration frameworks. However, the approach requires an on-
the-fly exploration, which in the case of thermal dissipation
measurements, will be heavily influenced by the duration of
each temperature measurement to reach a steady state.

V. EXPERIMENTAL SETUP

For this study, a desktop experiment setup for bench-
marking and measuring the temperature of a heterogeneous
processor was created. Following is a description of all parts
in the experimental setup. Figure 3 shows the entire setup that

4



Data
Collection
Board

Thermal
Camera

SoC

Fig. 3: The experimental setup.

was used to generate and gather data in this study. The setup
features four parts: the heterogeneous SoC that is the system
under test, a thermal sensor, a cooling fan, and a data collection
unit. The remainder of this section will detail the parts of
this setup and how data was collected from the heterogeneous
processor.

This single-board computer allows for control of the fre-
quency on a per cluster basis between 200 MHz and 2000
MHz for the big cluster and 200 MHz and 1500 MHz for this
little cluster. The operating frequency cannot be controlled
independently for each core inside the clusters. The voltage
levels can also be set for each cluster. However, in the Linux
operating system for this platform, these are set to static values
for each operating frequency by the kernel. The operating
voltage levels are, therefore, not considered as a variable in
the implementations in this work.

The Odroid board has been configured to trigger a thermal
throttle when the core temperature for the big cores reaches
90◦C. This means that the processor’s frequency governors
will reduce the maximum available frequency when the tem-
perature is reached to prevent the processor from overheating.

1) Experimental workload: The workload application uti-
lized in this project is an RGB-YUV image conversion. This
image conversion was chosen as the workload because it is a
highly parallel workload that can be distributed to many cores.
The workload implementation was taken from the stress-ng
bench-marking program [24]. This program, however, could
not be utilized on its own, as it did not feature the ability
to control the utilization on a per core basis. Furthermore,
the core frequencies could not be adjusted by this stress
testing suite. Thus, a custom-built stress application has been
implemented in this work.

The stress application is written in C. It implements the
previously described workload. The application takes the
utilization of each core and the frequency of each cluster
as well as the amount of time it should be executing as
arguments. Inside the application, a thread for each core in the
system is created. Each core thread runs its assigned workload
independently from the other cores.

The software manages the utilization control separately
for each core’s thread. This is achieved by allotting periods
of 10 milliseconds. For each period, work is performed for
the specified core utilization. The core thread is then put to

Fig. 4: Heat map of the Odroid board.

sleep for the remainder of the period using the select system
call. The select call allows the processor to sleep without
deallocating any of its resources. This method of utilization
control requires that the core thread has 100% of the core
context and can be sensitive to external processes affecting
the utilization. It is, therefore, crucial that all unnecessary
background applications and system functions are turned off.
This utilization technique was compared with the output of
the htop utilization monitor and it revealed that the utilization
was accurate to within ±1%.

The cluster frequencies are controlled using the Perfor-
mance frequency governor. The C application does not adjust
the frequencies directly, it sets the maximum allowed fre-
quency and the frequency governor then adjusts the frequency
accordingly.

2) Thermal measurements: Due to the absence of a core
temperature sensor for each core on the Odroid-XU4, a
different temperature collection scheme had to be devised. The
temperature can be quantified by measuring the emitted energy
in the form of infrared radiation. Thermal imaging cameras are
specialized sensors that measure the intensity of heat radiated
by objects. For the setup in this work, the small thermal camera
MLX90640 from Melexis has been used. It has a resolution of
only 32 by 24 pixels. Therefore, the camera has been mounted
close to the SoC of the Odroid-XU4, as can be seen in the
right picture in Figure 3. This has been done in order to obtain
a more accurate reading of the temperature across the surface
or the SoC. The MLX90640 sensor has a temperature range
of 40◦C to 300◦C and an accuracy of approximately ±1◦C.
Figure 4 shows a heat map of the Odroid board when the
processor is running at 100% utilization for all cores and the
cluster frequencies are both set to 1500 MHz. The region that
dissipates the most heat is the region where the big cluster is
located.

