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Abstract—We present a novel exploratory performance testing
algorithm that uses supervised learning to optimize the test suite
generation process. The goal of the proposed approach is to
generate test suites that contain a large number of positive tests,
revealing performance defects or other issues of interest in the
system under test. The key idea is to use a deep neural network
to predict which test could be positive and to train this network
online during the test generation process, designing and executing
the test suite simultaneously. The proposed algorithm assumes
that the system under test is stateless and the outcome of the
tests is deterministic. Also, only integer and floating point inputs
are supported. Otherwise, the approach is completely automatic
and it does not require any prior knowledge about the internals
of the system under test. It can also be used effectively in a
continuous integration setting where small variations of a system
are tested successively.

We evaluate our algorithm using two example problems:
searching for bottlenecks in a web service and searching for
efficient hardware configurations in a single-board computer.
In both examples, the presented algorithm performed several
times better than a random test generator and significantly better
compared to our previously published algorithm, producing test
suites with a large proportion of positive tests.

I. INTRODUCTION

Performance is a crucial quality of today’s IT systems
and can be regarded from different perspectives, such as
throughput, response time, resource utilization, etc. Perfor-
mance problems, ranging from degradation in performance
indicators to system failures, can result in unhappy customers
and end users, and consequently may produce financial losses
for stakeholders. According to statistics by Dun&Bradstree,
59% of the Fortune 500 companies experience a downtime
of 1.7 hours a week amounting to a projected $46 million
impact annually for companies of over 10,000 employees [18].
In fact, according to different studies [20], there are higher
chances of a system to fail due to performance issues rather
than functional ones.

Performance testing is the process of identifying how a
system performs in terms of stability and responsiveness under
increased usage. The end goal of performance testing is to
find and eliminate performance defects [19], [20] by creating
and executing tests against the system and observing the
performance of the system via key performance indicators
(KPIs). Compared to functional testing, where the tests are
meant to reveal errors that manifest in the wrong output, in

performance testing we are interested in finding tests which
will make the KPIs exceed target values.

Performing performance testing in practice is a challenging
task not only because it is typically performed in the last
phases of the development process, where the system is
typically regarded as a black-box, but also because in complex
systems the number of possible test inputs can be very large
which will make it impractical to test the system exhaustively.
The latter is specifically observed in systems which have many
configuration parameters, which will result in a combinatorial
explosion problem.

In this paper, we propose an algorithm for performance
testing of systems with large input spaces, that regards the
system under test as a black box and that learns about the
system performance during the test generation process. The
main idea is to train a deep neural network [11] to select the
tests that may reveal performance defects. The neural network
starts without previous knowledge of the system, but learns
about its performance while the tests are being generated. This
allows the algorithm to produce test suites that reveal many
performance defects, while executing a limited number of tests
against the target system.

The algorithm is fully automatic and only requires a de-
scription of the inputs of the system under test and a test
driver with a performance testing oracle. We consider that the
use of a fully automated performance test generation having
no prior system knowledge can be beneficial in many settings
but especially in a continuous integration (CI) pipeline. In this
setting, performance tests could be executed automatically and
continuously after each build, without human intervention.

We proceed as follows. In the next section, we present pre-
vious work related to our proposed new algorithm. Section III
formalizes our test generation problem and describes our
assumptions about the systems to be tested using our approach.
We proceed to present our main algorithm in Section IV and
its implementation in the Python language in Section V. We
evaluate the implementation with two example systems in
Section VI. Section VII discusses how to use the algorithm
in a continuous integration pipeline efficiently. Finally, we
conclude in Section VIII with some closing remarks.



II. RELATED WORK

Many existing approaches focus on the generation of test
data for functional testing [16], [8]. Most of these approaches
aim to find combinations of input values according to certain
test adequacy criteria for code coverage [10], including branch
coverage [4] and path coverage [2]. These approaches often
rely on the source code or the internal structure of the SUT
in order to generate test data.

GA-Prof [17] performs search-based application profiling
to detect performance bottlenecks using a genetic algorithm
to guide the search process. It relies on the source code of
the system under test to map test inputs to different methods
and then to relate the methods to different performance bot-
tlenecks. PerfFuzz [12] is also a performance testing approach
that uses mutational fuzzing to find program inputs that can
reveal worst-case algorithmic complexity in different parts of
the program under test. PerfFuzz begins the test generation
process with a set of randomly generated inputs. Then in each
iteration, it generates new inputs by mutating the previous
inputs and saving the ones that increase code coverage.

