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ABSTRACT
In this paper we show that simple projections can improve
the algorithmic performance of cutting plane-based optimiza-
tion methods. Projected cutting planes can, for example, be
used as alternatives to standard cutting planes or supporting
hyperplanes in the extended cutting plane (ECP) method. In
the paper we analyse the properties of such an algorithm and
prove that it will converge to a global optimum for smooth
and nonsmooth convex mixed integer nonlinear program-
ming problems. Additionally, we show that we are able to
solve two old but very difficult facility layout problems (FLP),
with previously unknown optimal solutions, to verified global
optimum by using projected cutting planes in the algorithm.
These solution results are also given in the paper.
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1. Introduction

A convergence proof for the outer approximation method, able to solve smooth
(differentiable) convex mixed integer nonlinear programming (MINLP) prob-
lems to an optimal solution, was given in [1]. The paper gave a starting point
for a massive number of publications on MINLP applications, new methods and
algorithms, many of them for the same class of problems but also some with
proven convergence properties for more general classes of MINLP problems.
Efforts were, later on, also put on collecting example problems in extensive prob-
lem libraries, for example the MINLP Library 2 [2] on which MINLP algorithms
and software have been and can be evaluated. Several overviews and performance
studies on state of the art algorithms and software forMINLP problems have also
been published [3,4].

In this paper we will analyse a modified version of one of these methods, the
extended cutting plane (ECP) method [5], which has its origin in the method
of Kelley [6] from 1960. In Kelley’s method cutting planes are used to over-
estimate the feasible region and make the relaxation tighter in order to solve
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smooth convex nonlinear programming (NLP) problems to an optimal solution
by a sequence of linear programming (LP) problems. The method was extended
to smooth convex MINLP problems in [5] where a convergence proof for the
extended cutting plane (ECP) method was given. In a series of papers the ECP
method has been further extended to smooth pseudoconvexMINLP problems in
[7,8] and nonsmooth convex MINLP problems in [9]. The method was further
proven to solve generalized convex MINLP problems using cutting planes and
supporting hyperplanes to a global optimal solution in [10–12]. Note that Horst
and Tuy [13] have considered nonsmooth problems with linear outer approxi-
mations similar to cutting planes and supporting hyperplanes, as well. Standard
cutting planes and supporting hyperplanes can also be replaced by (or used
together with) projected cutting planes in the ECP algorithm [14]. A projected
cutting plane is a cutting plane generated at a MILP solution point or at the pro-
jected point. The projected point is obtained by projecting the MILP solution to
the kernel of the linearization of themost violated constraint at theMILP solution
point. This procedure can be continued to find different projected points. Similar
projections has been used in the projection method [15] to find a feasible point
from the intersection of convex sets. In [16,17] it is shown that the projection
method converges to a feasible point. In [18] certain projections in nonsmooth
NLP optimization was considered, as well. In this paper we considermore closely
the convergence properties of the algorithmwhen projected cutting planes based
on repeated projection steps are used to solve smooth and nonsmooth convex
MINLP problems.

In Kelley’s method a sequence of LP problems are solved to obtain points
where cuts are to be generated. As LP problems inKelley’smethod are replaced by
MILP problems in the ECP method, the computational load is, generally, much
heavier in themixed integer case. However, cuts need not be generated at optimal
solution points of the MILP subproblems. In proving that the solution sequence
of theMILP subproblems converges to a global optimum of theMINLP problem,
only the finalMILP subproblemneeds to be solved to optimality.When consider-
ing the ECPmethod, this observation is very essential since solving a singleMILP
problem to optimality, by a branch and bound method, may require solving mil-
lions of LP subproblems. This issue was discussed in [8], where it was shown that
the efficiency of the ECPmethod can be clearly improved when the cuts are gen-
erated mainly at integer feasible and not only at optimal MILP solution points.
Such a procedure is easily implementable in an algorithm solvingMILP subprob-
lems with solvers like CPLEX [19] or Gurobi [20]. In these solvers the solution
procedure can be interrupted after an integer feasible solution has been found
and the procedure can therafter be continued utilizing the whole old branch and
bound tree. In the ECP procedure, as described in [8], the above property was uti-
lized by using the ‘mip solutions limit’ (msl) parameter, when solving the MILP
subproblems. After each iteration, either new cuts are added or the mip solutions
limit is increased.
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Since the MILP subproblem solutions are integer feasible it should be noted
that two distinct sequences of points are obtained wherefrom upper and a lower
bounds on the objective function can be calculated. Integer feasible MILP points
being feasible in the MINLP problem give upper bounds while optimal MILP
points being infeasible in the MINLP problem give lower bounds (assuming the
objective function is minimized). Termination of the algorithm occurs when the
gap between the bounds is closed or is small enough. In case all MILP subprob-
lems are solved to optimality only one sequence of underestimating lower bounds
of the objective function is obtained and an ε-termination criteria on the most
violating constraint function is used.

A notable property of the algorithm is also that cuts are generated at integer
feasible points. This is sometimes an advantage since there exist applied problems
where nonlinear functions are not evaluatable at real values on integer variables
[21]. This property does, however, not generally retain when cuts are replaced by
supporting hyperplanes. Supports are generated on the boundary of the relaxed
feasible region. In addition to an (integer feasible)MILP point, being infeasible in
the MINLP problem, a feasible MINLP point and a line search is usually needed
to obtain a point on the boundary of the relaxed feasible region of the MINLP
problem, where a supporting hyperplane is generated. When projected cuts are
used, we will later show, that it is still possible to retain the same property for pro-
jected cuts as for standard ones, i.e. that the projected points may remain integer
feasible.

When comparing cuts and supporting hyperplanes, one advantage of a sup-
porting hyperplane is that it, generally, results in a tighter relaxation of a specific
constraint, than a standard cutting plane. On the other hand, cutting planes are
easier to calculate and several cuts (i.e. for different constraints) can be gener-
ated at the same MILP solution, while a point on the boundary of the feasible
region of theMINLP problem rarely is valid to generate supports for several con-
straints. A higher number of cuts gives a tighter relaxation of the entire feasible
region of the MINLP problem, resulting, often, in that fewer subproblems need
be solved to obtain the optimal solution of the MINLP problem. On the other
hand, a higher number of cuts, usually, also reduces the computational efficiency
to solve the MILP subproblems and although fewer subproblems need be solved,
the computational load to solve the entire MINLP problem may be higher.

Projected cutting planes have, in principle, the same advantages as standard
cutting planeswhen comparing them to supporting hyperplanes.However, a pro-
jected cutting plane has an advantage when comparing it to a standard cutting
plane. A projection moves the infeasible point towards the boundary of the fea-
sible region and makes the projected cutting plane tighter. If a projection would
move the point exactly to the boundary, then a projected cut would be a support-
ing hyperplane at this point. This is, however, not always desirable as the number
of supports, that can be generated at a point on the boundary, is generally lower
than the number of cuts that can be generated at a point in the infeasible region of
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the MINLP problem. It should also be mentioned that while a projection moves
a point closer to the boundary of the feasible region it is not always possible to
reach the boundary if some or all integer variables are fixed in the projection.
This can, though, be avoided when relaxed values are allowed also for integer
variables.

We will in the following show how projected points are calculated. The pro-
cedure can be applied in several steps, reprojecting already calculated projected
points. In this case gradients or subgradients of the considered constraint need be
calculated in every step of the reprojection. This issue and the convergence prop-
erties of the algorithm are considered in the next sections. In the final numerical
section we will illustrate the computational procedure first using a simple exam-
ple. Thereafter, we show that we were able to solve some very difficult facility
layout problems (FLP), with formerly unknown optimal solutions, to verified
global optimal solutions when using projected cutting planes instead of standard
cutting planes in the ECP algorithm.

