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Performance Exploration and Testing of  
Web-based Software Systems
Modern society relies heavily on a wide range of inter-connected software systems for 
finance, energy distribution, communication, and transportation. Due to the adoption 
of the Internet, almost all financial, government, and social sectors rely heavily on web-
based information systems. These systems need to be very fast and reliable, and should 
be able to support a vast number of concurrent users. As software users are immensely 
perceptive about the performance of the software system, the companies relying on 
web-based application systems for businesses strive to provide high-quality web ser-
vices in order to stay competitive in the worldwide market.

In this thesis, we propose a set of approaches for performance testing and exploration 
of web-based software systems. Although we target web-based software systems, our 
methods can be easily adapted to different types of software systems. Our contribu-
tions fall into two categories: approaches for model-based performance testing and ap-
proaches for performance explorations of black-box systems with large input spaces. In 
the first category, as a first contribution, we provide model-based performance testing, 
where we generate realistic workloads using probabilistic models in order to benchmark 
the performance of the system under test. As an extension of the first contribution, we 
provide an approach for extracting the workload models from server logs as an alterna-
tive to their manual creation based on the tester’s experience. In the second category 
of contributions, we are interested in exploring the performance of black-box software 
systems with large input spaces without prior knowledge of the domain. We propose 
different exploratory performance testing approaches to identify not only the worst user 
scenario with respect to a given workload model but also a set of input combinations 
that trigger performance issues and severely degrade the performance of software-in-
tensive systems.
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Abstract 

Modern society relies heavily on a wide range of inter-connected software 
systems for finance, energy distribution, communication, and transporta-
tion. The era of controlled communication in closed networks for limited 
purposes is over. Due to the adoption of the Internet, almost all finan-
cial, government, and social sectors rely heavily on web-based information 
systems. These systems need to be very fast and reliable, and should be 
able to support a vast number of concurrent users. As software users are 
immensely perceptive about the performance of the software system, the 
companies relying on web-based application systems for businesses strive to 
provide high-quality web services in order to stay competitive in the world-
wide market. These companies may suffer a considerable loss of customers, 
which can detrimentally affect profits and revenues if the applications do 
not perform well in terms of functionality and performance. As various 
reports show that an application is more prone to fail due to performance 
issues rather than functional ones, it is very important that web application 
systems are rigorously tested for performance issues before deployment. 

In this thesis, we propose a set of approaches for performance testing and 
exploration of web-based software systems. Although we target web-based 
software systems, our methods can be easily adapted to different types of 
software systems. 

Our contributions fall into two categories: approaches for model-based 
performance testing and approaches for performance explorations of black-
box systems with large input spaces. In the first category, as a first con-
tribution, we provide model-based performance testing, where we generate 
realistic workloads using Probabilistic Timed Automata (PTA). During the 
load generation process, we monitor different Key Performance Indicators 
(KPIs) such as response times, throughput, memory, CPU, and disk. These 
KPIs are used to benchmark the performance of the system under test 
(SUT). As an extension of the first contribution, we provide an approach 
for extracting the workload models from server logs as an alternative to 
their manual creation based on the tester’s experience. 

In the second category of contributions, we are interested in explor-

i 



ing the performance of black-box software systems with large input spaces 
without prior knowledge of the domain. We propose different exploratory 
performance testing approaches to identify not only the worst user scenario 
with respect to a given workload model but also a set of input combina-
tions that trigger performance issues and severely degrade the performance 
of software-intensive systems. Our first contribution, in this category, is an 
approach to explore the user scenario space randomly based on predefined 
mutation operators to find the worst user scenario. As a second contribu-
tion, we extend the previous work to present an exact approach that uses 
graphs-search algorithms and guarantees to find the worst user scenario. 
However, this approach does not scale well to large workload models with 
many loops. In our third contribution, we address the scalability issue of the 
exact approach and present an approach that employs genetic algorithms 
to identify a near-worst user scenario. As the last contribution, we provide 
an exploratory performance testing approach where we use reinforcement 
learning to explore a large input space in order to identify the input com-
binations that trigger performance issues in the SUT. This contribution is 
motivated by reports that show that almost two-thirds of the performance 
issues are detectable on certain input combinations. All the approaches 
discussed in this work are accompanied by tool support to automate the 
tedious tasks. The approaches have been evaluated against different web 
application case studies, but they can be extended to testing and exploring 
the performance of software-intensive systems in the other domains by ad-
justing their input artifacts such as workload models and input spaces with 
respect to those specific domains. 
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Sammanfattning 

Dagen samhälle är starkt beroende av m̊anga olika slags sammankopplade 
mjukvarusystem för hantering av marknader, energi distribution, telekom-
munikation och logistik. Tids̊aldern för kontrollerad kommunikation i slutna 
nätverk för begränsade syften g̊att mot sitt slut. I och med introduktionen 
av Intenet, har nästan alla finans- och myndighets- och välfärdssektorer 
blivit djupt beroende av webb baserade informationssystem. Dessa sys-
tem m̊aste vara mycket snabba och p̊alitliga och borde kunna hantera 
ett stort antal samtidiga användare. Eftersom mjukvaruanvändare är my-
cket uppmärksamma p̊a mjukvarusystems prestanda, försöker företag som 
förlitar sig p̊a webb baserade tjänster att erbjuda webb tjänster av hög 
kvalitet för att kunna h̊allas konkurrenskraftiga p̊a den globala marknaden. 
Dessa företag kan förlora en stor andel av sina kunder om tjänsterna de 
erbjuder inte uppfyller användarnas krav p̊a funktionalitet och prestanda, 
med konsekvens att företagen kan g̊a miste om viktiga intäkter. Det ar¨ my-
cket viktigt att system erbjuder webb tjänster är testade med avseende p̊a 
prestanda problem före gruppering, med motiveringen att det finns ett antal 
rapporter som visar att mjukvaru applikationer tenderar att misslyckas p̊a 
grund av prestanda problem snarare än funktionella problem. 

I denna avhandling lägger vi fram ett antal tillvägag̊angssätt för att 
testa och utforska prestanda hos mjukvarusystem som erbjuder webb baser-

¨ ate tjänster. Aven om tillvägag̊angssätten är ämnade för webb baserade 
mjukvaru system, kan v̊ara metoder lätt anpassas för andra typer av mjuk-
varusystem. 

V̊ara kontributioner kan indelas i tv̊a kategorier: tillvägag̊angssätt för 
modell-baserad prestanda test och tillvägag̊angssätt för utforskning av 
black-box system med stora indatarymder. Fr̊an den första kategorin, 
som den första kontributionen, tillhandh̊aller vi modell-baserad prestanda 
testning, där vi genererar realistiska arbetsbelastningar för test-systemet 
med hjälp av Probabilistic Timed Automata (PTA). Under genereringen 
av arbetsbelastningen overvakar¨ vi Key Performance Indicators (KPIs), 
s̊asom svarstid, genomströmning, minnesanvändning, processoranvändning 
och användning av lagringsmedie. Dessa KPIn använder för att mäta pre-
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standautg̊angsläget för systemet som h̊aller p̊a att testas (System Under 
Test; SUT). Som en utökning av den första kontributionen, erbjuder vi ett 
tillvägag̊angssätt för att extrahera arbetsbelastningsmodeller fr̊an en servers 
loggfiler, som en alternativ till att skapa dem manuellt utg̊aende ifr̊an per-
sonen som utförs testens erfarenhet. 
I den andra kontributionskategorin är vi intresserade av att utforska 