When compared to GA-Prof and PerfFuzz, our approach
uses machine learning over the observed behavior of the
system and therefore it is a black-box approach that does not
require the source code of the system under test.

FOREPOST [13] is a performance testing approach that
uses a feedback-oriented machine learning approach to find
performance problems. It extracts a set of rules that map the
application performance to certain combinations of input vari-
ables. The main idea is to use a rule learning algorithm, which
provides a set of rules to guide the selection of test inputs. A
drawback of the rule learning approach of FOREPOST is that
it does not provide rigorous exploration and extensive coverage
of the input space.

The work by Aichernig et al. [3] on performance testing
uses a neutral network to learn the response time of IoT
systems and predict their performance under different usage
scenarios.

We have published a performance testing algorithm named
PerfXRL [1] that uses reinforcement learning to guide the
test generation process and overcome the main drawback
of FOREPOST. The algorithm presented in this article is
built using the experiences learned from PerfXRL and uses
supervised learning to train a discriminator network. We show
in Section VI how our new algorithm improves the defect
finding rate compared to our previous work.

III. PROBLEM DESCRIPTION

We aim to perform automatic exploratory performance
testing of a digital system equipped with a dichotomic oracle.
We assume that there is a deterministic test driver that can
execute individual tests: given a system input, the driver will
invoke the system with the concrete input values, monitor it
and, with the help of the oracle, determine if that particular
input leads to a positive test. We consider a positive test a
system input that leads to excessive response time, excessive
resource usage or unwanted behavior, as determined by the

oracle. Similarly, a negative test does not lead to an observable
performance issue.

The output of the exploratory testing process is a set of tests
called a test suite. We assume that executing each test in the
target system is an expensive operation and we are restricted
by a test budget that limits the number of tests that can be
executed. We thus restrict the test suite to the size allowed by
the test budget.

We define the positive predictive value (ppv) of a test suite
as the ratio between the positive tests and the total number of
tests in the suite. Our goal then is to generate a test suite with
a given budget that maximizes the expected ppv.

We do not have any knowledge about the system under
test, except for its input and output space. We assume that
the system is stateless from a performance point of view, that
is, the outcome of a performance test does not depends on
what tests have been executed previously. Finally, we require
that the system under test is online, that is, we can use the test
driver to learn the outcome of a given test during the test suite
generation. This way, the test generation algorithm can learn
about the system under test and aim to produce test suites with
a high ppv.

A. Input space

We assume that the system under test has an input space
represented by finite, nonempty set I . The input space can
model the API of the system, describing all possible methods
and their input parameters, a set of system configuration
parameters or a combination of both. Each input in the space I
is represented as a finite tuple, and each element of this tuple
is an integer or floating-point number.

We partition the input space into two sets, I = Ip∪ In, that
describe the system inputs representing positive and negative
tests. We define the positive input density pid of the input
space as the ratio between the number of positive inputs and
total inputs pid(I) = |Ip|

|I| . This is the probability for any given
input to be a positive test.

B. Test execution and test oracle

We assume that there is a test driver that can execute a
test t ∈ I , and determine its outcome. We require that test
execution is deterministic and stateless. That is, the outcome
of a test does not vary if we repeat the test and it does not
depend on the previously executed tests. In the rest of the
article, the function execute_test(t) returns the outcome of
a test while the boolean function is_positive tells us if an
outcome is positive or not.

C. Positive predictive value of a test suite and its bounds

As discussed previously, we use the positive predictive value
(ppv) as the main metric for the effectiveness of a test suite.
Given a test suite T , containing Tp ⊆ Ip positive tests, Tn ⊆
In negative tests, and T = Tp ∪ Tn, we define the positive
predictive value of T as:

ppv(T ) =

{
0 if T is empty
|Tp|
|T | otherwise



The number of positive tests in a test suite cannot be in any
case larger than the number of positive inputs of a system nor
the size of the test suite. Similarly, the number of positive tests
cannot be negative nor smaller than the difference between the
test suite size and the number of negative inputs. Formally, the
number of positive tests is constrained by |Tp| ≤ |T |, |Tp| ≤
|Ip|, |Tp| ≥ 0, |Tp| ≥ |T | − |In|. Thanks to these constraints,
we can define the following bounds for the positive prediction
value:

• the lower bound for ppv(T ) is max(|T |−|In|,0)
|T |

• the upper bound for ppv(T ) is min(|T |,|Ip|)
|T |

However, in most cases, the size of the input space is much
larger than the test suite. In the rest of the text, we assume
that |T | < |Ip| and |T | < |In| . In this case, the lower and
upper bounds of ppv are 0

|T | and |T ||T | , i.e. [0, 1].