The measurements collected from thermal cameras are
dependent on the emissivity of the objects that are being
measured. In this experiment, the primary source of heat is
expected to be the SoC chip. The emissivity value for a
processor IC has been shown to be approximately 0.95 [25].
Because the SoC is the component expected to generate most
of the heat on the board, this value is selected for the entire
thermal image in this implementation.

5



3) Cooling: A drawback of using a thermal camera is that
no heat sink can be mounted on top of the SoC. Thus, some
external form of cooling had to be implemented in order for
the processor not to overheat when running at higher clock
speeds. The fan and Lego structure that can be seen in Figure
3 provides sufficient directed cooling for the big cluster to be
able to run at up to 1900 MHz. In this implementation, the
fan is constantly running at 100% speed.

4) Data collection: A Raspberry Pi has been deployed as
the control and data collection unit. It controls the experimen-
tal workloads and captures the thermal response. The data from
the temperature sensor and the Odroid board were sampled 32
times per second. This sample rate was selected since it is the
maximum sample rate for the thermal sensor.

The workload is in this work constant. Thus, the total
number of possible configurations can be calculated using
Equation (5), where U is the number of utilization levels, C
is the number of cores, fb is the clock frequency of the big
cluster and fl is the frequency of the little cluster.

Nc = UCfbfl (5)

Each core has five different utilization levels, and the big
and little clusters have ten and six discrete clock frequency
levels, respectively. For the implementation in this work, this
yields a total of approximately 23 million possible configura-
tions of the heterogeneous SoC.

VI. MODEL CREATION

We use system identification methods for creating the ther-
mal dissipation model of the platform.

The power consumption has a nonlinear relationship with
the core frequency, the core voltage and the core utilization.
While the dynamic power dissipation is linearly dependent on
the core utilization, the core utilization cannot, on its own,
be used to describe it, as it is also dependent on the core
frequency and voltage. Therefore, in this work, we selected
the Polynomial N4SID approach for the system identification
based on literature as best fitting for the non-linear nature of
the head dissipation.

Polynomial N4SID [26], [27] is a parametric approach based
on the state-space identification method. We use the approach
to construct a linear model of the system based on the direct
relationship between the power dissipation of a processor and
its thermal dissipation. A benefit of using an algorithm such
as N4SID is that it is guaranteed to converge to the global
minimum, non-iterative and numerically stable [27].

The power consumption was shown to have a nonlinear rela-
tionship with the core frequency, the core voltage and the core
utilization. While the dynamic power dissipation is linearly
dependent on the core utilization, the core utilization cannot,
on its own, be used to describe it, as it is also dependent on the
core frequency and voltage. Therefore, a nonlinearity had to be
introduced to approximate the power dissipation, in the form
of new nonlinear regressors as polynomial combinations of the
core frequency and core utilization. A linear state-space multi-
input single-output model was then identified by the N4SID

algorithm utilizing the nonlinear regressors as the input of the
system.

A state-space model with an input nonlinearity yields the set
of equations shown in Equation (6). The function G(·) maps
the regressors (u) to a new set of nonlinear regressor (v).

x(n+ 1) = Ax(n) +Bv(n) +Kε(n)

y(n) = Cx(n) +Dv(n) + ε(n)

v(n) = G(u(n))

(6)

If both the hidden states x and the function mapping G(·)
are unknown, this type of model becomes highly complex
to identify. As no convergent identification methods such as
N4SID exist for this nonlinear case, the simpler input-output
models are commonly preferred [28].

The nonlinear input function for this model was derived
from the relationship between the core frequency and the
power consumption described previously. It was highlighted
that the dynamic power consumption is proportional to fV 2.
However, the voltage is not a quantity that is considered as
it is directly affected by the core frequency. Therefore, the
voltage part of the equation can be expressed in terms of its
proportionality to the frequency. By using power regression,
the approximate relationship was calculated to be V ∝∼

√
f .