prestandan för black-box mjukvarusystem med stor indatarymder utan att 
ha n̊agon a priori kunskapen om mjukvarusystemets applikationsdomän. 
Vi tillhandah̊aller olika utforskande tillvägag̊angssätt för testning av prest-
nada, for att identifiera, inte bara den värsta tänkbara användarscenariot 
i avseende p̊a en given arbetsbelastningsmodell, men ocks̊a vilken kombi-
nation av indata som orsakar prestanda problem genom att gravt nedsätta 
prestandan av mjukvaruintensiva system. V̊ar första kontribution i denna 
kategori, är ett tillvägag̊angssätt för att utforska användarscenariorymden 
slumpmässigt med fördefiniera muteringsoperatorer för att hitta det värsta 
möjliga användarscenariet. I den andra kontributionen utökar vi den 
första kontributionen för att tillhandah̊alla ett exakt tillvägag̊angssätt som 
använder sig av grafsökningsalgoritmer som garanterat kan hitta det värsta 
tänkbara användarscenariot. En nackdel med detta tillvägag̊angssätt är 
att den inte lämpar sig för stora arbetsbelastningsmodeller som inneh̊aller 
m̊anga loopar. V̊ar tredje kontribution är att ta i tu med den andra kon-
tributionens brist i att inte kunna hantera stora arbetsbelastningsmodeller. 
Vi löser detta problem genom att använda oss av genetiska algoritmer för 
att identifiera användarscenarier som ar¨ nära det värsta tänkbara. Som den 
fjärde och sista kontributionen tillhandah̊aller vi en utforskande prestandat-
estningstillvägag̊angssätt var vi använder oss av förstärkningsinlärning för 
att utforska en stor indatarymd för att kunna identifiera de indata kombi-
nationer som utlöser prestandaproblem i systemet som h̊aller p̊a att tes-
tas. Denna kontribution motiveras av rapporter som visar att uppmot 
tv̊a tredjedelar av prestandaproblemen kan detekteras fr̊an fr̊an specifika 
indata kombinationer. Med alla tillvägag̊angssätt som diskuteras i denna 
avhandling har verktygsstöd för att automatisera de tr̊akiga och l̊angdragna 
uppgifterna. Tillvägag̊angssätten har jämförts mot olika fallstudier för 
webb applikationer, men de kan anpassas för att kunna testa och ut-
forska prestandan av mjukvaruintensiva system in andra domäner genom 
att justera indataartefakter som till exempel arbetsbelastningsmodeller och 
indatarymder. 
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Chapter 1 

Introduction 

“Most IT systems fail to meet expectations. They don’t 
meet business goals and don’t support users efficiently.” 

— Søren Lauesen [1] 

In 1936, Turing [2] introduced the concept of a computer program even be-
fore the invention of digital computers. After twelve years, a first computer 
program was written for a digital computer [3]. The total storage of the 
computer was 32 words, each representing 31 binary digits. The program 
ran for 52 minutes and performed 3.5 million operations to compute the 
highest proper factor of 218 [4]. This was the first computer program which 
was stored in the memory of the computer. Heretofore, computers were pro-
grammed by reconfiguring their electronic components manually. Tukey [5] 
used the term software for the first time in a context of programming and 
computation in 1958. Since then, the software has become an increasingly 
important and indispensable constituent of everyday life. 
Modern society relies heavily on a wide range of inter-connected soft-

ware systems for finance, energy distribution, communication, and trans-
portation. In 2011, Andreessen [6] reported that over 2 billion people have 
access to the Internet. Owning to these significant technological advance-
ments and growth in the information technologies, the size and complexity 
of the software systems are increasing exponentially. For example, Volvo 
reported that the size of software in their cars increases by the power of 10 
every 5 to 7 years [7]. In 2010, the size of software in some cars was 10 
million Source Lines Of Code (SLOC) which then escalated to 150 million 
SLOC just after six years [8]. NASA has also reported an ascending trend 
in the software size and complexity in avionics systems over time [9]. For 
example, Figure 1.1 illustrates the software complexity trend in terms of 
SLOC in both commercial and military aircraft. A similar trend regarding 
the software sizes can be observed in other industries [6, 10]. 
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Figure 1.1: Growth in software complexity in terms of SLOC in commercial 
and military aircraft [11] 

Owing to escalating demands for software products and services by the 
different industries, the software development organizations are compelled 
to deliver high-quality software artifacts which fulfill the customer require-
ments within a very short amount of time. For example, in 2011, Amazon1 , 
a leading online retailer, was updating its production system every 11.6 sec-
onds [12]. IEEE Standard 1044 [13] defines defect as “an imperfection or 
deficiency in a work product where that work product does not meet its 
requirements or specifications.” According to ISTQB [14], a defect is intro-
duced in a software artifact by a software developer. A failure occurs due to 
the defects in the software implementation. Since the software development 
is a manual activity, it is inevitable to develop a software artifact without 
defects. For instance, during in-house testing, Microsoft [15] detects 10 to 
20 defects per 1000 SLOC. 
On 4 June 1996, Ariane 5 launcher exploded 40 seconds after lift-off due 

to a data conversion error in the software of inertial reference system [16]. 
The total estimated cost of the disaster was $370 million. In 1999, NASA 
lost $125 million Mars Climate Orbiter due to data unit conflict [17]. The 

1https://www.amazon.com/ 
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software controlling the thrusters of the orbiter calculated the data in En-
glish system; however, the navigation software expected the data to be in 
the metric system. Edward Weiler from NASA said [18], “The problem here 
was not the error, it was the failure of NASA’s systems engineering, and 
the checks and balances in our processes to detect the error. That’s why we 
lost the spacecraft.” This statement clearly indicates the need for processes 
to detect defects in the software systems. Furthermore, a recent study [19] 
reports that software failures cost globally $1.7 trillion and affected around 
3.7 billion people in 2017. 
Therefore, identifying software defects in the software system before it 

goes into production is very important [20]. Software testing has become 
a critical component of the software development cycle. It is a process of 
ensuring that the software conforms to requirement specifications [21]. The 
main objective of software testing is to find defects in the System Under 
Test (SUT) and establish confidence in the reliability and robustness of the 
SUT [22]. For example, Microsoft saved millions of dollars by uncovering 
software defects during the development of Windows 7 [23]. Software testing 
accounts for around 50% of the total budget and the time required for 
software development [24]. 
Software testing is a widely three-step process: (1) constructing test 

cases, (2) running test cases against the SUT, and (3) evaluating results of 
the test cases. A test case is a sequential combination of input and expected 
output values [22]. A test case is executed against the SUT in order to collect 
the actual output values of the SUT with respect to certain input values. 
The result of a test case is obtained by comparing the actual and expected 
output values, as shown in Figure 1.2. The result is “pass” if the actual and 
the expected output values are equal; otherwise, “fail”. 