2. TheMINLP problem

The MINLP problem to be solved is formulated as follows,

x∗ ∈ argminx∈L∩C∩Y cTx

L = {x ∈ X | Ax ≤ a}
C = {x ∈ X | g(x) ≤ 0}
Y = {x ∈ X | xi ∈ Z, i ∈ IZ, |IZ| ≤ n}
X = {x ∈ Rn | xL ≤ x ≤ xH}

(P)

i.e. find a vector x∗ of bounded real and integer variables, minimizing a lin-
ear function cTx in L ∩ C ∩ Y . The continuous relaxation L ∩ C of L ∩ C ∩ Y
is supposed to be convex. We assume there exists an optimal solution x∗ and
that the relaxed exterior {x ∈ L | g(x) > 0} is nonempty and in case supporting
hyperplanes (needing a line search procedure) are used that the relaxed interior
{x ∈ L | g(x) < 0} is nonempty as well. The sets L and C are defined by linear
and nonlinear inequality constraints, respectively. The integer variables in x are
defined by the index set IZ in Y and the bounds of all variables are defined in X.
The nonlinear constraint functions g inC are in this paper assumed to be convex,
smooth or nonsmooth. If a smooth or nonsmooth convex objective function f is
to be minimized an additional variable xn+1 can be minimized and the objec-
tive function be written as an additive constraint in C, as f (x) − xn+1 ≤ 0. If the
objective functionwould be a convex quadratic function f (x) = xTQx then it can
replace the linear objective function cTx in case the MILP subsolver in the ECP
algorithm, is replaced by aMIQP subsolver. This can be done, for example, using
the MILP/MIQP solvers in CPLEX and Gurobi.
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3. Supporting hyperplanes, standard cutting planes or projected
cutting planes

In a recent paper of Serrano et al. [22] it was shown that the supporting hyper-
plane algorithm [23] is equivalent to Kelley’s cutting plane algorithm when
reformulating the feasible region of the problem using its (sublinear) gauge func-
tion. This is theoretically interesting and in principle the case (neclecting the
numerical differences) when comparing the smooth convex NLP algorithms of
Kelley [6] and Veinott [24]. This also applies in the mixed integer case when con-
sidering the equivalence between the extended cutting plane method for smooth
convex MINLP problems in Westerlund and Pettersson [5] and the supporting
hyperplanemethod for smooth convexMINLP problems in Kronqvist et al. [23].

Supporting hyperplanes are halfspaces in the same way as cutting planes, cut-
ting off a part of the infeasible region of a convex MINLP problem, while no part
of the feasible region of the problem is cut off. A cutting plane has the property
that it cuts off theMILP solution point where it is generated, as well. This is obvi-
ous as standard cutting planes are generated at points in the infeasible region of
theMINLP problem. A supporting hyperplane is, on the other hand, generated at
a point on the boundary of the feasible region (of theMINLP problem). It is, thus,
obvious that such a point should not be cut off. To find a point on the boundary, a
line search between two points is usually applied. One of the points is within the
feasible region (of the MINLP problem) and the other outside it (this is the solu-
tion point from solving the MILP subproblem). Observe, however, that a line (in
this case, between a feasible and an infeasible MINLP point) represents a convex
set which can be divided into two line segments representing two convex subsets
betweenwhich the supporting hyperplane acts as a separating hyperplane as well.
No part of the feasible region (of the MINLP problem) is cut off by a supporting
hyperplane. Obviously, no points on the line segment between the feasible point
(in theMINLP problem) and the point on the boundary of the feasible region are
cut off. Consequently, all points on the line segment being outside the feasible
region (of the convexMINLP problem) are cut off by the supporting hyperplane,
as it also acts as a separating hyperplane of the two convex subsets (i.e. the line
segments) on the line, wherefrom the point xs on the boundary is calculated. The
MILP solution point used in the line search will, thus, be cut off by a supporting
hyperplane, in the samemanner as aMILP solution point is cut off with a cutting
plane.

Computationally there are, though, algorithmic differences when using sup-
ports or cutting planes, resulting in different performance. This is also the case
when using projected cutting planes instead of standard ones. In this paperwe use
the accronyme PECP when using projected cutting planes in the ECP algorithm
to distinguish, when standard or modified cutting planes in the ECP method
have been replaced by projected cutting planes in the algorithm. In the solver
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GAECP (Generalized Alpha Extended Cutting Plane) [25], used in the calula-
tions of this paper, standard, modified and projected cutting planes as well as
supporting hyperplanes can be used.

Standard cutting planes are generated at MILP solution points xk being in the
infeasible region of the problem (P). The points xs where supporting hyperplanes
are generated need usually satisfy xs ∈ {x | g(x) = 0 ∧ x ∈ [xf , xk]}where xk is a
MILP solution point and xf a point inside the relaxed feasible regionC ∩ L of (P).
In order to calculate the point xs a feasibility problem must, in this case, initially
be solved to obtain the point xf . Each point xs is, thereafter, found by a line search
between the point xf and the corresponding MILP solution point xk. The proce-
dure to calculate the points xp where projected cutting planes are generated, is
given in a later section. However, a first projected point xp is obtained when the
MILP solution xk is projected orthogonally onto a first linearization

lk(x, xk) = g(xk) + ξ k
T(x − xk) = 0,

where ξ k is a subgradient belonging to the subdifferential

∂g(xk) =
{
ξ | g(xk) + ξT(x − xk) ≤ g(x), ∀ x ∈ Rn

}
.

For a smooth function g : Rn → R we have ∂g(x) = {∇g(x)} for any x ∈ Rn. In
Westerlund et al. [12] basic definitions of subdifferentials, subgradients and their
calculations can be found. More detailed information about nonsmooth func-
tions and nonsmooth optimization can be found, for example, in the textbooks
[26,27].

The projection results in a point with the closed form expression,

xp = xk − g(xk)
ξTk ξ k

ξ k.

This point can then be used in an initial projected cutting plane. Reprojections
from the obtained projected point can be done as well. At each step of the pro-
jection procedure the function value and a subgradient need be calculated at the
previously obtained point when a new projection point is calculated.

A standard cutting plane (CP), supporting hyperplane (SH) or a projected
cutting plane (PCP) generated for a constraint g(x) ≤ 0 can be expressed as
follows:

lk(x, xk) = g(xk) + ξ k
T(x − xk) ≤ 0; ξ k ∈ ∂g(xk) (CP)

lk(x, xs) = g(xs) + ξ s
T(x − xs) ≤ 0; ξ s ∈ ∂g(xs) (SH)

lk(x, xp) = g(xp) + ξp
T(x − xp) ≤ 0; ξp ∈ ∂g(xp). (PCP)

The expressions for (CP), (SH) and (PCP) are written in general form, valid for
smooth and nonsmooth functions g.
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3.1. The PECP algorithm

In [5] it was shown that the extended cutting plane algorithm converges to a
global optimum of the problem (P) using standard cutting planes when the con-
straint functions are smooth and convex.When supporting hyperplanes are used,
Kronqvist et al. [23] showed that also in this case the algorithm converges to
a global optimum for smooth convex problems. In Eronen et al. [9,11] it was
shown that the algorithm converges to a global optimum of the problem (P) for
nonsmooth convex constraint functions as well using standard cutting planes
and supporting hyperplanes, by only replacing gradients with subgradients in
the cuts. This might look trivial. However, in [9] it was shown that such a mod-
ification is not directly applicable to the linear outer approximation method by
Fletcher and Leyffer [28], when considering nonsmooth convex problems, since
the linear outer approximation algorithmmight end in an endless loop using such
a modification.

In the following we will study the properties of the PECP algorithm both in
the smooth and the nonsmooth convex case, i.e. when we replace standard cut-
ting planes with projected cutting planes in the ECP algorithm. We will initially,
reproduce the algorithm, in compact form, utilizing the solution sequence given
in [8] where intermediate MILP problems are mainly solved only to feasible
solutions and not necessarily to optimal ones. In [8] it was shown that smooth
problems (P) can be solved to a global optimum using a sequence of feasible
(and/or optimal) MILP problems (Pk) utilizing cutting planes.

In this paper we will prove that the algorithm also converges to a global opti-
mum when considering nonsmooth problems (P), and solving the subproblems
mainly to integer feasible solutions while using projected cutting planes in the
algorithm. The sequence of points is generated as follows,

x∗ ∈ arg m̃in
x∈Lk∩Y

cTx k = 0, 1, . . . ,K

Y = {x ∈ X | xi ∈ Z, i ∈ IZ, |IZ| ≤ n}
X = {x ∈ Rn | xL ≤ x ≤ xH}.

Lk is a polytope, Lk ⊃ L ∩ C, overestimating L ∩ C in the subproblem (Pk) (i.e.
subproblem k in the sequence, k = 0, 1, . . . ,K). Notation m̃in indicates that all
subproblems need not be solved to optimality. The procedure to solve the prob-
lems (Pk) and to generate the polytopes Lk is given in the PECP algorithm. A ’mip
solutions limit’ parameter (msl) is used in MILP solvers like CPLEX and Gurobi
(using a branch and bound procedure) to interrupt the solution of a MILP prob-
lem after the msl-first integer feasible solutions have been found. The solution
of the MILP problem can thereafter (if no new cuts are added) be continued
to a new integer feasible solution by increasing the value of msl while utilizing
the old branch and bound (B&B) tree. If new cuts are added the old B&B tree
cannot be utilized and the new MILP problem is solved from the beginning to
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the actual msl-value. The total number of integer feasible solutions to be found
in a B&B tree before the MILP solution is found optimal is individual for each
MILP problem to be solved. Thus, an individual mslk index is used for each
subproblem (Pk).