Thus, the dynamic power can be expressed as Pdyn
∝∼ f2. The

cores in the little cluster have fewer clock frequency levels and
even fewer voltage levels, but the same approximate relation-
ship can be utilized for the regressors representing those cores.
Furthermore, for the static portion of the power consumption,
the same principle can also be applied. It was estimated to
be approximately proportional to f1.5. The core utilization is
in this scenario expected to be directly proportional to the
dynamic power consumption.

Using these approximate relationships as a basis, the poly-
nomials were created as the product of the core utilization to a
power of 0 or 1 and the core frequency to a power of between
1 and 3 in increments of 0.5. This was performed for each
core and resulted in 58 new nonlinear regressors with a total
of 68 regressors, including the original 10.

The model creation approach has several steps as detailed
in Figure 5. First, we design the amount of data that needs to
be collected for training the model, we collect the data, we
choose a part of the data for training and a part for validation,
and then we validate the accuracy of the model against the
collected data.

This approach was implemented in Python 3.7, using SIPPY,
a system identification package developed at University of
Pisa, Italy [29].

A. Experiment design

For training the model, 10 hours of data was collected
from the Odroid computer board and thermal camera. The
data set was created by executing a sequence of randomly
selected configurations of the Odroid board using the stress
application mentioned in Section V-1. The configuration was
changed after a random amount of time in the range of 10

6



Experiment Design

Data Collection

Model Validation

Model Selection

Data Split

10 hours experiment
10 to 60 seconds
per configuration

2 cluster frequencies
8 core utilizations
Max. temperature
Collected at 32 Hz

8 hours -> Development

2 hours -> Test

Cross-validation with blocked
time series split
80-20 train./valid. split
Hyperparameter selection
Grid search

Mean Squared Error

Yes

No Is best
model?

Fig. 5: Flowchart of system identification procedure.

to 60 seconds. Both the selection of configuration parameters
(cluster frequencies and core utilization) and execution period
followed a uniform distribution. Throughout the experiment,
the ambient temperature was kept steady at 21◦C.

B. Data Collection

As mentioned earlier, the parameters that can be configured
on the board are the frequencies of the two clusters and the
utilization threshold for each core. Moreover, one temperature
measurement is taken. Therefore, the data collected consists
of 11 separate variables; a single regressand and 10 regressors.

The regressand is the maximum temperature measured by
the thermal camera in degrees Celsius. The thermal image
from the thermal sensor is captured at 32 Hz.

The first two regressors collected are the cluster frequency
for each of two CPU clusters on the Odroid-XU4. For the
implementation in this work, the values have been limited
between 1000 MHz and 1900 MHz. The lower limit was
included to restrict the number of configurations that will
produce a very low thermal output. Including the lower
frequencies would have made the data set rather imbalanced
in favor of lower temperatures. The higher limit on the big
cluster’s operating frequency is imposed to assure that no core
temperature reaches the thermal throttles point of 90◦C. The
other eight regressors are the utilization for each core, with a
granularity of 25%. This allowed the utilization for each core
to be selected at five discrete levels; 0, 25, 50, 75 and 100%.
All regressors were collected at 32 Hz to keep the sampling
rate uniform across all collected variables.

C. Data split

The 10-hour-long data set was divided into two sets, a
development set and a test set. The first 79% of the data
became the development set. This is the portion of the data

that the models were trained on. The last 20% of the data
were chosen as the test set. This is the data set that the final
prediction error was assessed upon and was not utilized for
model training and selection. A small set of data corresponding
to 1% of the total data, lodged between the development and
test sets, is omitted to ensure that there is no interference
between the development set and the test set.

D. Model selection

The N4SID algorithm does not have many parameters that
can be tuned. However, the model order can be viewed as
a hyperparameter. In this implementation, the selection of
nonlinear regressors can also be considered as hyperparam-
eters. Additionally, the data preprocessing step also has to be
considered. However, no preprocessing or filtering, except for
resampling, was carried out for this experiment. The data for
this modeling approach was resampled at 5 Hz. A rate that
was established using grid search and cross-validation.