Figure 1.2: Software testing environment 

There are two distinct software testing techniques used to create test 
cases [25]: white-box and black-box testing. In white-box testing, the test 
cases are derived by analyzing the internal structure or the source code of the 
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SUT. The main goal of white-box testing is to exercise each line of the source 
code of the SUT at least once. However, in most cases, it is not feasible to 
test 100% of the source code due to limited time and resources [26]. There 
are several inherent shortcomings to white-box testing. For example, white-
box testing requires access to the source code of the SUT, which is not 
always possible. In order to conduct white-box testing effectively, the tester 
needs to have extensive domain knowledge about the SUT and the structure 
of the source code. On the other hand, in black-box testing, the tester treats 
the SUT as a black-box and tests it only through public interfaces (e.g., 
Application Programming Interface (API)). The test cases are generated 
based on the requirement specifications of the SUT. Therefore, the tester 
does not require the source code or any implementation details of the SUT 
for black-box testing. 
Model-Based Testing (MBT) is a black-box testing approach where test 

cases are generated based on the abstract models that represent the behav-
ior of the SUT [27]. Requirement specifications are used to construct these 
models [28]. One of the main benefits of MBT is that it facilitates automat-
ing or semi-automating the software testing process. In MBT, testers focus 
on building the models of the SUT instead of manually writing the test 
cases. Using MBT, testers manage to generate quality test cases with less 
time and efforts [27]. For instance, Microsoft found 10% more defects with 
MBT than manual testing in one of their software application [29]. Several 
case studies have demonstrated that MBT can reduce the testing cost by 
30% [30]. 
Software testing techniques can be segmented into two broad categories: 

functional testing and non-functional testing. In functional testing, as the 
name suggests, we validate that the functional behavior of the SUT conforms 
to its requirement specifications by executing a set of test cases against the 
SUT. On the other hand, in non-functional testing, we focus on how well 
the SUT performs those functionalities. The goal of non-functional testing 
is to validate the SUT against its non-functional requirements, for example, 
performance, reliability, and security. 

Performance testing is a type of non-functional testing, which evaluates 
the performance of the SUT when it is subjected to a controlled amount of 
workload [31]. A performance test case can be defined as a sequence of user 
actions along with the test input data for each action. During performance 
testing, we execute performance test cases and monitor Key Performance 
Indicators (KPIs) of the SUT [32, 33] such as: 

1. response time — how fast the SUT responds to the user’s requests; 

2. error rate — the percentage of requests that fail or do not receive a 
correct response; 
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3. throughput — the number of requests per time unit the SUT can 
process; 

4. resource utilization — how much resources are being utilized by the 
SUT when it is under a certain amount of workload. 

These KPIs are used to establish the robustness and the performance level 
of the SUT. The main goal of performance testing is to identify perfor-
mance bugs or bottlenecks [34] that negatively impact the performance of 
the SUT [33, 35]. 

Exploratory Testing (ET) is a software testing technique that is used 
to find software defects by learning and exploring the system behavior and 
being less dependent on the test documentation [36]. Unlike traditional 
software testing, tests are not derived from a pre-defined test plan. They 
are dynamically constructed, executed against the SUT, and updated based 
on the results of previously executed tests. During exploratory performance 
testing, software testers evaluate the performance of a software system with 
different user interaction sequences and input combinations in order to iden-
tify potential performance bugs. Typically, the tester is a domain expert 
with a good understanding of the SUT. These performance bugs are usually 
occurred due to the execution of inefficient code sequences. Finding such 
bugs in large-scale, complex software systems with large input spaces is a 
challenging task because these bugs are triggered on certain user interaction 
sequences and input combinations. A study reported that almost two-thirds 
of the performance bottlenecks are only detectable on specific input combi-
nations [37]. Exploratory performance testing is mostly performed manually 
and requires rigorous domain knowledge and substantial efforts and time. 
During the last two decades, we have witnessed tremendous development 

in Internet technologies. It has significantly altered how people communi-
cate with each other, collaborate within a company, and utilize different 
services. The era of controlled communication in closed networks for lim-
ited purposes is over, due to the adoption of the Internet almost all financial, 
government, entertainment and social sectors rely heavily on web-based ap-
plications. 
The architecture of web application systems has become very compli-

cated in recent years [38]. These systems are being developed by integrating 
diverse software modules running on different computing units and commu-
nicating with one another through a network. Figure 1.3 shows the 3-tier 
architecture of modern web applications where each tier performs a certain 
set of operations in the process of serving a user’s request [39]. In order to 
provide a high level of reliability and availability, each tier is often deployed 
on its own collection of servers that work in parallel. The user employs a 
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browser application, such as Mozilla Firefox2 , to access a web application. 
The browser sends a request to the presentation tier using the Hypertext 
Transfer Protocol (HTTP) [40]. The tier accepts the HTTP request and 
forwards it to the application tier for further processing. The later tier 
implements the core functionality of the web application. It processes the 
request and executes the requested operations. Further, it provides the re-
sults of the executed operations to the presentation tier, which formats the 
results according to a predefined layout before sending them back to the 
user. The data tier is used to store and fetch the data related to the web 
application. This tier is maintained by the application tier. 

Figure 1.3: Modern web application architecture 

Web application systems need to be fast and reliable, and they should 
be able to support the vast number of concurrent users [41]. The compa-
nies relying on web applications for business strive to provide high-quality 
web services in order to stay competitive in the worldwide market [42, 43]. 
These companies may suffer significant loss of customers that detrimentally 
affects profits and revenues if the applications do not perform up to quality 
standards or user expectations [44]. Therefore, it is very significant that the 
web application systems are rigorously tested for performance bottlenecks 
before deployment. Although we target web-based software systems in this 
thesis, our methods can be easily adapted to different types of software 
systems. 

1.1 Motivation 

Performance is considered as a significant metric to evaluate the quality of 
the software systems. The software users are immensely perceptive about 
the performance of the software system [45, 46]. For example, a study [47] 
reports that if a web application takes longer than 3 seconds to respond to 

2https://www.mozilla.org/firefox 
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the user’s request, 40% of the users will abandon it. Google, a leading search 
engine, notices a 20% drop in traffic and revenue due to 0.5 seconds delay 
in producing the search results [48]. Similarly, Amazon loses 1% in sales 
due to 100 milliseconds delay in home page generation [49]. Moreover, it is 
reported that the US economy lost $43.5 million due to performance-related 
issues of eCommerce applications [50]. 
Despite the above-mentioned facts, performance testing does not get 

the same level of importance as functional testing [31, 51]. As a result, 
the software systems fail more often due to performance-related problems 
than to functional ones [35]. A software project can get canceled if the 
software could not achieve the required level of performance; even though, 
it is functionally correct [52]. According to a study [53], only 22% of the 
software applications, which were not tested for performance, were managed 
to meet their performance objectives in production. Gunther [54] reported 
that a corporation lost $40 million because its new application cannot satisfy 
the service-level targets under a large amount of workload. Thus, ensuring 
whether a software system will satisfy its performance targets before it goes 
into production has become very important [55, 56]. Furthermore, fixing 
performance problems at the development stage is easier and more cost-
effective than the later stages of software development [57]. 
It is reported that finding and fixing performance related defects is more 

challenging than in the case of functional ones [41, 58, 59]. The conjecture 
is that performance defects are more complex than functional defects, and 
most of the current software testing approaches focus on fixing functional 
defects [58]. 

1.2 Research Objectives and Aims 

Generally, performance testing is largely performed using two of the tra-
ditional testing techniques: Script based testing and Capture and replay 
testing. In the former method, a tester manually writes user scenarios in 
a test script file. In order to generate the workload, the script file is exe-
cuted in parallel to simulate concurrent users, as shown in Figure 1.4. In 
the latter method, instead of manually writing the test scripts, the tester 
records the interactions between the user and the SUT into a test script. 
This method automates the generation of test scripts. Both methods suffer 
from three major drawbacks: (1) the tester needs to write test scripts manu-
ally. Manual testing is an error-prone activity especially when dealing with 
large-scale, complex software systems [24]. (2) The design of the system and 
the customer requirements often change, which means that the test scripts 
need to be updated manually corresponding to the new modifications in 
the system or requirement specification [52]. This process is tedious and 
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demands additional time and effort. (3) The workload generated by execut-
ing test scripts does not accurately represent the dynamic behavior of real 
users [60], which could lead to inconclusive performance test results [43]. 