D. A random test generator

A simple strategy for test suite generation in explorative
testing is random testing, where each possible input has the
same probability to be selected for the test suite. If the input
space contains |I| unique values, and |Ip| of these correspond
to positive tests, a random test generator RTG will produce
tests suites with an expected ppv corresponding to the positive
input density of the system under test: E[ppv(T ∼ RTG)] =
|Ip|
|I| .

Since we expect that few inputs lead to positive tests,
|Ip| << |I|, random testing is not an effective approach. In
the next section, we propose an alternative algorithm based on
deep learning that can produce suites with a better ppv.

IV. A DEEP LEARNING TEST GENERATOR USING A
DISCRIMINATOR NETWORK

In this section, we describe a novel algorithm, named Online
DN Testing algorithm or DN. The algorithm is based on
the idea of using a deep neural network working as a test
discriminator. The algorithm constructs the test suite iteratively
while learning about the system under test.

The overall approach is shown in Figure 1. The intuition
behind the algorithm is as follows: During the first iterations,
the algorithm behaves like a random tester sampling the input
space. We expect that it will find some positive tests by chance,
and those can be used to train a neural network. The neural
network can then be used to filter out tests that may have a
negative outcome, thus becoming a negative test discriminator.
Eventually, the algorithm will become more and more selective
about what tests should be included in the suite and it will
generate a test suite with a high positive predictive value of
ppv.

In order to avoid overfitting the discriminator, we include
a two-arm bandit [9] that chooses between exploiting the
prediction from the discriminator versus continue exploring
the input space. The bandit favors exploitation once the test
suite has reached a high ppv.

A. The online DN testing algorithm

We formalize this schema in Algorithm 1. Here, the function
uniform selects an element randomly from a given input set.
The function train returns a neural network fitted with the data
passed as a parameter, while the function predict returns the
prediction for a given input and network.

Algorithm 1: Online DN testing algorithm

1 input input space I, budget
2 requires budget ≤ |I|
3 T := ∅ ; D := ∅;
4 DN := new model;
5 ε := k1 + k2;
6 while |T|<budget do
7 t := uniform(I-[T]1-D);
8 if predict(DN,t) ≥ threshold ∨ uniform([0,1]) ≤ ε

then
9 outcome := execute_test(t);

10 T := T ∪ {(t,outcome)};
11 ppv := {(t,o)∈T :is_positive(o)}

|T | ;
12 ε := k1 ∗ (1− ppv) + k2 ;
13 DN := train(T);
14 else
15 D := D ∪ {t};
16 end
17 end
18 result test suite T, ppv

The algorithm works as follows. Lines 3–5 initialize the test
suite (T) and the set of discarded tests (D) to an empty set,
the discriminator network, and initializes the ε value for the
bandit.

Lines 6–17 describe the main loop that is executed while
the size of the test suite is less than the testing budget:

1) The random tester generates an input test that is not in
the test suite nor the set of discard tests (L7).

2) The randomly generated test is fed into the discrimi-
nating network, which classifies the test as positive or
negative (L8).

a) If the discriminator prediction is positive, then the
test will be executed against the SUT (L8, the first
clause of the disjunction).

b) If the discriminator prediction is negative, a two-
arm bandit chooses between exploitation by fol-
lowing the advice of the discriminator and discard-
ing the test or exploration by acknowledging the
random tester and executing the test anyway (L8,
second clause).

3) If the test should be executed:
a) The test is executed against the SUT and the test

(L9) and its outcome is added to the test suite
(L10). The ppv of the suite is updated (L11).

b) The strategy of the exploitation-exploration bandit
is updated using the current test suite ppv (L12).
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Fig. 1. Overview of the Online DN testing algorithm

c) The discriminator is trained using the test suite as
training data (L13).