The optimal hyperparameters for the model have mainly
been selected using grid search. Grid search is an exhaustive
search method for testing which hyperparameter combinations
that yield the best results for a model. Other search meth-
ods also exist, such as randomized search, which tests only
a random subset of the hyperparameter combinations. The
hyperparameters that yielded the lowest error on the validation
set on average across all the folds were selected for the final
model.

Optimization of the utilized regressors was performed using
correlation analysis and grid search. A phenomenon that was
noticed during the early model selection phase was that using
all the regressors led to some overfitting issues. Therefore,
to reduce the number of regressors, randomized search cross-
validation and correlation analysis was performed. The ran-
domized search was performed with the 1-hour block length
for 500 iterations. In each iteration, three random combinations
of core frequency to a power between 1 and 3 and core uti-
lization to a power of 0 or 1 were selected. The combinations
were then applied to the regressors belonging to each core to
create the new regressors. At the end of each iteration, the
average MSE was measured. Using the results, a pair-wise
correlation analysis was performed to detect each regressor’s
overall contribution to the error. Figure 6 shows that most of
the regressors with only a single frequency component showed
a positive correlation. That is, they increased the error when
they were utilized. Those that showed a negative correlation
produced a decrease in the error when they were utilized. The
regressors with a positive correlation were therefore removed
from the regressor set.

Grid search and cross-validation were performed as an
additional reduction step. During the grid search, the model
order was set to 5 for all iterations. This was implemented
to reduce computational time. The model order that produces
the best performance was, however, expected to be higher
than 5. An assumption was made, though, that a fifth-order
model would be representative enough for this hyperparameter
validation step. All permutations of the remaining regressors

7



Fig. 6: Correlation between regressor and MSE.

were tested and the best regressor configuration was saved. The
best regressor set is shown in (7), where f is core frequency,
u is core utilization and i indicates the number of cores.

Unl = [f1.5ui, f
2ui, f

3ui, ui, f
2], i = 1..8 (7)

The final number of regressors utilized in this approach is
34. Furthermore, these regressors were selected for implemen-
tation for both 1-hour and 6-hour block lengths.

The optimal model order was estimated using the previously
established combination of nonlinear regressors. The order of
the state-space representation estimated by the N4SID algo-
rithm was optimized using grid search and cross-validation.
The average validation error was measured for orders between
2 and 60. Figure 7 shows the model performance for each
order.

Fig. 7: Validation error and model order.

The above figure shows that a model of lower order pro-
duces the best result for the 1-hour than for the 6-hour block
length. The 1-hour model performed the best at 32 while the
6-hour model performed the best at 43.

Cross-validation is an umbrella term that refers to methods
for analyzing how well a model will generalize to a set of
independent data. A common practice in machine learning and
data science is to utilize k-fold cross-validation. The variable
k refers to how many subsets the data is divided into. In this
type of cross-validation, the model is trained k times, each
time using a different subset as the validation set and the rest
as the training set.

In this work, since the data is a time series, each data point
is dependent on the previous data points and the models are

assessed for a specific length of training data, a special type of
folding procedure called blocked time series split is utilized.
Instead of dividing the data set into k equal parts, like in
regular k-fold cross-validation, the data is arranged into blocks
of a specific length. Figure 8 shows a 5-fold version of regular
k-fold cross-validation, to the right, and blocked time series
cross-validation, to the left.

Training Val.

Training Val.

Training Val.

Training Val.

Training Val.