Figure 1.4: Script based testing 

Furthermore, exhaustively testing a large-scale complex system for per-
formance bugs has become inefficient and impractical because there can be 
numerous potential user scenarios, which cannot be tested cost-effectively 
within a reasonable amount of time. Thus, some infrequent user scenarios 
will remain untested. However, these untested user scenarios could deteri-
orate the performance of the software system or even crash the system if 
they occur. Consequently, there is a need to have an automatic performance 
exploration approach to investigate those rare potential user scenarios and 
their effects on the performance of the SUT. 
A study [37] reported that almost two-thirds of the performance bottle-

necks are only detectable on certain input combinations. However, finding 
those useful input combinations for performance test cases that can identify 
performance bottlenecks in a large-scale system within a feasible amount of 
time is a challenging task because there can be numerous input combina-
tions. Thus, it is impractical for the testers to test each input combination. 
The problem becomes even more challenging when the SUT is a black-box 
where we cannot inspect the internal dynamics of the system. 
This work attempts to address all the shortcomings mentioned above 

with the following objectives: 

O1. Improve the performance testing process and results by generating a 
realistic workload against the SUT. This objective can be broken down 
into two sub-objectives: 

O1.1. Identify the suitable modeling formulation and right level of ab-
straction to capture the dynamic behavior of real users compre-
hensively. 

O1.2. Generate realistic workloads in order to benchmark the perfor-
mance of the SUT accurately. 
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O2. Develop a performance exploration method that explores the user sce-
nario space and identify those scenarios, which could degrade the per-
formance of the SUT. 

O3. Devise a methodology for identifying input combinations that can trig-
ger resource-intensive computations on a black-box system. 

1.3 Research Methodology 

A research method represents a well-established procedure (such as algorith-
mic analysis, prototyping, conducting controlled experiments) to address 
and solve a research problem [61]. A research methodology is a framework, 
which consists of several research methods, rules and postulates employed 
by a particular research discipline to carry out, present, and publish the 
research [62]. 
The central component of our research methodology is the research pro-

cess presented in Figure 1.5. In this thesis, the research process is adapted 
from the design science research methodology proposed by Peffers et al. [62] 
to conduct our software engineering research. 

Figure 1.5: The cycle of our research process 

Our research process starts with identifying a general research problem 
(presented in Section 1.1) originating from real-world observations. The 
ultimate goal of the research is to present a solution to this pragmatic re-
search problem. During the next step, we decompose the research problem 
into various research objectives (outlined in Section 1.2), each expressing 
a certain aspect of the problem. Then, we analyze related methods, ap-
proaches, or theories in order to ensure that our research objectives have 
not been already addressed in the existing body of knowledge; otherwise, we 
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update our objectives. This research step is an iterative procedure in which 
we repeatedly refine our research objectives based on the state-of-the-art 
literature. 
During the design and implementation step, we build solutions (dis-

cussed in Section 1.4) to address the research objectives. At the last step of 
our research process, we evaluate the implemented solutions by conducting 
several controlled experiments. We compare the research results against 
the research objectives to check whether they satisfy the research problem 
identified at the first step of the research process. The last two steps can 
be repeated several times until we get satisfactory research results. 
Once the evaluation step is completed, we summarize the research objec-

tives, the solution, and the research results into several manuscripts (listed 
in Section 1.5) that are published in international conferences and journals 
referred to the topic of software testing. Additionally, we publish several 
technical reports [63, 64] detailing the technical aspects and preliminary 
results of the research. 

1.4 Research Contributions 

This section comprehensively outlines the four main contributions of this 
thesis. The first two contributions relate to performance testing of a software 
system, and the last two contributions concern performance exploration 
where we identify user scenarios and the input data, which could degrade 
the performance of the SUT. 

Model user behavior for workload generation: Our first contribu-
tion mainly addresses the problem that, in most traditional performance 
testing approaches, user scenarios are created for most frequent uses, and 
they are implemented as static scripts. As we have discussed in the previ-
ous section, these scripts are difficult to maintain. Moreover, they do not 
accurately capture the dynamic user behavior. In Paper 1, we have investi-
gated how probabilistic models can be used to represent user behavior such 
as Probabilistic Timed Automata [65] and Discrete Time Markov Chain [66] 
model. We have extended and defined modeling notations in order to cap-
ture the dynamic behavior of real users more accurately than the sequential 
scripts. We present three methods to construct models. The first method 
is manual and requires inspecting the requirement specifications, whereas 
the other two methods are fully automatic. The second method, proposed 
in Paper 3, analyzes the historical usage log to produce user models and 
the third method, presented in Chapter 2, generates a user model by moni-
toring the live interactions between a user and the SUT. This contribution 
addresses the O1.1 objective. 
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Generate a realistic workload: For performance testing, we present 
an approach, discussed in Paper 2, for automated generation of a realistic 
workload. The method utilizes the user models discussed in the previous 
contribution. The workload is applied to the SUT in real-time. During the 
test session, we measure different KPIs such as response time, error rate, 
resource utilization and throughput, in order to benchmark the performance 
of the SUT. We have implemented the approach as a tool in Python3 , called 
Model-based Performance Testing (MBPeT). The tool follows a distributed 
architecture, which allows us to generate a large amount of workload by ex-
tensively parallelizing the load generation process among several computing 
nodes. Further, MBPeT performs a series of validation checks to ensure the 
syntactic and semantic correctness of the user models. The utility of the 
MBPeT is demonstrated by conducting several test sessions. The results 
show that MBPeT can effectively benchmark the performance of the SUT. 
This contribution addresses the O1.2 objective. 

Identify the worst-case user scenario in a user model: We describe 
three performance exploration approaches: mutation-based in Paper 4, 
approximate in Papers 5-6, and exact approach in Paper 6. These ap-
proaches utilize a given user model in order to find the worst user scenario in 
the model, which can degrade the performance of the SUT by creating the 
highest utilization of a given resource on the SUT. Such scenarios facilitate 
the testers to identify potential performance bottlenecks in the SUT. The 
mutation-based approach explores the user scenario space randomly by ap-
plying predefined mutation operators to a given user model. This approach 
does not guarantee to find the worst user scenario due to the random nature 
of it. In addition, it needs to be run for a significant amount of time in order 
to get better results. The exact approach is deterministic and always pro-
vides the worst user scenario; however, it does not scale well to large models 
with numerous loops. The approximate approach utilizes genetic algorithms 
to explore the user scenario space. It cannot always find the worst user sce-
nario, but it can identify a near-worst user scenario faster than the other 
methods, even for large models. An assessment of the approaches shows 
that the identified user scenarios trigger more resource-expensive computa-
tions on the SUT as compared to the original models. This contribution 
addresses the O2 objective. 

Find input combinations that trigger performance bottlenecks As 
we have discussed at the beginning of this chapter, today’s systems are be-
coming increasingly large and complex. As a result, they exhibit huge input 

3https://www.python.org/ 
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spaces with many input parameters and large ranges. Thus, it has become 
impractical to exhaustively test all possible input combinations in order to 
identify performance bottlenecks. To mitigate this problem, Paper 7 in-
troduces a methodology to explore a large space of input combinations to 
identify performance bottlenecks in a black-box system without any prior 
domain knowledge. The method only explores a subset of the input space 
and tries to find as many of those input combinations as possible that can 
trigger performance bottlenecks in the SUT. Our evaluation of the method 
indicates that it can be fully automated and is effective enough to detect 
72% more bottlenecks than the random testing. This contribution under-
takes the O3 objective. 