4) If the test should not be executed then it is added to the
set of discarded tests (L15).

In the rest of this section, we discuss different details about
the inner working of the algorithm.

B. Feature modeling and neural network architecture

As we have discussed, the proposed algorithm uses an arti-
ficial neural network to predict tests that may be positive. The
architecture of the neural network used in our implementation
consists of three sequential dense layers with 64 neurons each
and one output layer.

The input layer has the same dimensions as the SUT input
space. All inputs, including those representing categorical
parameters, are normalized in the range [−1, 1]. The sequential
layers use a tanh activation function.

The output layer has only one output, representing the
prediction for a test to be positive and uses a Sigmoid
activation function.

The optimizer used for network training is RMSprop. It is
an improvement over Rprop [15] proposed by Geoffrey Hinton
and it is expected to perform better when the network is trained
in multiple small batches, as it is done by our algorithm.

C. Exploitation-exploration bandit

The algorithm includes a two-arm bandit to choose between
the exploitation of the neural network predictions and the
exploration of the input space. In our design, the bandit follows
a rather simple Epsilon-Greedy strategy [9]. Initially, the ε
value should be high enough to allow for enough exploration
of the input space. Once the test suite ppv becomes high
enough, the exploration should be reduced.

In our algorithm, the ε value is adjusted at each iteration
according to the formula k1 ∗ (1− ppv) + k2 and we require
that k1 > k2, k2 > 0. Initially, ppv equals 0 and we expect it
to grow towards 1 during the test generation process. In the

experiments described below, we use k1 = 0.01, k2 = 0.001
with good results.

Termination of the main loop is guaranteed if k2 > 0 since
the two-arm bandit always has a chance to include a newly
generated test in the suite.

V. IMPLEMENTATION

We have implemented the proposed Online DN testing
algorithm using the Python programming language. The im-
plementation uses the Keras [6] deep learning library to train
the discriminator network and predict the test outcome.

While the described algorithm works with one test per
iteration, the actual implementation works in batches for
performance reasons. In our experiments, we use a batch size
of 50 tests. That is, the neural network is (re)trained only after
we have executed 50 new tests. The batch size can be adjusted
based on the relative effort to train the neural network with
respect to executing the tests.

The implementation uses an interface to represent the sys-
tem under test called SUT. The SUT interface has only four
methods, one to return a sample of a given size of the input
space of the system under test, another method to execute
a test and return its outcome and two methods to normalize
and denormalize the values in the input space into the range
expected by the discriminator network [−1, 1].

We consider that thanks to this simple SUT interface the
algorithm can be used in many different systems as long as
they match the requirements described in Section III.

VI. EXPERIMENTAL RESULTS

We have evaluated the proposed test generation algorithm
using two systems: RUBiS, a web application, and Odroid, a
single board computer. In RUBiS, the objective is to discover
web service requests that may exceed an expected response
time. In the case of Odroid, the objective is to study how
different hardware configuration parameters affect the perfor-
mance, power efficiency and total power consumption of the



TABLE I
TASK PARAMETERS

Size Positive Test Suite bounds
Task Input Space Inputs pid Size ppv
1 RUBiSPOI 3 100k 250 184 0.08 40 000 [0,1]
2 RUBiSUNI 3 100k 283 391 0.09 40 000 [0,1]
3 Performance 479 600 15 476 0.03 12 000 [0,1]
4 Power 479 600 4 736 0.01 4 000 [0,1]
5 Efficiency 479 600 47 900 0.10 12 000 [0,1]

system running a standard benchmark. In total, we evaluate
the algorithm in 5 different test generation tasks.

The main parameters for the tasks are described in Table I.
This table shows for each task the size of the input space,
the total number of inputs that lead to a positive test, the
positive input density, the size of the test suite to generate and
the lower or upper bounds for the ppv of the generated test
suites. We have performed an exhaustive search in our example
systems in order to generate this table. However, we should
note that usually the number of positive inputs is unknown.
As a consequence, it is not either possible to know the pid
value and the bounds for the test suite ppv.

A. RUBiS

RUBiS [5] is a web-based application that implements the
core functionality of an auction site. It has been widely used
in academia for performance evaluation in many publications.
RUBiS is accessed via an HTTP interface. Each HTTP request
contains 4 integer parameters, and the total size of the input
space is 3 100 000 unique requests.