The first subproblem is, by default, solved to the first integer feasible solution
in the algorithm, thus msl0 = 1. The solution points of the subproblems (Pk),
are all integer feasible, when interrupting at a certain value of mslk. If such a
solution would be an optimal MILP solution the mslk value is marked by msl∗k .
The optimalMILP solutions limit is, though, individual for each subproblem (Pk)
and given by the MILP solver first when the MILP subproblem has been solved
to optimality. Since all solution points xk are integer feasible and satisfy all linear
constraints, a global optimum to (P) can be verified when a solution xk is within
the set C ∩ L ∩ Y and mslk = msl∗k .

In the algorithm lower and upper bounds, LB andUB, of the objective function
of the problem (P) can be calculated and used to verify the optimal solution.
One can also terminate if the max function of the constraints, denoted g̃(x) =
maxi{gi(x)}, is satisfied. When starting the algorithm the objective function is
constrained in a given interval LBlow ≤ cTx ≤ UBhigh. The limit value mslhigh
can be selected as the default value used, for example, in CPLEX. But typically
mslhigh ≥ 100 is enough.

The PECP algorithm proceeds as follows:

(Data) mslhigh, εg > 0, ε > 0, UBhigh > LBlow
(A) k = 0, msl0 = 1, msl∗0 = mslhigh, L0 = L, UB = UBhigh, LB = LBlow
(B) Solve (Pk) from the beginning tomslk and go to (D)

(C) Solve (Pk) to mslk utilizing the old B&B − tree
(D) If the solution xk of (Pk) is found optimal letmsl∗k = mslk
(E) If g̃(xk) ≤ εg and cTxk < UB let UB = cTxk
(F) If mslk = msl∗k and cTxk > LB let LB = cTxk
(G) If mslk = msl∗k and g̃(xk) ≤ εg or

|UB − LB| ≤ ε then x∗
k = xk, STOP

(H) If mslk �= msl∗k and g̃(xk) ≤ εg then mslk = mslk + 1 and go to (C)

(I) Calculate xp, projected cuts, lk(x, xp) and let Lk+1 = {x | lk(x, xp) ≤ 0} ∩ Lk
(J) k = k + 1,msl∗k = mslhigh and go to (B)

Observe that the number ofMILP iterations is k + mslk when an increment of
one is used on mslk. The index k indicates which polytope Lk is used when solv-
ing problem (Pk). In the first iteration k = 0 and msl0 = 1. In the next iteration,
either k or mslk is increased. Thus at iteration 2 we have (k = 1 and msl1 = 1) or
(k = 0 andmsl0 = 2).When the algorithm proceeds, at each iteration, either k or
mslk is increased and theMILP iteration number will be equal to k + mslk. In the
following sectionswewill showhowprojected points xp and the projected cutting
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planes lk(x, xp) are calculated. The convergence properties of the algorithm are
analysed in the section thereafter.

3.2. The projection step

In this section we give the projection procedure in the PECP algorithm and its
closed form projections. Given anMILP/MIQP solution point xk the projections
are used to generate a point where tighter cuts can be generated improving the
numerical performance of the extended cutting plane algorithm. The projection
procedure is, thus, primarily aimed to produce projection points where several
tight cuts can be generated and not to generate points on the boundary of the fea-
sible region where only one, or exceptionally only a few, supporting hyperplanes
can be generated. However, in special cases, supporting hyperplanes can also be
generated with the projection procedure.

A projected point, utilizing the max function, g̃, and using successive projec-
tions is calculated as follows:

(Data) εP > εg > 0, n × nmatrixD, P > 0
(a) Let p = 0; x0 = xk; ξ 0 = ξ k where ξ k ∈ ∂ g̃(xk)
(b) If g̃(xp) ≤ εP then go to (i)
(c) Let dp = Dξp. If d

T
p dp = 0, go to (i). Otherwise, calculate

xp+1 = xp − g̃(xp)
dTp dp

dp
(d) Calculate g̃(xp+1) = maxi{gi(xp+1)} and ξp+1
(e) If g̃(xp+1) + ξTp+1(xk − xp+1) ≤ εg then go to (i)
(f) p = p + 1
(g) If p < P then go to (b)
(h) The resulting point is xp (with ξp)

(i) STOP : xp is the projected point

The parameter P used in the procedure is the maximum number of allowed
repeated projections at a main iteration (k). The projections are additionally lim-
ited by a limit value restriction, g̃(xp) > εP, considered before a projection or
reprojection is done. A limit value, εP = 1 has been used in the considered exam-
ple problems. By the matrixD the direction of the projections can be selected. If
thematrixD is an identitymatrix the whole subgradient ξ p at the point xp is used
in the projection. As the diagonal elements ofD are connected to the elements in
xp certain variables can be left unaffected by the projections. Thus, for example,
by letting the diagonal elements corresponding to the integer variables be zero,
the projections are done only in the directions of the continuous variables. In this
way one can, for example, avoid that nonlinear functions need be calculated at
points with real values on the integer variables at a projected point. This may be
an advantage when applying the algorithm to certain applied problems.
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In [13] a projection procedure to obtain supporting hyperplanes was sug-
gested. The projection procedure in this paper, is on the other hand, primarily
intended to tighten standard cuts, not to obtain (SH), of reasons discussed in the
introduction. In special cases the procedure can, though, result in (PCP) equal to
(SH) or (CP). In the next sectionwewill show that the PECP algorithm converges
to a global optimumwhen projected cutting planes are used and the algorithm is
applied to smooth or nonsmooth convex MINLP problems (P).

4. Convergence properties of the PECP algorithm

In this section we prove that PECP algorithm converges to an εg-feasible mini-
mum when solving problem (P) assuming that L is a compact set and an optimal
solution exists. A point x̃ is εg-feasibleminimumof problem (P), if g̃(x̃) ≤ εg and
there are no feasible points yielding smaller objective function value than cT x̃.
The convergence proof is quite similar to that for ECP method [9] and its core
ideas can be found in [13], as well. We first prove that projected cutting planes do
not cut off feasible points but will cut the previous MILP solution. The solution
sequence will consist of different points and will have an accumulation point on
a compact set. Any accumulation point turns out to be a global minimum and,
thus, εg-feasible minimum will be found after a finite number of iterations.

In this section we must consider two things not existing in the proof of [9]. In
this paper we do not assume that every MILP problem is solved to the optimum.
Furthermore, we need an assumption that mslhigh = ∞ and projected cutting
plane is generated at the point xp if lk(xk, xp) > εg . We first prove that no feasible
points are cut off.

Lemma 4.1: The projected cutting plane

g̃(xp) + ξT(x − xp) ≤ 0, ξ ∈ ∂ g̃(xp) (1)

does not cut off feasible points.

Proof: Let x ∈ C and xp ∈ Rn be arbitrary. By convexity

g̃(xp) + ξT(x − xp) ≤ g̃(x) ≤ 0,

where the last inequality follows from the feasibility of x. Hence, the feasi-
ble points will remain feasible after introducing projected cutting planes to the
model. �

Next, we prove that previous MILP solution is cut off.

Lemma 4.2: The point xk is cut off by projected cutting plane lk(x, xp) ≤ 0.
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Proof: If xp = xk, then the projected cutting plane is a standard cutting plane. In
this case

g̃(xk) + ξT(xk − xk) = g̃(xk) � 0

and xk is cut off. Otherwise, the projected point is chosen by the projection step
so that xk will be cut off. �

Next, we prove that εg-feasible solution is found after a finite number of
iterations. For the proof we recall that a convex function is locally Lipschitz con-
tinuous and on a compact set L this implies Lipschitz continuity on that set.
Furthermore, if Lipschitz constant is K then for any subgradient of the func-
tion on the set L the inequality ‖ξ‖ ≤ K holds true. This result can be found,
for example, in [27].

Theorem 4.3: Suppose that the projected point xp is accepted if lk(xk, xp) ≥ εg .
Then, the PECP algorithm will find a point xk such that g̃(xk) ≤ εg after a finite
number of iterations.

Proof: Suppose that εg-feasible point is not found after a finite number of itera-
tions. By Lemma 4.2 MILP solutions generate a sequence of different points. In
a compact set L this sequence will have an accumulation point. Thus, there are
MILP solutions xk1 , xk2 such that k1 < k2 and ‖xk2 − xk1‖ ≤ εg

2K , where K is the
Lipschitz constant of g̃ in a compact set L.

Suppose that a standard cutting plane is created at the point xk1 . Then,

g̃(xk1) + ξT(xk2 − xk1) ≥ εg − ‖ξ‖ ∥∥xk2 − xk1
∥∥

≥ εg − K · εg

2K
= εg

2
> 0.