Training ValidationTraining TrainingTraining

Training TrainingTraining

Training TrainingTraining

Training Training Training

Training TrainingTraining

Training

Training

Training

Training

Validation

Validation

Validation

Validation

Fig. 8: Comparison of k-fold and blocked time series cross-
validation

We evaluate the performance of the model with two data
sets containing 1 hour and, respectively, 6 hour data. Just
as with regular k-fold cross-validation, some folds can have
overlapping training data. However, the crucial thing is that
no validation data is shared between folds. Therefore, an
experiment length of 10 hours was chosen as it is the least
amount of data that allows for dividing the data into multiple
folds when evaluating the models’ performance on 6 hours of
data, while also having a small gap between the test set and
any of the training or validation data. In Figure 9, the cross-
validation procedure deployed when assessing the models’
1-hour performance is shown. On the development set, 10
blocks of 1 hour each with equal overlap, were selected. For
each block in the cross-validation, the first 80% of each block
was utilized as the training set and the remaining 20% as the
validation set.

When assessing the model performance on 6 hours of
training data, a slightly different method was utilized. In the
4-fold cross-validation, two blocks were created in the same
manner as for 1 hour of data. The other two blocks were
created by reversing the order of the validation and training
data inside the block, as seen in Figure 10. The validation
set comprises the first 20% and the training set the last 80%.
This reversed blocked time series split ensured that maximum
diversity in the training and validation data is achieved.

The final prediction error was evaluated on the test set and
the final performance metric was measured as the average
MSE across the folds.

Table I shows the result for the model on the 1-hour block
length and Table II shows the result for the model on the
6-hour block length.

Training Test

Training Test

Training Test

Training Test

Val.

Val.

Val.

Val.

Fig. 9: 1-hour cross-validation procedure.

8



Fig. 10: 6-hour cross-validation procedure.

TABLE I: MSE for the Polynomial N4SID method trained
with 1 hour of data.

Folds
1 2 3 4 5 6 7 8 9 10 Avg

MSE 0.16 0.15 0.15 0.16 0.16 0.14 0.16 0.16 0.17 0.14 0.16

E. Model Evaluation

The performance of the model was evaluated using a new
data set based on a two hours long test session. The configu-
ration parameters of the board were randomly changed every
10 to 60 seconds.This means that approximately 57 different
board configurations were utilized in the 2000 second window.
The results of the comparison between the model outputs and
the physically measured temperature are shown in Figure 11.

Looking at the above figure, it can be seen that the Poly-
nomial N4SID model produced a good approximation of the
true measured temperature and it does not appear to have
any particular problem areas or specific configurations that
it struggles with.

With respect to the performance of the model, the average
training time, average prediction time and the number of
parameters for the N4SID-based model for both 1-hour and
6-hours of training data is shown in Table III. This is in line
with the training time complexity of the N4SID algorithm is
O(n2) and the prediction time complexity is O(n), where n
is the model order.

VII. THERMAL EXPLORATION AND VALIDATION

Having the thermal prediction model constructed one can
use it to quickly explore different SoC configurations without
the use of the actual hardware platform. Depending on the
precision and time available for the exploration, one can
choose either the 1-hour or the 6-hour model if available.
However, in a typical case, one model can be created and
used.

As seen from Table III, getting a prediction for one sin-
gle configuration takes 0.25 and, respectively, 1.34 seconds,
depending on the model used. In addition, for sequential
experiments, the reconfiguration time of the platform and the

TABLE II: MSE for the Polynomial N4SID method trained
with 6 hours of data.

Folds
Method 1 2 3 4 Avg
MSE 0.11 0.11 0.11 0.11 0.11

Fig. 11: Model predictions vs measured test data for (a) 1-hour
and (b) 6-hours models

TABLE III: Average training time, average prediction time
and number of parameters for the 1-hour and 6-hour models

Polynomial N4SID Training
time (s)

Prediction
time (s)

Number of
parameters

1-hour 6 0.25 2144
6-hour 60 1.34 3354

cool-down time between the experiments are no longer needed.
Therefore, the exploration can be done 400 times faster for
the 1-hour model and 74 times faster for the 6-hour model
compared to the hardware measurement approach.

Also, using the models one can double check, with a high
level of confidence, whether a given configurations satisfies
the thermal requirements of a system before deploying the
application on hardware and with out requiring a setup for
monitoring the temperature.