1.5 Thesis Overview 

The thesis is divided into two main parts. The first part is an overall sum-
mary of the thesis, organized as follows. In Chapter 2, we present our 
model-based performance testing approach and different methods to pro-
duce workload models characterizing the dynamic behavior of the real users. 
We present the tool support of our approach and demonstrate its applica-
bility by carrying out different experiments on an auction web application. 
Chapter 3 provides an overview of our performance exploration approach for 
inferring the worst-case user scenarios in a given workload model that can 
cause high resource utilization on the SUT, resulting in poor performance of 
the system. In the chapter, we also discuss an approach to explore a large in-
put space to identify the input combinations that can trigger performance 
bottlenecks in a black-box system without any prior domain knowledge. 
The chapter also presents the tool support and the empirical evaluation of 
our approaches. Conclusions and directions for future work are given in 
Chapter 4 that concludes the first part of the thesis. 
The second part comprises seven publications that enclose all thesis 

contributions. The included papers are the following: 

Paper 1 - Abbors, F., Ahmad, T., Truscan, D. and Porres, I., 2013. 
Model-based Performance Testing of Web Services using Proba-
bilistic Timed Automata. In International Conference on Web In-
formation Systems and Technologies (pp. 99-104). SciTePress 
In this paper, we present an approach for performance testing of web ser-
vices in which we use abstract models, specified using Probabilistic Timed 
Automata, to describe how users interact with the system. The models are 
used to generate load against the system. The abstract actions from the 
model are sent in real-time to the system via an adapter. Different perfor-
mance indicators are monitored during the test session and reported at the 
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end of the process. We exemplify with an auction web service case study 
on which we run several experiments. 

Contribution Fredrik Abbors and I are the main authors of this paper. I 
was responsible for designing and implementing the tool. Together, Fredrik 
Abbors and I have defined the modeling notations to capture the dynamic 
behavior of the real users. The other authors have contributed with impor-
tant ideas, discussions, and feedback. 

Paper 2 - Abbors, F., Ahmad, T., Truscan, D. and Porres, I., 
2013. Performance Testing in the Cloud using MBPeT. In Devel-
oping Cloud Software: Algorithms, Applications, and Tools (pp. 
191-225). TUCS General Publication. Turku Centre For Com-
puter Science (TUCS). 
We present a model-based performance testing approach using the MBPeT 
tool. We use probabilistic timed automata to model the user profiles and 
to generate a synthetic workload. The MBPeT generates the load in a 
distributed fashion and applies it in real-time to the system under test, 
while measuring several key performance indicators, such as response time, 
throughput, error rate, etc. At the end of the test session, a detailed test 
report is provided. MBPeT has a distributed architecture and supports load 
generation distributed over multiple machines. New generation nodes are 
allocated dynamically during load generation. In this book chapter, we will 
present the MBPeT tool, its architecture, and demonstrate its applicability 
with a set of experiments on a case study. We also show that using abstract 
models for describing the user profiles allows us quickly experiment different 
load mixes and detect the worst case scenarios. 

Contribution This paper was written with an equal contribution of the 
first two authors. I was responsible mainly for implementing the approach 
and conducting the experiments for the evaluation. The other authors have 
contributed with essential ideas, discussions, and feedback. 

Paper 3 - Abbors, F., Truscan, D. and Ahmad, T., 2014. Mining 
Web Server Logs for Creating Workload Models. In International 
Conference on Software Technologies (pp. 131-150). Springer 
We present a tool-supported approach where we used data mining tech-
niques for automatically inferring workload models from historical web 
server log data. The workload models are represented as Probabilistic 
Timed Automata (PTA) and describe how users interact with the system. 
Via their stochastic nature, PTAs have more advantages over traditional 
scripting approaches which simply playback scripted or pre-recorded traces: 
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they are easier to create and maintain and achieve higher coverage of the 
tested application. The purpose of these models is to mimic real-user be-
havior as closely as possible when generating load. To show the validity 
and applicability of our proposed approach, we present several experiments. 
The results show, that the workload models automatically derived from web 
server logs are able to generate load similar with the one applied by real-
users on the system and that they can be used as the starting point for 
performance testing process. 

Contribution This paper was written with an equal contribution of all 
the authors. I was responsible mainly for implementing the approach and 
conducting the experiments for the evaluation. 

Paper 4 - Ahmad, T., Abbors, F. and Truscan, D., 2015. Au-
tomatic Performance Space Exploration of Web Applications. In 
International Conference on the Economics of Grids, Clouds, Sys-
tems, and Services (pp. 223-235). Springer 
We present a tool-supported performance exploration approach to investi-
gate how potential user behavioral patterns affect the performance of the 
system under test. This work builds on our previous work in which we 
generate load from workload models describing the expected behavior of 
the users. We mutate a given workload model (specified using Probabilis-
tic Timed Automata) in order to generate different potential user profiles. 
Each mutant is used for load generation using the MBPeT tool and the 
resource utilization of the system under test is monitored. At the end of 
an experiment, we analyze the mutants in two ways: cluster the mutants 
based on the resource utilization of the system under test and identify those 
mutants that satisfy the criteria of given objective functions. 

Contribution I was the primary author of this paper. I proposed the 
mutation-based performance exploration approach and I developed the tool 
support. The other authors have contributed with important ideas, discus-
sions, and feedback. 

Paper 5 - Ahmad, T. and Truscan, D., 2016. Automatic perfor-
mance space exploration of web applications using genetic algo-
rithms. In Proceedings of the 31st Annual ACM Symposium on 
Applied Computing (pp. 795-800). ACM 
We describe a tool-supported performance exploration approach in which 
we use genetic algorithms to find a potential user behavioural pattern that 
maximizes the resource utilization of the system under test. This work 
is built upon our previous work in which we generate load from workload 
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models that describe the expected behaviour of the users. In this paper, we 
evolve a given probabilistic workload model (specified as a Markov Chain 
Model) by optimizing the probability distribution of the edges in the model 
and generating different solutions. During the evolution, the solutions are 
ranked according to their fitness values. The solutions with the highest fit-
ness are chosen as parent solutions for generating offsprings. At the end of 
an experiment, we select the best solution among all the generations. We 
validate our approach by generating load from both the original and the 
best solution model, and by comparing the resource utilization they create 
on the system under test. 

Contribution I was the principal author of this paper. I contributed 
by modeling the user behavior using Markov Chain Model, developing a 
heuristic-based performance exploration approach to identify a potential 
user scenario that maximizes the resource utilization of the system under 
test, and implementing the tool. The other authors have contributed with 
important ideas, discussions, and feedback. 

Paper 6 - Ahmad, T., Truscan, D. and Porres, I., 2018. Iden-
tifying worst-case user scenarios for performance testing of web 
applications using Markov-chain workload models. Future Gener-
ation Computer Systems, 87, (pp. 910-920). Elsevier 
The poor performance of web-based systems can negatively impact the prof-
itability and reputation of the companies that rely on them. Finding those 
user scenarios which can significantly degrade the performance of a web 
application is very important in order to take necessary countermeasures, 
for instance, allocating additional resources. Furthermore, one would like 
to understand how the system under test performs under increased work-
load triggered by the worst-case user scenarios. In our previous work, we 
have formalized the expected behavior of the users of web applications using 
probabilistic workload models and we have shown how to use such models 
to generate load against the system under test. As an extension, in this ar-
ticle, we suggest a performance space exploration approach for inferring the 
worst-case user scenario in a given workload model which has the potential 
to create the highest resource utilization on the system under test with re-
spect to a given resource. We propose two alternative methods: one which 
identifies the exact worst-case user scenario of the given workload model, 
but it does not scale up for models with a large number of loops, and one 
which provides an approximate solution which, in turn, is more suitable for 
models with a large number of loops. We conduct several experiments to 
show that the identified user scenarios do provide in practice an increased 
resource utilization on the system under test when compared to the original 
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models. 