Thus, the cutting plane would cut off the point xk2 contradicting assumptions
k1 < k2 and xk2 being a MILP solution point.

Suppose then that a projected cutting plane is created at the point xp. Then,

g̃(xp) + ξT(xk2 − xp) = g̃(xp) + ξT(xk1 − xp) + ξT(xk2 − xk1)

≥ lk(xk1 , xp) − ‖ξ‖ ∥∥xk2 − xk1
∥∥

≥ εg − K · εg

2K
= εg

2
> 0.

Thus, the projected cutting plane would also cut off the point xk2 contradict-
ing assumptions. Hence, an εg-feasible point is found after a finite number of
iterations. �

The following lemma helps us deal with the case that all MILP solutions are
not optimal.
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Lemma 4.4: If L is a compact set, everyMILP solution will be optimal after a finite
number of iterations.

Proof: Since L is compact and hence bounded, there are a finite number of dif-
ferent integer solutions. When solving MILP problem with branch and bound
method, certain integer solution can be found only once, and thus, can not be
revisited. Hence, if the parametermsl is greater than the number of different inte-
ger solutions, the optimal MILP solution will be found. By Theorem 4.3 and the
PECP algorithm, the parameter msl is increased by one after a finite number of
iterations. Hence, msl will be great enough to guarantee optimal MILP solution
after a finite number of iterations. �

Finally, we can prove the convergence theorem.

Theorem4.5: Suppose that in the problem (P) the set L is compact. Then the PECP
algorithm will find an εg-feasible solution to the problem (P) after a finite number
of iterations.

Proof: The algorithm will stop if it finds a point xk that was optimal MILP solu-
tion and g̃(xk) ≤ εg . Since the feasible set of anyMILP includes the feasible set of
the original problem by Theorem 4.1 and the objective functions of the problems
are the same, xk is εg-feasible solution to problem (P).

It is still to be proven that such xk is found after a finite number of itera-
tions. By Lemma 4.4 after some iteration k, every MILP solution is optimal. By
Theorem 4.3 we will find a point xk satisfying g̃(xk) ≤ εg after a finite number of
iterations. �

Finally it may be mentioned that the given algorithm is easily extended to f ◦-
pseudoconvex constraint functions. For such generalized convex constraints the
subgradients have, though, to be taken from Clarke’s subdifferentials (see [27]
for definitions). Additionally, the alpha-procedure in [7,8,10] need to be applied
on the projected (and standard) cutting planes.

5. Numerical examples

In this section we will solve some convex MILP problems with the PECP
algorithm and illustrate the obtained solution results. First we consider a small
smooth convex example problem from Kronqvist et al. [23] and thereafter some
larger smooth and nonsmooth convex facility layout problems from Castillo
et al. [29].
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Table 1. Results when solving the example problem (EP1) with ESH, PECP and ECP.

Method Type of cuts Solution #iterations Type #cuts Solver #FE/CPU time (s)

Feasibility/ECP+ESH CP+SH −20.9036 17+5 LP+MILP 16+4 GAECP 124+74/0.15+0.18
ECP CP −20.9036 17 MILP 16 GAECP 66/0.54
PECP PCP 1 −20.9036 11 MILP 10 GAECP 86/0.36
PECP PCP 2 −20.9036 8 MILP 7 GAECP 84/0.27
PECP PCP 3 −20.9036 6 MILP 5 GAECP 80/0.20
PECP PCP 5 −20.9036 5 MILP 4 GAECP 86/0.17

Notes: Data for ESH includes the efforts to solve the feasibility problem. #FE corresponds to the number of nonlin-
ear function evaluations. PCPn corresponds to projected cutting plane with n allowed projections from an MILP
solution point.

5.1. A small illustrative example

In [23] an extended supporting hyperplane (ESH) method to solve smooth con-
vex MILP problems was given. A comparison of the ESH algorithm with other
algorithms, including the ECP method, was done in the paper and the ESH
method was found very efficient. The paper contained a small smooth convex
MINLP example problem, by which it was illustrated that the number of sup-
porting hyperplanes was significantly lower than the number of standard cutting
planes, when solving the problem with the ECP method. The example problem
is given below letting us a nice opportunity to compare the results with those
obtained with the PECP algorithm. The example problem is the following:

min − x1 − x2 (EP1)

Subject to g1(x1, x2) = 0.15(x1 − 8)2 + 0.1(x2 − 6)2 + 0.025ex1x−2
2 − 5 ≤ 0

g2(x1, x2) = 1
x1

+ 1
x2

− x0.51 x0.52 + 4 ≤ 0

2x1 − 3x2 − 2 ≤ 0

1 ≤ x1, x2 ≤ 20 x1 ∈ R x2 ∈ Z.

The optimal solution to the problem, obtained in [23]was: x∗
1 = 8.90363, x∗

2 = 12
with an objective function value equal to −20.9036. The number of iterations,
supports and cutting planes when solving the problem using supporting hyper-
planes and standard cutting planes were also given in [23] and can in this paper
be found in the first two rows of Table 1.

When solving the problem with the ESH method an interior point needs
initially be found. In [23] this point was found by solving a relaxed feasibility
problem by letting the right hand side (RHS) of the two nonlinear constrains
be a variable to be minimized. Solving this NLP problem the feasible solu-
tion x1 = 7.45, x2 = 8.54 was found with the right hand side of the nonlinear
constraints RHS = −3.72. Neglecting the computations to solve the feasibility
problem the MINLP problem could, thereafter, be solved with the ESH method
in six iterations using in total five supporting hyperplanes to obtain the optimal
solution. In [23] the feasibility problemwas solved with the ECP algorithm, using
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the GAMS/AlphaECP solver. As illustrated in Figure 4 in [23] the problem (EP1)
was solved to optimality with the ECP algorithm using in total 17 iterations when
adding one cutting plane per iteration. These solution results together with our
results when solving the example problem using supporting hyperplanes, stan-
dard cutting planes and projected cutting planes with the GAECP solver [25] are
given in Table 1 as well.

Since this small example problem contains only one integer variable all MILP
subproblems were solved to optimality. The parameter msl, used in the PECP
algorithm was, therefore, initially given the value msl0 = 100. The projections,
in the PECP algorithm, were in this small example calculated using both vari-
ables, i.e. theDmatrix was selected to be the identity matrix. In Table 1 we report
the solution results when using ESH, ECP and PECP, as well as the computa-
tional effort needed to obtain the feasible point in the ESHmethod. The feasibility
problem is in our computations, solved as a relaxed NLP problem, in the same
way as it was reported to be solved in [23]. The effort needed to solve the feasi-
bility problem should be added to the remaining computations needed to solve
the optimization problem with the ESH algorithm. The total number of function
evaluations as well as the CPU time needed to solve the problem are given in the
last column of Table 1.

When using the PECP procedure different values on the parameter P, allowing
different numbers of reprojections, were also tested. In Table 1 the parameter
value of P is indicated after the acronyme PCP. From Table 1 one observe that
the total number of projected cuts needed to solve the problem to optimality can
clearly be reduced already by one allowed projection per cut, i.e. P = 1. The total
number of cuts needed to obtain the optimal solution can be significantly reduced
if the number of allowed reprojections is higher. In the table one can find that
the total number of cuts needed to solve the MINLP problem to optimality is
10 if P = 1 and the number is reduced to 7 if the reprojections are allowed to
be done in 2 steps per iteration. In case P is increased to 5 then the considered
MINLP problem can be solved to global optimality using only 4 projected cuts.
In Table 2 the whole solution sequence for the PECP algorithm, with P = 5 in
the projection procedure, is given. The projected points as well as all projected
cuts to obtain a global optimum are given in the table. An εP value equal to 1 was
used in the projection procedure and an εg value equal to 0.001 was used in the
termination criterion of the PECP algorithm. From Table 2 one can find that 5
MILP subproblems were solved and termination occured when g̃(xk) was equal
to 0.00000382. Observe, that no projections or reprojections were needed in the
two last iterations. Itmay also be noted that only 3 projected cuts would have been
needed to obtain the optimal solution (by solving only 4 MILP subproblems) in
case an εg value equal to 0.01 had been used.

In Table 3 the corresponding solution sequence for ECP, including the gener-
ated cutting planes, are given. An εg value equal to 0.001 was used in the ECP
calculations as well. From the table it is found that the total number of cutting
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Table 2. Solution sequence when solving the example problem (EP1) with PECP.