VIII. LIMITATIONS

There are several limitations with our approach which could
be addressed in the future work. The first is utilizing the
ambient temperature and humidity as variables. In this work,
they were not considered for technical reasons, as no climate-
controlled environment was available. For real-world imple-
mentations this aspect is crucial and should be considered.
Also the impact of active cooling was not taken into account.

Another important and perhaps also more complex aspect
to examine in future work is the impact of the workload
application. In this work, a static workload application was
utilized. Many of the related works, however, suggest methods
to represent a workload application as event counters, such as
the number of operations of a certain type or the number of
cache accesses that are performed. This would allow for a
more generally applicable model as it would not be limit to a
specific class of applications.

A third aspect is related with multi-output systems. This
work only considered the maximum temperature across the

9



entire processor SoC, i.e., a MISO system. Predicting the ther-
mal dissipation of individual parts of a CPU would allow for a
more precise understanding of which parts of a heterogeneous
SoC generate the most heat.

Last but not least we acknowledge that the generated
prediction model could be biased by the experimental settings
such as the used active cooling system and removal of the heat
sink. We plan in future work to investigate the accuracy of the
obtained model in a real-world setup.

IX. CONCLUSIONS

We presented an approach for fast exploration and validation
of thermal requirements of heterogeneous SoCs. The approach
allows to speed up the evaluation and predictions of different
hardware configurations without the need of the physical
hardware and temperature measuring equipment. The approach
poses a certain overhead in identifying the prediction model
that provides good accuracy and which can vary from one
platform to another depending on the characteristic of the
platform characteristics and of the applications running on it.
The time needed of collecting the training data set is most
significant but depending on the level of accuracy needed, it
can be shortened. However, once created, the model can be
used for different evaluations tasks and with similar platforms
and workloads. An example of such exploration task has been
discussed in our previous research in [23] where we used a
discriminator neural network to perform the exploration of the
configuration space of an Exynos 5422 SoC with respect to
its power dissipation and performance.

Last but not least, we discussed the limitations of the
approach presented in this paper which we plan to consider in
future work.

ACKNOWLEDGMENT

Part of this work was carried out with financial sup-
port from the Nordic Master programme (contract NMP-
2016/10169), ECSEL-JU MegaMArt2 project (grant agree-
ment No 737494) and ECSEL-JU AIDOaRt project (grant
agreement No 101007350).

REFERENCES

[1] S. Buzzi et al. A survey of energy-efficient techniques for 5g networks
and challenges ahead. IEEE Journal on Selected Areas in Communica-
tions, 34(4):697–709, April 2016.

[2] C. Preist, D. Schien, and P. Shabajee. Evaluating sustainable interaction
design of digital services: The case of youtube. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems, CHI
’19, pages 397:1–397:12. ACM, 2019.

[3] HSY (Helsingin seudun ympäristöpalvelut). 2018 Climate Actions in
the Helsinki Metropolitan Area. NN, 2018.

[4] K. Rupp. 42 years of microprocessor trend data.
https://www.karlrupp.net/, Feb 2018.

[5] P. McGuinness. What’s next for mobile? heterogeneous processing
evolves. www.embedded-computing.com, Aug 2014.

[6] B. Ullman. Designing an ARM-based cloud ran cellular/wireless base
station. embedded.com, Dec 2013.

[7] Marilyn Wolf. Chapter 5 - multiprocessor architectures. In Marilyn Wolf,
editor, High-Performance Embedded Computing (Second Edition), pages
243–299. Morgan Kaufmann, Boston, second edition edition, 2014.

[8] Y.and others Yuan. Data driven discovery of cyber physical systems.
Nat Commun, 10(4894), 2019.

[9] S. Salehi and R. F. DeMara. Energy and area analysis of a floating-point
unit in 15nm cmos process technology. In SoutheastCon 2015, pages
1–5, April 2015.

[10] T.A Amollo et al. Heat dissipation in a computer. Journal of Energy
Technologies and Policy, 3:43–49, 2013.