Contribution I was the main author of this paper. I contributed by 
improving the previously proposed heuristic-based performance exploration 
approach, introducing a graph-based performance exploration approach to 
identify the worst user scenario that maximizes the resource utilization of 
the system under test, and implementing the tool. The other authors have 
contributed with important ideas, discussions, and feedback. 

Paper 7 - Ahmad, T., Ashraf, A., Truscan, D. and Porres, I., 2019. 
Exploratory Performance Testing Using Reinforcement Learning. 
In 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). (pp. 156-163) IEEE 
Performance bottlenecks resulting in high response times and low through-
put of software systems can ruin the reputation of the companies that rely on 
them. Almost two-thirds of performance bottlenecks are triggered on spe-
cific input values. However, finding the input values for performance test 
cases that can identify performance bottlenecks in a large-scale complex 
system within a reasonable amount of time is a cumbersome, cost-intensive, 
and time-consuming task. The reason is that there can be numerous com-
binations of test input values to explore in a limited amount of time. This 
paper presents PerfXRL, a novel approach for finding those combinations 
of input values that can reveal performance bottlenecks in the system un-
der test. Our approach uses reinforcement learning to explore a large input 
space comprising combinations of input values and to learn to focus on 
those areas of the input space which trigger performance bottlenecks. The 
experimental results show that PerfXRL can detect 72% more performance 
bottlenecks than random testing by only exploring the 25% of the input 
space. 

Contribution I was the main driver of this work. I proposed an approach 
for identifying input combinations that can reveal performance bottlenecks 
in the system under test using reinforcement learning, and I implemented 
the tool support. I wrote the major part of the paper. The other authors 
have contributed with important ideas, discussions, and feedback. 
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Chapter 2 

Model-based Performance 
Testing of Web-based 
Software Systems 

“Essentially, all models are wrong, but some are useful.” 
— George E. P. Box [67] 

Performance testing is a type of non-functional testing, which evaluates the 
performance of the SUT when it is subjected to a controlled amount of 
workload [31]. The main objective of performance testing is to evaluate the 
two crucial aspects of the SUT: responsiveness and scalability. The former 
specifies how instantly the SUT responds when it is subjected to a certain 
amount of workload. For instance, in case of a web application, we measure 
the average response time of all the requests made by a certain number of 
concurrent virtual users to the SUT. The performance of the SUT degrades 
as the average response time increases. Secondly, scalability determines the 
maximum amount of workload that the SUT can handle before it crashes or 
becomes unresponsive. These two metrics help infrastructure engineers in 
selecting suitable hardware and software platforms for the system [31, 33] 
but also in optimizing the software. 
As we have mentioned in Chapter 1, performance testing is largely per-

formed using two of the traditional testing techniques: Script based testing 
and Capture and replay testing. In the former method, the tester manually 
writes user scenarios in a test script file, whereas in the latter method, the 
tester records the interactions between the user and the SUT into the file. 
In order to generate the workload, the script file is executed in parallel to 
simulate concurrent users. There are several drawbacks to these methods 
including the fact that the design of the system and the requirement specifi-
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cations often change, which means that the test scripts need to be modified 
manually to reflect the new changes [52]. This process is tedious and time-
consuming. Further, the workload generated by executing test script files 
does not accurately represent the dynamic behavior of real users [60], which 
could lead to inconclusive performance test results [43]. 
In this work, we propose a model-based performance testing ap-

proach where we generate a workload from Probabilistic Timed Automata 
(PTA) [65] models characterizing the dynamic behavior of the real users. 
The abstract PTA models are easy to create and maintain, allowing quick 
and easy iteration cycles. During the load generation process, we monitor 
different KPIs, such as response times, throughput, memory, CPU, and disk 
utilization. These KPIs are used to benchmark the performance of the SUT. 
The rest of the chapter is structured as follows: In Section 2.1, we intro-

duce workload models and extend the probabilistic timed automata model-
ing notation for modeling user scenarios. Section 2.2 describes how workload 
models are produced. Section 2.3 presents several rules to check the con-
sistency and correctness of the workload models. In Section 2.4, we briefly 
explain the model-based performance testing process. Section 2.5 provides 
an overview of the architecture of our tools. In Section 2.6, we investigate 
the applicability of our model-based performance testing approach by car-
rying out different experiments on an auction web application. Section 2.7 
concisely presents the related work. We conclude in Section 2.8. 

2.1 Modeling user behavior 

In this section, we will introduce the workload models used for capturing the 
dynamic behavior of a group of real users in our model-based performance 
testing approach. We employ PTA [65] as workload models. PTA comprises 
a finite set of locations with clocks and probabilistic edges that connect 
automata locations to each other. A clock is a variable whose value spans 
over the non-negative real numbers. It proceeds at the same rate as time 
and can be reset. Time can only progress in any location in PTA as long 
as the location invariant holds while time elapses. A probabilistic edge can 
be selected non-deterministically only if its guard is satisfied by the current 
values of the clocks. 
Figure 2.1 shows an example of a PTA model, which contains five loca-

tions and one clock variable, named X. The model in the figure represents 
the probabilistic behavior of a user interacting with a news forum web ap-
plication. A user begins from the initial location. From this location, the 
user can either choose to browse through a list of news stories with 0.4 
probability or to search for a news story with 0.6 probability. The user 
waits for either 3 or 4 time units before performing browse or search action, 
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X>=5 
browse_page quit() 

X <= 15 0.35 

X>=15, X:=0 
read() 

X>=20 

initial news_details 
quit() 

0.6 X>=4, X:=0 
search() 

X>=5 

G search_page quit() 

X <= 10 0.2 

respectively, as specified by the guards on the edges from the intermediate 
nodes to the browse page and the search page location. These guards on the 
edges are used to specify user think times. If the search action is selected, 
the user waits for 3 time units and then transits to the search page location. 
This location has a clock invariant: X <= 10 meaning that a user cannot 
stay at this location for more than 10 time units. Now, the user can either 
choose to read a news story with 0.8 probability or quit with 0.2 probability. 
In the former case, the user can quit after waiting for at least 20 time units. 

Figure 2.1: Example of a PTA (adapted from[65]) 

One can notice that PTA modeling notation is not very intuitive and 
visually concise when modeling user behavior. Therefore, we make the fol-
lowing modifications to the PTA modeling notation to make it more compact 
and easy to understand: 

1. A user model have only one implicit clock variable, which is set to 
zero after every transition. 

2. A label on an edge represents a probability, a user think time (specified 
in time units), and a user action separated by a / (i.e., forward slash) 
character. 

3. Each location has a hidden clock invariant that is always true. This 
means that a user is not restricted to leave a location after a certain 
amount of time. 

19 



0.35 / 5 / quit() 

1.0 / 20 / quit() 

0.2 / s / quit() 

We have transformed the model in Figure 2.1 into the model in Fig-
ure 2.2 by applying our above transformation rules. The transformed model 
describes the same user behavior as the model in Figure 2.1. A user begins 
from the 1 location in the model. From this location, the user can either 
execute the browse action with 0.4 probability or the search action with 0.6 
probability. The user waits for either 3 or 4 time units before performing 
browse or search action, respectively. 

Figure 2.2: Example of a workload model with compact PTA notations 

2.2 Constructing workload models 

In this section, we present three methods to construct workload models. 
The first method is manual and requires inspecting the requirement spec-
ifications, whereas the other two methods are fully automated with tool 
support and require little to no manual efforts. 