Sequence k x1 x2 g̃(xp) lk(x, xp)

MILP 0 20.00000 20.00000 30359.02
p = 1 1 19.00882 20.09902 11176.37
2 1 18.01592 20.19753 4118.658
3 1 17.01890 20.29550 1521.652
4 1 16.01161 20.39266 565.7833
5 1 14.97817 20.48808 213.7850
MILP 1 13.82830 20.00000 82.99954 192.5838 x1 − 15.69762 x2 ≤ 2349.153
p = 1 2 12.55616 20.06904 35.52563
2 2 10.69070 19.96507 18.34450
3 2 7.256141 17.53917 8.513371
4 2 7.430396 13.83736 1.411284
5 2 7.400912 12.91929 0.086757
MILP 2 13.17621 12.00000 94.22692 0.065540 x1 + 1.345889 x2 ≤ 17.78622
p= 1 3 12.18732 12.14933 34.65598
2 3 11.19778 12.27102 12.58116
3 3 10.23839 12.32388 4.352456
4 3 9.420900 12.24358 1.259654
5 3 8.974199 12.07955 0.191408
MILP 3 8.905818 12.00000 0.003415 1.645216 x1 + 0.991902 x2 ≤ 26.55482
MILP 4 8.903617 12.00000 0.00000382 1.552084 x1 + 0.986610 x2 ≤ 25.65849

Table 3. Solution sequence when solving the example problem (EP1) with ECP.

Sequence k x1 x2 g̃(xp) lk(x, xp)

MILP 0 20.00000 20.00000 30359.03
MILP 1 18.99893 20.00000 11175.91 30326.43 x1 − 3029.483 x2 ≤ 515579.8
MILP 2 17.99628 20.00000 4118.113 11146.46 x1 − 1111.516 x2 ≤ 178364.5
MILP 3 16.98978 20.00000 1521.063 4091.523 x1 − 406.0524 x2 ≤ 61393.04
MILP 4 15.97374 20.00000 565.1222 1497.038 x1 − 146.6341 x2 ≤ 20980.60
MILP 5 14.93372 20.00000 213.0217 543.3772 x1 − 51.29851 x2 ≤ 7088.672
MILP 6 13.83164 20.00000 83.21722 193.2904 x1 − 16.32103 x2 ≤ 2347.102
MILP 7 12.55658 20.00000 35.46170 65.26551 x1 − 3.551602 x2 ≤ 748.4796
MILP 8 10.70134 20.00000 18.47053 9.114310 x1 + 1.025266 x2 ≤ 225.0540
MILP 9 5.551104 20.00000 15.51566 3.586349 x1 + 2.522405 x2 ≤ 70.35630
MILP 10 9.067780 15.00000 4.234506 −0.718574 x1 + 2.798390 x2 ≤ 36.46327
MILP 11 10.97743 11.00000 10.92432 1.283817 x1 + 1.671536 x2 ≤ 32.47990
MILP 12 9.675422 12.00000 1.785192 12.98779 x1 − 1.199011 x2 ≤ 118.4590
MILP 13 8.373417 13.00000 0.561509 3.266763 x1 + 0.739311 x2 ≤ 38.69384
MILP 14 9.128950 12.00000 0.391585 0.752618 x1 + 1.301447 x2 ≤ 22.65929
MILP 15 8.927007 12.00000 0.036660 1.939091 x1 + 0.933266 x2 ≤ 28.50947
MILP 16 8.903891 12.00000 0.000427 1.585861 x1 + 0.982040 x2 ≤ 25.90481

planes needed to obtain the optimal solution and the number of MILP subprob-
lems to be solved are in this case much higher. In total 17 MILP subproblems
were solved and 16 cutting planes had to be generated to obtain an optimum of
the considered MINLP problem with the ECP algorithm.

When comparing the results of PECPwith those of ESHwe find that the num-
ber of projected cuts to solve theMINLP problem to a global optimum is equal to
or lower when using projected cutting planes than when using supporting hyper-
planes to solve the considered example problem. When comparing the number
of function evaluations and the CPU time used we also find that PECP needed
fewer function evaluations and less CPU time (except PCP 1) than ESH to solve
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the example problem. ECP needed even less function evaluations than PECP but
the CPU time was the greatest.

5.2. Solving somemore challengingMINLP problems

Encouraged of the results when solving the small example problem,we decided to
test the projection procedure on some larger MINLP problems. From the papers
[30–33], we found that essential improvements on solution methods for facility
layout problems (FLPs) have been made, during the last decade. Good feasible
solutions are found to many FLPs by genetic algorithms and/or tabu searh pro-
cedures but it is still very difficult and a great challenge to solve even moderate
size FLPs to global optimality, with exact methods.

In the paper byCastillo et al. [29] the ECPmethodwas found to be an attractive
alternative to solve, at least moderate size, FLPs to optimality. The FLPs were for-
mulated as smooth convexMINLP problems in [29] and it was found that several
of the problems considered could be solved to optimality by the ECPmethod. The
ECP solution approach when solving intermediate MILP subproblems mainly to
feasible and not optimal solutions was found to be very efficient, when applied
to the FLPs. The largest FLPs, VC10, BA12 and BA14 (or BA13), considered in
[29], could, though, not be solved to optimal solution with the ECP algorithm.

Having this in mind we found it a challenge to try solving those FLPs that
could not be solved to optimality with the ECPmethod in [29]. The facility layout
problem formulation in [29] contains a large number of integer variables and the
procedure of solving intermediateMILP subproblemsmainly to feasible solutions
was found attractive.We decided, therefore, to use the same strategy in the PECP
procedure. The parameter msl in the PECP algorithm is, thus, given an initial
value msl0 = 1 in all our calculations.

The facility layout problem formulation in [29] was initially convex and non-
smooth. The formulation was, thereafter, reformulated to smooth convex form
before the problems were solved. The initial nonsmooth convex facility layout
problem formulation in [29] is given by:

min
N−1∑
i=1

N∑
j=i+1

ci,j(|xi − xj| + |yi − yj|) (FLP1)

Subject to xi + 1
2
wi ≤ W, i = 1, . . . ,N (L1)

xi − 1
2
wi ≥ 0, i = 1, . . . ,N (L2)

yi + 1
2
hi ≤ H, i = 1, . . . ,N (L3)

yi − 1
2
hi ≥ 0, i = 1, . . . ,N (L4)
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1
2
(wi + wj) − (xi − xj) ≤ W(Xi,j + Yi,j), ∀ 1 ≤ i < j ≤ N (L5)

1
2
(wi + wj) − (xj − xi) ≤ W(1 + Xi,j − Yi,j), ∀ 1 ≤ i < j ≤ N

(L6)
1
2
(hi + hj) − (yi − yj) ≤ H(1 − Xi,j + Yi,j), ∀ 1 ≤ i < j ≤ N

(L7)
1
2
(hi + hj) − (yj − yi) ≤ H(2 − Xi,j − Yi,j), ∀ 1 ≤ i < j ≤ N

(L8)

− hi + Ai

wi
≤ 0, i = 1, . . . ,N (C1)

− wi + Ai

hi
≤ 0, i = 1, . . . ,N (C2)

wmin ≤ wi ≤ Ai

hmin
, i = 1, . . . ,N (B1)

hmin ≤ hi ≤ Ai

wmin
, i = 1, . . . ,N (B2)

xi, yi, wi, hi ∈ R, i = 1, . . . ,N

Xi,j, Yi,j ∈ {0, 1}, ∀ 1 ≤ i < j ≤ N.

The nonsmooth convexMINLP problem (FLP1) has a nonsmooth convex objec-
tive function, 2N(N + 1) + 3 linear and 2N smooth convex constraints, 4N real
and N(N − 1) integer variables. The parameter N corresponds to the number
of rectangular departments to be allocated in a rectangular facility area with the
total widthW and total height(lenght)H. The area of the departments areAi and
their widths and height(lenght) are restricted by wmin and hmin respectively. The
problem is to minimize the sum of the rectilinear distances between the mid-
points of the departments multiplied by a cost factor ci,j related to flows between
the departments. The variables xi and yi correspond to the midpoint coordinates
of each department while wi and hi correspond to the department widths and
heigths(lenghts) respectively. Xi,j and Yi,j are binary variables ensuring that the
overlapping prevention constrains for the departments aremet. Symmetric layout
solutions imply the existence of multiple solutions. To avoid such solutions some
symmetry breaking constraints were used in [29]. The following first two con-
straints avoid upside-down andmirror symmetric solutions. The third constraint
(LB3) follows from the two first in the formulation.

xn − xm ≥ 0 (LB1)

ym − yn ≥ 0 (LB2)
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Xn,m − Yn,m = 0 (LB3)

The constraints (LB1)–(LB2) force the department n to be located South–East of
the departmentm, except for the situation when the centre point of both depart-
ments remain on the same horizontal or vertical axis. In this case only one of the
considered symmetries is avoided. In the computations we tested some alterna-
tives on n and m. Although at least one of the symmetries is always avoided, we
found that n = 1 and m = 2 (or vice versa) worked well for problem VC10 and
n = 1 and m = 7 gave good results for the other instances. These values were
used in the remaining calculations. Note that in [29] values n = 1 and m = 2
were used.