[11] A. Moradikazerouni et al. Investigation of a computer cpu heat sink
under laminar forced convection using a structural stability method.
International Journal of Heat and Mass Transfer, 134:1218 – 1226,
2019.

[12] L. Lennart. System identification: theory for the user. PTR Prentice
Hall, Upper Saddle River, NJ, 1999.

[13] A. Vincenzi et al. Fast thermal simulation of 2d/3d integrated circuits
exploiting neural networks and gpus. In IEEE/ACM International
Symposium on Low Power Electronics and Design, pages 151–156,
2011.

[14] A. Sridhar et al. Neural network-based thermal simulation of integrated
circuits on gpus. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 31(1):23–36, 2012.

[15] K. Zhang et al. Machine Learning-Based Temperature Prediction for
Runtime Thermal Management Across System Components. IEEE
Transactions on Parallel and Distributed Systems, 29(2):405–419,
February 2018.

[16] J. Pérez et al. Thermal prediction for immersion cooling data centers
based on recurrent neural networks. In Hujun Yin, David Camacho,
Paulo Novais, and Antonio J. Tallón-Ballesteros, editors, Intelligent Data
Engineering and Automated Learning – IDEAL 2018, pages 491–498,
Cham, 2018. Springer International Publishing.

[17] M. J. Walker et al. Accurate and stable run-time power modeling for
mobile and embedded cpus. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(1):106–119, 2016.

[18] M. J. Walker et al. Thermally-aware composite run-time cpu power
models. In 2016 26th International Workshop on Power and Timing
Modeling, Optimization and Simulation (PATMOS), pages 17–24, Sep.
2016.

[19] M. J. Walker et al. Accurate and stable empirical cpu power modelling
for multi- and many-core systems. In Adaptive Many-Core Architectures
and Systems Workshop (15/06/18), June 2018.

[20] Y Zhang et al. Towards better cpu power management on multicore
smartphones. In Proceedings of the Workshop on Power-Aware Com-
puting and Systems, HotPower ’13, 2013.

[21] A. Balsini, L. Pannocchi, and T. Cucinotta. Modeling and simulation of
power consumption and execution times for real-time tasks on embedded
heterogeneous architectures. ACM SIGBED Review, 16:51–56, 11 2019.

[22] O. Djedidi et al. A Novel Easy-to-construct Power Model for Embedded
and Mobile Systems - Using Recursive Neural Nets to Estimate Power
Consumption of ARM-based Embedded Systems and Mobile Devices.
In 15th International Conference on Informatics in Control, Automation
and Robotics, Porto, Portugal, July 2018. SCITEPRESS - Science and
Technology Publications.

[23] I. Porres et al. Automatic exploratory performance testing using a
discriminator neural network. In 2020 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 105–113, 2020.

[24] C. King. stress-ng, ver 0.10.19. Available at
http://manpages.ubuntu.com/manpages/bionic/man1/stress-ng.1.html
- Last checked 2020-02-07.

[25] P. Mashkov, T. Pencheva, and B. Gyoch. Reflow soldering processes
development using infrared thermography. In 2009 32nd International
Spring Seminar on Electronics Technology, pages 1–6, 2009.

[26] I.W. Jamaludin et al. N4SID and MOESP subspace identification
methods. In 2013 IEEE 9th International Colloquium on Signal
Processing and its Applications, CSPA 2013, pages 140–145, 03 2013.

[27] Peter Van Overschee and Bart De Moor. N4SID: Subspace algorithms
for the identification of combined deterministic-stochastic systems.
Automatica, 30(1):75 – 93, 1994. Special issue on statistical signal
processing and control.

[28] O. Nelles. Nonlinear system identification, isbn = 9783540673699,
shorttitle = from classical approaches to neural networks and fuzzy
models. Springer-Verlag Berlin Heidelberg, 2001.

[29] G. Armenise et al. An open-source system identification package for
multivariable processes. In 2018 UKACC 12th International Conference
on Control (CONTROL), pages 152–157, 2018.

10