2.2.1 Analyzing requirement specifications 

In this method, we need to determine the actions and the inputs to the 
SUT, arrival rates of the actions (which will be translated into user think 
times between two actions), different types of users, and what are the most 
common user scenarios performed by each user type. One can perceive a 
user type as a cluster of users behaving similarly. Each user type is materi-
alized into a single workload model, as in Figure 2.2. Furthermore, in order 
to properly benchmark the performance of the SUT, we need to establish 
the performance expectations and objectives for the SUT such as what is 
the acceptable average response times for the actions, expected resource 
utilization, or intended throughput when the system is being accessed by a 
certain number of concurrent users. 
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The required information for workload model construction and perfor-
mance objectives can be extracted from the requirement specifications, Ser-
vice Level Agreements (SLAs), and system usage log using the procedure 
proposed by Calzarossa et al. [68]. On the other hand, if we do not have 
access to the artifacts mentioned previously (e.g., SLAs, usage log), we 
can interview personnel at the marketing department, current users of the 
SUT, or the business stakeholder to collect the required information for con-
structing the workload models. These interviews are considered beneficial 
because they provide insights into understanding what are the performance 
expectations and interests of the company [69]. 

2.2.2 Mining system’s usage log 
In this method, we parse the historical usage log of the SUT to generate 
workload models. A usage log file consists of a series of requests made to 
the SUT by different users at different points in time. For example, if the 
SUT is a web application, each line in the usage log file usually contains 
the time stamp, the IP Address of the user, the HTTP request method, the 
requested resource, etc. 
This method can be decomposed into the following steps: 

1. Preprocessing usage log: we filter out all the entries made by the 
Web Crawlers [70]. We only considered those entries in the log file 
for further processing, which correspond to the requests made by the 
real users. 

2. Identify user sessions: we extract the required information such as 
the IP address, the requested resource, and the time stamp from each 
entry of the usage log file using the regular expressions. We assume 
that each IP address correlates to a different user. It is a reasonable 
assumption today since 3.5 billion people are accessing the Internet us-
ing their devices [71]. We use the IP address to segregate the requests 
in the log file into separate sequences for each user. These request 
sequences are further segmented into smaller chunks, called sessions, 
according to the given session timeout value. A session timeout is a 
time between two subsequent requests made by the same user, and it 
is utilized as a session border when it surpasses a certain threshold. 
Consequently, we can define a user session as a stream of requests 
made a user where no two successive requests are separated by more 
than the given session timeout value. 

3. Filtering user sessions: we remove the less frequent user sessions 
using a Pareto probability density function [72] where we trim the tail 
of the distribution by a given cut-off threshold value. The conjecture 
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is that, in many cases, the most frequent user scenarios are the ones, 
which affect the performance of the SUT more significantly than the 
other scenarios. The tester can decide to include all the user scenarios 
to build a model, but it would not significantly affect the results of 
the load generation because the most frequent user scenarios in the 
model will be simulated more often than the other scenarios during 
the load generation. Furthermore, including only the most frequent 
user sessions keeps the resulted workload models concise and easy to 
understand. 

4. Clustering user sessions: Using the K-means [73] clustering algo-
rithm, we cluster the filtered user sessions based on their similarities. 
We construct a workload model by superimposing user sessions one by 
one from a cluster. We keep track of how many times a certain edge 
in the model have been used in order to determine the probability 
and the average think time for the edge. Each cluster of user sessions 
results in a workload model. 

This method allows us to generate the workload models, but it requires 
the historical usage data of the system. The following method does not have 
that requirement. 

Tool Support: Log2Model 

Log2Model tool is implemented in the Python programming language to 
create workload models by mining usage log files (discussed in the previ-
ous section). The tool is capable of parsing the most commonly used log 
formats, such as the Apache HTTP Server log [74] and the Microsoft IIS 
log [75]. Additionally, the tester can define the custom log formats using 
regular expressions. Furthermore, the tester can interactively fine-tune the 
cut-off threshold value (as shown in Figure 2.3) to limit how many user ses-
sions should be used to construct the workload models. In addition to the 
workload models, the tool generates the Python code for the test adapter 
code containing the mapping of every user action in the workload models. 

2.2.3 Capturing user interactions 
In this method, we generate a workload model by capturing the HTTP re-
quests made by the user to the SUT in real-time. As the tester interacts with 
the web application, we capture the HTTP requests made by the browser 
to the web application and store them in a queue. Table 2.1 exemplifies a 
sequence of five HTTP requests. This method entails the following stages: 

Creating user actions: At the first stage, we create and assign a user 
action to each request. A user action can be considered as an abstract 
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Figure 2.3: Graphical user interface of the Log2Model tool 

representation of a given request. If we encounter a certain request for 
the first time, we create a new user action corresponding to the request; 
otherwise, we reassign the previously created user action to the request. 
Table 2.2 lists all the user actions corresponding to the requests in Table 2.1. 
The mapping between the requests and the user actions is used to generate 
another artifact, called a test adapter. The test adapter code consists of 
every user action in an executable format. It is utilized as an interface 
between the workload model and the SUT by our MBPeT tool, which we 
will discuss in Section 2.4. 

Building the model: At the second stage, we start creating the work-
load model incrementally by processing each request in the queue sequen-
tially in order to preserve the order of the requests. In the beginning, the 
workload model has only the initial location, which is also the current dock-
ing location. The docking location in the model is used as the source location 
for the next new edge. We add a new edge in the model with the following 
characteristics for each request: 

• Source location: the current docking location in the model becomes 
the source location of the new edge. For example, the source location 
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No. Time stamp Accessed resource 
R1 19/11/2019:14:22:35 GET /home 
R2 19/11/2019:14:22:39 GET /browse 
R3 19/11/2019:14:23:01 GET /read/posts 
R4 19/11/2019:14:23:51 GET /home 
R5 19/11/2019:14:23:57 GET /search 

Table 2.1: A queue of HTTP requests 

No. Accessed resource User action 
R1 GET /home home() 
R2 GET /browse browse() 
R3 GET /read/posts read() 
R4 GET /home home() 
R5 GET /search search() 

Table 2.2: User actions corresponding to the HTTP requests 

of the edge for the first request (i.e., R1 ) is the initial location (i.e., 
location 1 ), as illustrated in Figure 2.4(a). 

• Destination location: it depends on whether a similar request already 
exists in the model or not. In the latter case, we add a new destination 
location for the new edge. For instance, we have added three new 
locations for the first three requests, as shown in Figure 2.4(b). In 
the former case, the new edge points to the same location where the 
existing edge performing the same request points to. For example, 
in Figure 2.4(c), the edge for the R1 request (from location 1 to 2 ) 
and the edge for the R4 request (from location 4 to 2 ) have the same 
destination location (i.e., location 2 ). The destination location of the 
latest edge becomes the docking location. 

• User action: we assign a user action to the new edge corresponding 
to the request. 

• User think time: it is determined by calculating the time difference 
between the timestamps of the current and the previous request. 

• Probability: It is based on the number of outgoing edges from the 
source location and how many times a certain user action has been 
performed. For example, in Figure 2.4(d), there are two outgoing 
edges corresponding to user actions browse() and search(), and both 
actions are performed only once by the user. Thus, both edges have 
the same probability (i.e., 0.5) 
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0 1.0 / 0 / home() ,--, 
1 r--------►(2) 

'--✓ 

1.0 / 0 / home() 
1 

0 1.0 / O / home() 
1 1--------

1.0 / 50 / home() 

1.0 / O / home() 
1 

(a) Workload model after incorporating 
the first request 

(b) Workload model after incorporating the first 3 requests 

(c) Workload model after incorporating the first 4 requests 

(d) Workload model after incorporating all the requests 

Figure 2.4: Incremental development of a workload model based on the 
requests listed in Table 2.2. Docking locations are represented as dashed 
circles. 