In order to evaluate our algorithm, we deliberately inject
performance bottlenecks in RUBiS. In a bottleneck, the time
used to process a request is increased to exceed the required
maximum response time threshold. We set up two performance
testing tasks using a different bottleneck injection method
in each task. In the RUBiSUNI task, the clusters of bottle-
necks are distributed uniformly [7] which is a challenging
approach since the bottlenecks do not follow any heuristic
or pattern. In the second task, RUBiSPOI , we used a Poisson
distribution [7] to distribute the clusters of bottlenecks. In the
case of RUBiSPOI , as opposed to RUBiSUNI , the bottlenecks
are packed together in the input space. In total, we have
injected bottlenecks on 250 184 and 283 391 unique com-
binations of the input values in RUBiSPOI and RUBiSUNI ,
respectively. This gives a positive input density pidPOI =
250184/3100000 ≈ 0.08 and pidUNI = 283391/3100000 ≈
0.09

To demonstrate the performance of the algorithm, we collect
at each iteration the total number of positive tests generated,
the ppv for the test suite and the ppv for the tests generated
at each batch. We run the algorithm 30 times for each task
and show the mean, maximum and minimum statistics for the
collected variables. We also compare our new algorithm (DN)
with a random testing algorithm (Random), and our previ-

TABLE II
MEAN TEST SUITE ppv

Test Suite ppv ppv ppv DN /
Task Size Random PerfXRL DN PerfXRL
1 RUBiSPOI 40k 0.08 0.36 0.87 x 2.4
2 RUBiSUNI 40k 0.09 0.25 0.84 x 3.4
3 Performance 12k 0.03 0.21 0.83 x 3.9
4 Power 4k 0.01 0.02 0.58 x 29
5 Efficiency 12k 0.10 0.36 0.93 x 2.6

ous performance exploration approach (PerfXRL), presented
in [1].

We represent experimental results for RUBiSPOI and
RUBiSUNI in Figure 2. In the left plot, we can observe that
our newly proposed algorithm clearly outperforms the existing
approaches by generating test suites with many more positive
tests. The center and right plot show how the discriminator
network learns about the system at each iteration. As expected,
initially it does not perform much better than a random
tester, but it soon learns the underlying distribution of the
performance issues in the tested systems and starts generating
tests that have a high chance of being positive. In the case
of RUBiSPOI , the algorithm achieves a batch ppv of 0.9 after
300 tests. This means that after executing 300 tests in the
system, the algorithm is generating tests that are positive in
90% of the cases. Please note that the theoretical maximum
for the ppv is 1, and achieving this result requires complete
prior knowledge of the system under test. In comparison, the
random tester generates tests that are positive in 9% of the
cases, as expected by the positive input density of the system.

We can observe similar results during the performance
test exploration of the RUBiSUNI task. In this case, the
discriminator requires 500 tests to achieve a ppv of 0.9. This
is expected because the bottlenecks were injected following a
more challenging uniform distribution. Still, the new algorithm
clearly outperforms our previous work and the random tester.

Table II shows the mean test suite ppv achieved by each
algorithm. We consider this as the main performance indicator
for this problem. We can observe that for the RUBiSPOI task,
the new DN algorithm performs more than two times better
than our previous PerfXRL algorithm and more than 10 times
better than the random tester. In the case of RUBiSUNI , the
new algorithm performs 3.4 times better than the previous one.

We should note that we generated test suites with 40
000 tests. We consider that this number is rather large for
any practical purposes, but it is used in our experiments to
demonstrate how the algorithm performs in large searches.

B. Odroid

In our second experiment, we used an ODROID XU3
development board from HARDKERNEL. Its Exynos 5422
processor implements the ARM big.LITTLE architecture with
two clusters composed of 4 cores each. The big cluster consists
of a high-performance Cortex-A15 quad-core CPUs, and the
little cluster is a low power Cortex-A7 quad-core CPUs. The
board also contains a Mali-T628 GPU and 2GB LPDDR3



Task 1: Search for RUBiS bottlenecks injected following a Poisson distribution (pid 8%)