The problem (FLP1) is a nonsmooth convex MINLP problem since abso-
lute values appear in the objective function. Problem (FLP1) can be written
in the form (P) in different ways. A straightforward formulation is obtained
by rewriting the objective function in (FLP1) to a single nonsmooth objective
function constraint. However, utilizing separability reformulations can often be
made numerically more efficient [34]. The rectilinear distances between two
departments can, for example, be written as separate constraints for each active
connection. Then we obtain the following nonsmooth convex FLP2:

min
N−1∑
i=1

N∑
j=i+1

ci,jμi,j ci,j �= 0 (FLP2)

Subject to (L1), . . . , (L8), (LB1), . . . , (LB3), (C1), (C2), (B1), (B2)

|xi − xj| + |yi − yj| − μi,j ≤ 0 ∀i, j ∈ {i, j | ci,j �= 0} (C3-NS)

μi,j,min ≤ μi,j ≤ μi,j,max ∀i, j ∈ {i, j | ci,j �= 0} (B3)

μi,j ∈ R ∀i, j ∈ {i, j | ci,j �= 0}
xi, yi, wi, hi ∈ R, i = 1, . . . ,N

Xi,j, Yi,j ∈ {0, 1}, ∀ 1 ≤ i < j ≤ N.

The nonsmooth convex problem (FLP2) has a linear objective function, 2N(N +
1) + 3 linear, M nonsmooth and 2N smooth convex constraints, 4N +M real
and N(N − 1) integer variables. HereM corresponds to the number of nonzero
elements ci,j in the problem.

The problem (FLP1) can also be reformulated to smooth convex form, by
modelling each absolute value using an additional variable and two constraints
as in [29]. The problem formulation (FLP1) is then reformulated to the following
smooth convex FLP3 form:

min
N−1∑
i=1

N∑
j=i+1

ci,j(dxi,j + dyi,j) (FLP3)

Subject to dxi,j ≥ xi − xj, ∀ 1 ≤ i < j ≤ N (LS1)
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Table 4. Dimensions for each problem in different formulations.

Problem Formulation Linear Nonsmooth convex Smooth convex Real Integer
constraints constraints constraints variables variables

VC10 FLP1 223 0 20 40 90
VC10 FLP2 223 12 20 52 90
VC10 FLP3 403 0 20 130 90
BA12 FLP1 315 0 24 48 132
BA12 FLP2 315 59 24 107 132
BA12 FLP3 579 0 24 180 132
BA14/BA14B FLP1 423 0 28 56 182
BA14/BA14B FLP2 423 57 28 113 182
BA14/BA14B FLP3 787 0 28 238 182

Note: Observe that the objective function in FLP1 is convex and nonsmooth, while it is linear in FLP2 and FLP3.

dxi,j ≥ xj − xi, ∀ 1 ≤ i < j ≤ N (LS2)

dyi,j ≥ yi − yj, ∀ 1 ≤ i < j ≤ N (LS3)

dyi,j ≥ yj − yi, ∀1 ≤ i < j ≤ N (LS4)

(L1), . . . , (L8), (LB1), . . . , (LB3), (C1), (C2), (B1), (B2)

xi, yi, wi, hi ∈ R, i = 1, . . . ,N

dxi,j, d
y
i,j ∈ R, ∀ 1 ≤ i < j ≤ N

Xi,j, Yi,j ∈ {0, 1}, ∀ 1 ≤ i < j ≤ N.

The smooth convex problem (FLP3) has a linear objective function, 4N2 + 3
linear and 2N smooth convex constraints, N(N + 3) real and N(N − 1) inte-
ger variables. The corresponding numbers of constraints and variables for the
considered problems with different formulations are given in Table 4.

In [29] the considered facility layout problems were solved in the smooth con-
vex FLP3 form.We have, for comparison, used the same FLP3 formulation, when
solving the FLPs with the PECP algorithm, but also made a few other compar-
isons using the nonsmooth convex formulation (FLP2). The parameters for the
considered FLPs can be found in the tables in the appendix. In Tables 5–8 the
best solutions found when solving the instances VC10, BA12, BA14 and BA14B,
with PECP in the FLP3 form are given. In Figures 1–4 the corresponding layout
solutions are shown. In the PECP algorithm we have used the parameter values
P = 3, εP = 1, msl0 = 1 and εg = 0.001, unless stated otherwise. All the prob-
lems were solved using version 5.538 (2019-5-17) of the GAECP solver described
in [25]. TheMILP subsolver was CPLEX version 12.6.1 [19] using default param-
eters, unless stated otherwise. The computations were done on a computer with a
64 bitWindows 10 operating system, running on an Intel(R) Core(TM) i7-5600U
CPU @2.6GHz with installed 8.00GB RAM.

The VC10 problem was solved in the FLP3 form to a verified optimal solution
(using εg = 0.0001) in 154 iterations (msl = 38). The optimal solutionwas found
at iteration 149 (msl = 34). The BA12 problem was solved in the FLP3 form to a
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Figure 1. VC10, Optimal solution 19973.2.

Figure 2. BA12, Optimal solution 8021.0.

verified optimal solution (using εg = 0.000001) in 44 iterations (msl = 27). The
optimal solution was found at iteration 29 (msl = 14). The best found solution of
the BA14 problem solved in FLP3 form was found after 73 iterations (msl = 33).
The best found solution of the BA14B problem solved in FLP3 form was found
after 86 iterations (msl = 48). However, problems BA14 and BA14B could not
be solved to a verified optimal solution because of limitation in memory space
for the MILP subsolver.
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Figure 3. BA14, Best found solution 4628.5.

Figure 4. BA14B, Best found solution 4714.3.

In Table 9 the results, when solving VC10, BA12, BA14 and BA14B in FLP3
form, with the PECP algorithm are summarized. Equal or almost equal solution
results to the considered FLPs have, though, been found by genetic [32] and tabu
search [30] algorithms some years ago. In Table 9 we have summarized results
from some papers where the considered FLPs have been solved together with
our results when solving the problems with PECP, ECP and ESH in the smooth
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Table 5. Verified optimal solution, 19973.2, of VC10 solved in
FLP3 form using PECP.

i xi yi wi hi

1 2.668161 22.3 5.336323 44.6
2 8.749750 8.202884 6.826854 16.405768
3 12.5 47.8 25.0 6.4
4 15.830841 22.669147 7.335328 10.906119
5 8.978023 36.362090 7.283401 16.475820
6 8.749750 22.264974 6.826854 11.718411
7 22.249252 22.669147 5.501495 10.906119
8 15.198948 36.361103 5.158449 16.477794
9 18.581588 8.608044 12.836823 17.216088
10 21.389086 36.361103 7.221828 16.477794

Table 6. Verified optimal solution,
8021.0, of BA12 solved in FLP3 form
using PECP.

i xi yi wi hi

1 5.0 1.5 9.0 1.0
2 5.0 2.5 8.0 1.0
3 5.0 3.5 10.0 1.0
4 5.0 5.5 6.0 1.0
5 5.0 4.5 4.0 1.0
6 1.5 0.5 3.0 1.0
7 1.5 4.5 3.0 1.0
8 5.0 0.5 4.0 1.0
9 8.0 4.5 2.0 1.0
10 1.0 5.5 2.0 1.0
11 7.5 0.5 1.0 1.0
12 0.5 2.5 1.0 1.0

Table 7. Best found solution, 4628.5, of BA14 solved in FLP3
form using PECP.

i xi yi wi hi

1 4.5 1.928447 9.0 1.0
2 4.5 5.039558 8.0 1.0
3 4.5 2.928447 9.0 1.0
4 4.5 3.984003 9.0 1.111111
5 4.5 0.714224 4.2 1.428447
6 6.553401 6.269779 2.052898 1.460442
7 1.077375 6.269779 2.052744 1.460442
8 4.5 6.269779 2.053904 1.460442
9 2.788398 6.269779 1.369301 1.460442
10 1.35 0.714224 2.1 1.428447
11 7.3 0.714224 1.4 1.428447
12 8.079850 6.039558 1.0 1.0
13 8.5 0.928447 1.0 1.0
14 8.796954 5.769779 0.406091 2.460442

convex FLP3 form. From the table it is found that genetic and tabu search algo-
rithms are very efficient in finding good feasible solutions for FLPs. However,
genetic and tabu search algorithms lack the property of verifying if an obtained
solution, is optimal or not, while the PECP algorithm has this property. From the
results in Table 9 it is, though, found that the final verification of optimality was
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Table 8. Best found solution, 4714.3, of BA14B solved in
FLP3 form using PECP.