0 5 000 10 000 15 000 20 000 25 000 30 000 35 000 40 000
Test suite size

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000
Postive tests in suite

DN
PerfXRL
Random

0 5 000 10 000 15 000 20 000 25 000 30 000 35 000 40 000
Test suite size

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Test suite PPV

DN
PerfXRL
Random

0 5 000 10 000 15 000 20 000 25 000 30 000 35 000 40 000
Test suite size

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Batch PPV

DN
PerfXRL
Random

Task 2: Search for RUBiS bottlenecks injected following a uniform distribution (pid 9%)
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Fig. 2. Experimental results for the RUBiS tasks

of memory. The board has 4 current sensors that offer the
possibility to measure power dissipation in four different
domains: big cluster (A15), LITTLE cluster (A7), GPU and
memory.

As input space, we consider the different board config-
urations in terms of the number of CPUs, type of CPU,
core performance level (i.e. Dynamic voltage and frequency
scaling, DVFS, level) and core utilization level. We select
the type and number of CPUs via the Linux sysfs virtual
filesystem. We use the frequency governor cpufreq in Linux
to define 14 frequency levels on the A7 cores, from 200MHz
to 1.4GHz and 18 levels on the A15 cores from 200MHz
to 2GHz, having a linear impact of the power dissipation of
the CPUs. These frequency intervals correspond to 4 discrete
voltage levels for driving the cores, having a quadratic impact
on the power dissipation of the CPUs.

The core utilization level is set using a scheduler framework,
which is based on the concept of setting the CPU bandwidth of
a certain process. The scheduler is called sched_deadline and
belongs to the Earliest Deadline First class of schedulers. By
setting the runtime of a process inside a period we can control
the level of CPU it uses. In this experiment, we considered 10
possible core utilization levels from 10% to 100% with 10%
steps.

The used input space has therefore 6 dimensions and
is defined for each cluster as the number of CPUs, clock
frequency and utilization level.

The following three outcomes are observed: a) the board
performance measured in the number of executed instructions
per second and b) the power dissipation in Watt of the Exynos
5422 processor and c) the board efficiency measured in the

number of executed instructions per joule.
The goal of the performance exploration for an embedded

platform is usually to find in the input space, i.e. from
all possible board configurations, the configurations leading
to a defined minimum performance level while avoiding, if
possible, the ones leading to a high power dissipation level.

To evaluate the proposed approach we used the workload
Core from the EEMBC CoreMark-Pro Suite 1. There are
479 600 different configurations and executing the benchmark
through the entire input space requires around 80 hours.
The used experimental settings to evaluate the entire input
space through an exhaustive search are equivalent to the one
presented in [14]. This makes an exhaustive search approach
unpractical in a continuous integration pipeline.

We set up three tasks, one for each outcome. For the
first outcome, we search for system configurations where the
performance is greater than 8254M instructions/s. After an
exhaustive search, we know that 3% of the configurations
match this requirement. For the second outcome, we search
for configurations where the power is greater than 6 W (1% of
the configurations). Finally, for the third outcome, we require
the efficiency of more than 2870M instructions/J (10% of the
configurations).

We run our test generation algorithm 30 times for each
of the three tasks. The mean test suite ppv is represented
in Table II while the plots showing the number of positive
tests, test suite ppv and batch ppv per iteration are shown in
Figure 3. The results show that the new DN algorithm clearly
outperforms the existing ones. For the efficiency task, the new

1https://github.com/eembc/coremark-pro



algorithm performs 2.6 times better than the previous one,
while for the power task it performs 29 times better.

We can also observe how the performance of the algorithm
depends on the positive input density of the system. The
random test generator needs to feed the neural network with
some positive tests before the network starts being accurate
enough to discriminate tests. If the positive input density is
low the neural network may not get enough tests for training
and the algorithm may require more iterations to perform well.

C. Execution time

We measured the execution time of the test generator
algorithm without accounting for the time used executing
the tests in the SUT. The results show that our algorithm
implementation produced from 120 to 180 tests per second
in our experimental setup2.

The actual execution time depends on how much time is
required to run each test in the SUT. We consider that in most
cases this will be a slow operation and the time spent in test
generation time will be negligible compared with the time
spent in test execution.

Currently, most of the time is used in training the discrim-
inator network. The temporal performance of the generator
could be improved by using a GPU accelerator for the network
training and by optimizing the batch sizes.

VII. EXPLORATORY TESTING IN CONTINUOUS
INTEGRATION

The previous algorithm always starts tabula rasa. In a
continuous integration setting, where small variations of a
system are tested again and again it can be more effective
to reuse a discriminator model produced during the build of a
previous iteration of the system.

We can update the proposed algorithm to support continuous
integration by introducing just some few changes. The key
idea is that the discriminator network is initialized by a model
created while testing a previous version of the system under
test.

The performance of this new algorithm, called CI DN,
depends on how similar is the new version of the system
under test. We expect that small development increments in
the system will lead to small variations in the set of positive
inputs and that reusing a previous neural network model can
help to produce better test suites.

Still, in some cases, the new version of the system under test
can be so different that this approach becomes a hindrance.
This can be detected by a sharp reduction in the batch iteration
ppv of the algorithm with respect to the previous test suite.
In this situation, the previous model can be discarded and the
discriminator be retrained using only results from the current
system.

The new algorithm is shown as Algorithm 2. It uses a new
constant k3 to decide after each iteration (L13) if the previous
discriminator model should be reused and updated with the

22.3Ghz 8-core Intel Core i9 computer

results from the latest test (L14) or if it should be discarded
and a new model trained using only tests from the current
system version (L15).

Algorithm 2: CI DN testing algorithm

1 input input space I, budget, model DN’, expected_ppv
2 requires budget ≤ |I|
3 T := ∅ ; D := ∅;
4 DN := DN’;
5 ε := k1 + k2;
6 while |T|<budget do
7 t := uniform(I-[T]1-D);
8 if predict(DN,t) ≥ threshold ∨ uniform([0,1]) ≤ ε

then
9 outcome := execute_test(t);

10 T := T ∪ {(t,outcome)};
11 ppv := {(t,o)∈T :is_positive(o)}

|T | ;
12 ε := k1 ∗ (1− ppv) + k2 ;
13 if ppv ≥ expected_ppv * k3 then
14 DN:= update(DN,{(t,outcome)};
15 else
16 DN:= train(T);
17 end
18 else
19 D := D ∪ {t};
20 end
21 end
22 result T, ppv, DN

A. Experimental results

To demonstrate the CI DN algorithm in a continuous
integration setting, we repeat the search for Odroid config-
urations where power > 6W in five successive versions of the
SUT. In each version, we have mutated 5% of the positive
configurations to simulate changes in the system due to its
continuous development.

We present the results in Figure 4. We can observe that
it is feasible to reuse the discriminator network between CI
builds. The first version of the system is explored without
any previous knowledge, and it requires more than 1200 tests
until achieving a ppv of 0.5. However, in the next iterations
the algorithm can successfully reuse the neural network model
and start generating tests with a satisfactory ppv right from the
start.

VIII. CONCLUSIONS

We have presented a novel exploratory performance testing
algorithm that uses machine learning to optimize the test suite
generation process. The goal is to generate test suites that
contain a large number of positive tests, revealing performance
defects or other issues of interest in the system under test.
The key idea is to use a deep neural network to predict what
test could be positive and to train this network online during
the test generation process, designing and executing the test



Task 3: Search for Odroid configurations where performance > 8254M inst/s (pid 3%)
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Task 4: Search for Odroid configurations where power > 6 W (pid 1%)
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Task 5: Search for Odroid configurations where efficiency > 2870M inst/J (pid 10%)
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Fig. 3. Experimental results for the Odroid tasks

suite simultaneously. The approach is completely automatic
and it does not require any prior knowledge about the internals
of the system under test. It can also be used effectively in
a continuous integration setting where small variations of a
system are tested successively.

The current algorithm has several important limitations. It
assumes that the SUT is stateless and the outcome of the tests
is deterministic. Also, only integer and floating point inputs
are supported.

We have evaluated our algorithm in six different perfor-
mance exploration tasks for two different systems: searching
for bottlenecks in a web service and searching for efficient
hardware configurations in a single board computer. In both
examples, the presented algorithm performed several times
better than a random tester and our previously published
algorithm, producing test suites with a large proportion of
positive tests. We acknowledge that further experimentation
with other systems and performance properties is needed.

As future work, we would like to investigate other ap-
proaches to increase the performance of the algorithm during
the first iterations of the test generation process and when the

positive input density of the system is really low.
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