i xi yi wi hi

1 4.5 1.833333 9.0 1.0
2 4.5 5.317535 7.0 1.142709
3 4.5 2.833333 9.0 1.0
4 4.5 6.444444 9.0 1.111111
5 4.5 0.666666 4.5 1.333333
6 6.723833 4.039757 2.123372 1.412847
7 1.061672 4.039757 2.123345 1.412847
8 4.600465 4.039757 2.123363 1.412847
9 2.831064 4.039757 1.415439 1.412847
10 1.125 0.666667 2.25 1.333333
11 7.499457 0.666667 1.498914 1.333333
12 8.5 4.833333 1.0 1.0
13 8.285519 3.833333 1.0 1.0
14 0.5 5.388889 1.0 1.0

very time consuming even if the problems were solved in smooth convex FLP3
form. However, the solution points given in Tables 5 and 6, obtained with PECP,
are the global optimal ones and to the authors knowledge this is the first time ever,
that proven global optimal solutions to these problems have been published. The
problems BA14 and BA14B could, however, not be solved to global optimality
with the PECP algorithm in the FLP3 form. These solution results are, given in
Tables 7 and 8 as well as illustrated in the Figures 3 and 4. These solutions with
PECP are the best solutions published as far as the authors know. All the results
with PECP in Tables 5–9 were obtained by solving the problems in smooth con-
vex FLP3 form in order to obtain a comparison with the results in [29], where
this formulation initially was used. The ECP method used in this paper corre-
spond to the ECP solution method in [29] but it has, though, been solved with a
faster computer and a newer version of the MILP subsolver CPLEX in the ECP
algorithm.

In the final rows of Table 9 the results using the ECP and ESH methods are
included as well. From the table it is found that the VC10 problem could also
be solved to a verified optimal solution with the ECP and ESH methods, but the
required CPU time was shorter for the PECP method. The feasibility problem in
ESH could be solved with the algorithm in [12] in a fraction of a second, result-
ing in a RHS of the constraints equal to −16.8. But the total CPU time to solve
the VC10 problemwasmagnitudes longer and alsomuch longer than with PECP.
Surprisingly, no other of the considered FLP-problems could be solved with ESH.
The reason for this is that no relaxed interior points xf ∈ {x ∈ X | g(x) < 0} can
be found for the problems BA12, BA14 and BA14B. One could use the technique
of [23] to create approximate interior points but this is sensitive to numeri-
cal accuracies which might be hard to deal with. Supporting hyperplanes can,
therefore, not be generated at points xs ∈ {x | g̃(x) = 0 ∧ x ∈ [xf , xk]} by using
a line-search procedure. All relaxed feasible, as well as all integer feasible solu-
tions for the problems BA12, BA14 and BA14B are, thus, found on the boundary
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Table 9. Results when solving four challenging facility layout design problems.

Reference Method VC10 BA12 BA14 BA14B Comments

Castillo et al. [29] FLP3-ECP-MINLP 21298.0 8080.0 4919.5∗ Objective
26637 1667 6493∗ CPU time found sol. (s)

Liu and Meller [39] GA with MIP 19997.0 8702.0 5004.0 Objective
– – – – CPU time found sol. (s)

Scholz et al. [30] STaTS 19994.1 8264.0 4712.3 Objective
9 14 16 CPU time found sol. (s)

Kulturel-Konak and Konak [31] ACO-FBS 21463.1 8083.0 4739.7 4739.7 Objective
34 67 531 262 CPU time found sol. (s)

Zarali et al. [35] ACO 7715.0 4165.2 Objective
– – CPU time found sol. (s)

Goncalves and Resende [32] BRKGA-LP 19951.2 8021.0 4628.8 Objective
46 114 160 CPU time found sol. (s)

0.0016 0 0.0095 %Emax
This paper (2020) FLP3-PECP-MINLP 19973.2 8021.0 4628.5 4714.3 Objective

19166 627 5101 3701 CPU time found sol. (s)
22435 13257 – – CPU time optimal (s)
0.00019 0 0.084 0.073 %Emax

This paper (2020) FLP3-ECP-MINLP 19972.6 8075.0 4721.9 4828.1 Objective
28586 6109 7908 9855 CPU time found sol. (s)
30777 – – – CPU time optimal (s)
0.00060 0 0.082 0.073 %Emax

This paper (2020) FLP3-ESH-MINLP 19972.9 NA NA NA Objective
53382 CPU time found sol. (s)
54943 CPU time optimal (s)
0.00053 %Emax

Notes: The row ‘CPU time found sol.’ corresponds to the time needed to find the final solution. The ‘CPU time optimal’ corresponds to the time needed to find and verify optimality of the final
solution. The accuracy measure %Emax is defined in (2). In [29] problem BA13 was solved instead of BA14. The results marked with ∗ are, thus, not fully comparable. However, BA13 is a version of
BA14 without considering department 14, which does not have any shape restriction and interaction with the other departments in BA14 [31,38].
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of L ∩ C. One reason for the lack of an interior point on those problems is that
for i = 12 the width and height of the department is constrained to 1. Thus the
nonlinear constraints (C1) and (C2) are always active for i = 12. From Table 9
it is, furthermore, found that the BA12 problem could not be solved to the same
solution with ECP as with PECP and ECP could not verify an optimal solution,
because of limitation in memory space for the B&B tree in the MILP subsolver.
This was also the case when solving the BA14 and BA14B problems with both
ECP and PECP. The solutions foundwith PECPwhere, though, better with PECP
than with ECP.

As ECP, PECP and ESH are able to solve smooth and nonsmooth convex
MINLP problems to optimality we did also a small comparative study with
the problem VC10 to find out in which form (FLP2) or (FLP3) and by which
approach (ECP, PECP or ESH) this FLP is most efficiently solved. In the com-
parison we used the parameter values: msl0 = 1 and εg = 0.001 in ECP, PECP
and ESH as well as εP = 1 and P = 3 in PECP. The results are given in Table 10,
where one finds that the problemVC10was solved to global optimality with ECP,
PECP and ESH using both the nonsmooth convex FLP2 and the smooth convex
FLP3 formof the problem. FromTable 10 it is found that theVC10 problem could
be solved faster with PECP than with ECP or ESH and the problem was solved
faster in the nonsmooth convex FLP2 form than in the smooth convex FLP3
form with all the methods. Since the smooth convex FLP3 formulation include
linear expressions (LS1)–(LS4) for all 1 ≤ i < j ≤ N while the nonsmooth con-
vex FLP2 form include corresponding nonlinear inequalities (C3-NS) only for
those i, j ∈ {i, j | ci,j �= 0} one could assume that the formulation FLP3 would be
faster if the linear expressions (LS1)–(LS4) would also be restricted to only those
i, j ∈ {i, j | ci,j �= 0}. We call this more compact FLP3 formulation as FLP3c in
Table 10. From the Table 10 we can see that the higher computational time of
the FLP3 formulation compared to the FLP2 formulation can not be explained
by a higher number of (LS1)–(LS4) constraints in the original FLP3 form than
the corresponding number of (C3-NS) constraints in the FLP2 form where the
tighter index set i, j ∈ {i, j | ci,j �= 0} was used. From Table 10 it is also found that
the MINLP problem VC10 was solved to global optimality by only solving one
MILP subproblem to optimality in each of the cases with ECP and PECP.

FromTable 10 it is found that the number of iterations is higher with ESH than
with ECP and PECP. This has its explanation in that the number of supports gen-
erated per iteration with ESH is much lower than the number of cuts that can
be generated per iteration with ECP and PECP. When using ESH, it was found
that a maximum of two supports could be generated and added in a few itera-
tions while only one could be added in the other iterations. The final polytope Lk
approximating the relaxed feasible region, L ∩ C, (in the problem (Pk)) was, thus,
obtained with a higher k-value and a higher total computational load with ESH
than with ECP and PECP. Furthermore, it is notable that the CPU time needed
to build up the final polytope, Lk, and the final MILP problem, Pk, was in some
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Table 10. Results when solving VC10 in FLP2, FLP3 and FLP3c form by ECP, PECP and ESH (using
εg = 0.001).

Formulation Algorithm Objective Iterations msl MILPs∗ CPU time (s) gi,max

Smooth convex FLP3 ECP 19966.5 162(161) 28(28) 1 13399(8933) g4 = 0.00055
Smooth convex FLP3c ECP 19968.1 164(162) 30(28) 1 21219(16972) g4 = 0.00054
Smooth convex FLP3 PECP 19964.1 138(136) 22(21) 1 10167(8155) g6 = 0.00092
Smooth convex FLP3c PECP 19969.7 148(147) 26(25) 1 14971(12797) g6 = 0.00041
Smooth convex FLP3 ESH 19965.9 434(434) 18(18) 3 31789(31789) g2 = 0.00089
Nonsmooth convex FLP2 ECP 19968.4 129(129) 15(15) 1 9768(9768) g9 = 0.00052
Nonsmooth convex FLP2 PECP 19972.9 126(125) 18(18) 1 6422(4249) g6 = 0.000064
Nonsmooth convex FLP2 ESH 19966.9 454(454) 18(18) 9 26942(26942) g3 = 0.00064

Notes: The values within the parentheses correspond to those when the optimal solution first was found while the
values in front of the parentheses correspond to the values at termination when the solutions were verified to be
optimal.

cases shorter than theCPU time needed to solve the finalMILP problem, Pk, once
to optimality This has an additional value, because not only an optimal solution
result is obtained for each case, but also a final MILP problem, Pk, wherefrom the
solution can be obtained.

In connection to all results it should be mentioned that when comparing
our solution results with those given in other papers we found that even better
solution results than our optimal solutions have been reported. However, in the
papers, where better solutions than ours were found, we also found differencies
in the parameters or in the formulation used, explaining this discrepancy. For
example, Zarali et al. [35] reported a solution (with the objective function value)
7715.03 on the instance BA12, while the (global optimal) solution we obtained,
has an objective function value equal to 8021.0 with at least 6 decimals accu-
racy. But, when considering the solution in [35], we found that the authors have
used a total facility area of 7 · 9 = 63, while the total facility area for the BA12
problem in [36] was 6 · 10 = 60. In addition Zarali et al. [35] used euclidean
distances between the departments in the objective function and not rectilin-
ear. Using a rectilinear distances criteria the solution of BA12 in [35] would have
been 9703. The best solution value 4165.24 on the objective function for the
instance BA14 found in [35] was, as well, much lower than the best found solu-
tion value 4628.5 we obtained. However, also in this case, Zarali et al. [35] has
used euclidean distances in the objective function. Thus, these solution values
are not comparable.

We found, furthermore, some smaller, but clearly notable, differences between
our solution results and earlier reported ones. We found, though, that some
of these differences could be explained by different solution accuracy only. For
example, Goncalves and Resende [32] reported a best known solution 19951.2 to
the problem VC10 from [37] while we report a global optimal solution with the
objective function value equal to 19973.2.When solving this problemwith differ-
ent accuracies, we found that it is, most probably, the accuracy that has been used
by Goncalves and Resende [32] that makes the difference. When we solved the
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Table 11. Optimal results when solving VC10 in FLP3 form with PECP using different εg.

εg Objective Iterations CPU time (s) msl gi,max Emax(%)

0.1 19933.5 44 4977 22 g1 = 0.052 0.17
0.01 19954.8 82 6748 25 g6 = 0.0057 0.052
0.001 19964.1 138 10167 22 g6 = 0.00092 0.0079
0.0001 19973.2 154 22435 38 g2 = 0.000032 0.00019

Note: Emax(%) is the accuracy measure defined in (2).

VC10 problem to optimality with different accuracy, we obtained optimal objec-
tive function values of the problem between 19933.5 and 19973.2. These solution
results are given in Table 11. It may be noted that the results in Table 11 cor-
respond to those when solving the VC10 problem in the smooth convex FLP3
form. The computational times are slightly lower in case the nonsmooth FLP2
form is used. The accuracy measured as the maximum relative error (in percent-
age) of any department area is a simplemeasure, given in the papers [29,32]. This
accuracy measure is calculated as follows,

Emax = max
i=1,...,N

|Ai − wihi|
Ai

· 100%. (2)

For the solutions between 19933.5 to 19973.2 the Emax value was between 0.2 %
and 0.0002 % in our calculations, as can be found in Table 11. According to these
results, a solution with an objective function value equal to 19951.7, would, most
likely have an Emax value close to 0.05%. Thus we feel the solution reported in
[31], would, in principle, be the same as ours, but obtained with a lower accuracy.

As the parameters, for the considered instancesmay deviate in different papers
we report in the appendix the values of all parameters and restrictions that we
have used for the instances VC10, BA12, BA14 and BA14B. From the appendix
it can also be observed that the only difference between the instances BA14
and BA14B is the restrictions on the width and length of the 14th department
which are restricted towmin = lmin = 1 in the problem BA14Bwhile they are not
resticted at all in the problem BA14. We report, for comparison, our results for
both these cases, because this problem has been solved with and without restric-
tions on the width and length of the department 14 in several papers, without
mentioning which formulation has been used.

6. Conclusions

In this paper it was shown that projected cutting planes can be an attractive
alternative in optimization algorithms using cutting planes and especially in the
extended cutting plane algorithm. The algorithm was proven to converge to a
global optimum for both smooth and nonsmooth convexMINLP problems. The
computational efficiency of the algorithm was, further, demonstrated by solving
some very difficult facility layout problems to global optimality. To the authors
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knowledge this is the first timewhen it has been shown that the considered facility
layout problems, VC10 and BA12, have been solved to global optimality.
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Appendix. Initial data to facility layout problems

Table A1. Initial data.

Problem N W H Facility requirements Source

VC10 10 25 51 wmin = hmin = 5 van Camp et al. [37]
BA12 12 10 6 wmin = hmin = 1 Bazaraa [36]
BA14 14 9 7 wmin = hmin = 1∗ Bazaraa [36]
BA14B 14 9 7 wmin = hmin = 1 Bazaraa [36]
∗For all departments except for the last facility in BA14 which is not restricted.

Table A2. Initial data.

Problem N (Ai , i = 1, . . . ,N)

VC10 10 (238,112,160,80,120,80,60,85,221,119)
BA12 12 (9,8,10,6,4,3,3,4,2,2,1,1)
BA14 14 (9,8,9,10,6,3,3,3,2,3,2,1,1,1)
BA14B 14 (9,8,9,10,6,3,3,3,2,3,2,1,1,1)

Table A3. Initial data.

-VC10-

(i, j) ci,j
(1,6) 218 (2,6) 148 (2,9) 296 (3,4) 28 (3,5) 70 (4,6) 28 (4,7) 70
(4,8) 140 (5,8) 210 (7,10) 28 (8,10) 888 (9,10) 59.2

-BA12-

(i, j) ci,j
(1,2) 288 (1,3) 180 (1,4) 54 (1,5) 72 (1,6) 180 (1,7) 27 (1,8) 72
(1,9) 36 (1,12) 9 (2,3) 240 (2,4) 54 (2,5) 72 (2,6) 24 (2,7) 48
(2,8) 160 (2,9) 16 (2,10) 64 (2,11) 8 (2,12) 16 (3,4) 120 (3,5) 80
(3,7) 60 (3,8) 120 (3,9) 60 (3,12) 30 (4,5) 72 (4,6) 18 (4,7) 18
(4,8) 48 (4,9) 24 (4,10) 48 (4,11) 12 (5,6) 12 (5,7) 12 (5,8) 64
(5,9) 16 (5,10) 16 (5,11) 4 (5,12) 8 (6,7) 18 (6,8) 24 (6,9) 6
(6,10) 12 (6,11) 3 (6,12) 3 (7,9) 6 (7,10) 6 (7,11) 3 (7,12) 6
(8,9) 16 (8,10) 16 (8,11) 16 (8,12) 4 (9,10) 4 (9,11) 4 (9,12) 2
(10,11) 2 (10,12) 2 (11,12) 2

-BA14- and -BA14B-

(i, j) ci,j
(1,2) 72 (1,3) 162 (1,4) 90 (1,5) 108 (1,6) 27 (1,9) 18 (1,10) 27
(1,11) 18 (2,3) 72 (2,4) 80 (2,6) 48 (2,8) 48 (2,9) 32 (2,11) 16
(2,12) 8 (3,4) 45 (3,5) 54 (3,6) 27 (3,7) 27 (3,8) 27 (3,10) 27
(3,12) 9 (3,13) 18 (4,5) 30 (4,7) 30 (4,8) 30 (4,9) 20 (4,11) 20
(4,12) 10 (4,13) 10 (5,6) 18 (5,8) 18 (5,9) 12 (5,10) 18 (5,11) 24
(6,7) 9 (6,8) 9 (6,11) 6 (6,12) 6 (6,13) 6 (7,8) 9 (7,9) 12
(7,10) 9 (7,11) 6 (7,12) 3 (8,9) 6 (8,10) 9 (8,12) 3 (9,10) 6
(9,11) 4 (9,12) 6 (9,13) 2 (10,11) 6 (10,12) 3 (10,13) 6 (11,12) 2
(12,13) 4
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