The method allows us to characterize the user behavior for workload 
generation without the need for log files. This is beneficial because, in most 
cases, the log files are not available, or they do not contain sufficient details 
to construct the workload models. 
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User Generate SUT 

Workload model Test adapter 

Tool Support: Click&Capture 

We have implemented a tool, called Click&Capture in Python, which serves 
as a proxy to the SUT in order to capture the HTTP requests between the 
user and the SUT as depicted in Figure 2.5. The captured requests are used 
to generate a workload model and an executable test adapter code in the 
Python programming language by the tool. 

Figure 2.5: Capturing HTTP requests to generate a workload model and a 
test adapter 

2.3 Model Consistency Rules 

In order to check the consistency and correctness of the workload models, 
we have defined the following validation rules that later on are enforced by 
our tool chain: 

• One initial location: a workload model must have precisely one 
initial location (i.e., a location with no incoming edges). 

• One or more exit locations: there should be at least one exit 
location (i.e., a location with no outgoing edges) in a workload model. 

• Probabilities and user actions: probabilities and user actions must 
be specified correctly for each edge in the model, and the sum of the 
probabilities of all the outgoing edges from a location must be equal 
to 1. 

• Isolated locations: there should be no location with no incoming 
and outgoing edges in a workload model. 
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2.4 Model-based Performance Testing 
Process 

In this section, we describe our model-based performance testing approach, 
where we benchmark the performance of the SUT when it is subjected to a 
controlled amount of workload. We generate workload using PTA models, 
characterizing the dynamic behavior of the real users. 
In our approach, we employ a collection of workload models to describe 

the different groups of users. Figure 2.4(d) depicts an example of a workload 
model. In addition to the workload models, we define a root model, which 
describes the arrival rate of the different groups of users in the workload 
mix and their probabilistic distribution. The root model is also represented 
using the PTA modeling notation. For example, the root model in Fig-
ure 2.6 indicates two groups of users where 60% and 40% of users belong to 
user group1 and user group2, respectively. 

Figure 2.6: Root model 

The workload model in Figure 2.4(d) describes the probabilistic behavior 
of a particular group of users interacting with a news forum web application. 
Each edge in the model specifies the probability of choosing the edge, the 
user think time before traversing the edge, and the user action to execute. 
The workload is generated by simulating the workload model. The sim-

ulation starts from the initial location. Upon traversing an edge in the 
workload model, the action associated with the edge is translated into a re-
quest using the test adapter, and the translated request is sent to the SUT. 
For example, the open home function defined (at the line 8 ) in Listing 2.1 
implements the home action in the model shown in Figure 2.4(a). In the 
open home function, we send an HTTP request (line 10 ) to the SUT for 
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1 from petadapter import AbstractAdapter , action 
2 

3 class Generic_Adapter(AbstractAdapter): 
4 def __init__(self , *arg , ** kwarg): 
5 AbstractAdapter .__init__(self , *arg , ** kwarg) 
6 

7 @action("home ") 
8 def open_home(self , username , user_id , parameters): 
9 url = "https :// www .mywebapplication .com/home " 

10 res = self .session .get(url) 
11 repeat = False # do not repeat this action 
12 return res , repeat 

Listing 2.1: A Python code snippet of the test adapter created for the model 
shown in Figure 2.4(a) 

the home web page. Whenever we arrive at one of the exit locations of 
the model, the current user session is terminated, and the simulation of the 
workload model restarts. This procedure is repeated during the entire load 
generation process. 

The request generation process imposes a certain amount of load on the 
system because the system has to process the requests and generate the 
corresponding responses. Each simulation of the workload model represents 
one virtual user. Using the root model, we can employ different workload 
models to generatethe workload from different groups of users. The amount 
of the workload is regulated using a ramp function that specifies the desired 
number of parallel simulations of the workload model at any given moment 
during the test session. 

PTA workload models allow us to capture the probabilistic behavior of 
the real users and introduce randomness up to a certain degree into the 
testing process. This is beneficial in identifying rare sequences of actions 
that could negatively affect the performance of the system. Finding such 
sequences using traditional testing methods like static test scripts, where 
we execute actions in a deterministic order, would be infeasible. 

2.5 Tool Support for Load Generation 

We have implemented our performance testing approach as a tool in the 
Python programming language, called Model-based Performance Testing 
(MBPeT) [63, 76]. The tool generates the workload against the SUT in 
real-time using the workload models, as shown in Figure 2.7. The tool 
also requires a test adapter that translates each user action in the workload 
models to an executable format and a test configuration, which includes dif-
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ferent parameters such as test session duration and a ramp function. The 
tool monitors different KPIs like resource utilization of the SUT, response 
times of user actions, throughput, and error rate. At the end of a per-
formance test session, a test report is generated based on the information 
regarding each KPIs collected during the test session. 

Figure 2.7: MBPeT tool 

Distributed Architecture As we have discussed in Section 2.4, the 
workload is generated by simulating concurrent virtual users. Simulating a 
virtual user consumes a certain amount of hardware resources such as CPU 
and memory on a load generating slave node. This restriction makes sim-
ulating a large number of concurrent virtual users impossible. In order to 
overcome this limitation, MBPeT generates a workload using a distributed 
architecture where it uses several computing nodes to simulate virtual users. 
The architecture of the MBPeT consists of two types of nodes: a master 
node and slave nodes. A master node orchestrates the entire test session by 
managing several remote slave nodes, as shown in Figure 2.8. The tester 
provides the test configuration and workload models to the master node and 
gets a test report at the end of the test session. Slave nodes are generic and 
they do not have prior knowledge of the SUT or the workload models. The 
master collects and parses the required information (e.g., workload models 
and the test configuration) for every test session and sends that information 
to all the slave nodes for the workload generation. 
The master node triggers one of the slave nodes to start the workload 

generation while the rest of the slave nodes wait in their idle state. Load 
generating slave nodes monitors their local resource utilization. A load 
generating slave node stops increasing the number of concurrent virtual 
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users and informs the master node if the resource utilization of the node 
crosses a given threshold value. In response to a saturated slave node, the 
master node initiates another idling slave node for workload generation. 
This procedure allows us to sustain the given workload generation rate by 
simulating any desired number of virtual users. 

Figure 2.8: Distributed architecture of MBPeT tool 

Graphical User Interface In addition to a command-line interface, 
MBPeT features a Graphical User Interface (GUI) dashboard, shown in 
Figure 2.9. The MBPeT dashboard is composed of two panels. The right 
panel of the dashboard allows the tester to set up the test configuration 
before starting the test session. Moreover, the tester can use the slider to 
change the number of concurrent virtual users during the test session. The 
slave indicators show the state of the slave nodes. An idle slave node is 
expressed by a gray indicator. Likewise, active and saturated nodes are 
represented by green and red indicators, respectively. The left panel of 
the dashboard is used to monitor the performance of the SUT during the 
test session in real-time. It consists of two graphs and a label. The Avg. 
Response Time label displays the current average response time of all the 
actions that are being executed. The Response Time graph shows the aver-
age response time of all the actions with respect to the number of seconds 
since the test session started. The graph at the bottom of the panel illus-
trates the ramp function. Both graphs are continually updated in real-time 
during the entire test session. 
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Figure 2.9: Graphical user interface of the MBPeT tool 

Test Report At the end of a test session, the master node aggregates the 
KPI information from the slave nodes to produce a test report. The master 
node monitors the resource utilization of the SUT and presents that infor-
mation in the test report as well. The report comprehensively presents the 
information using different statistical functions. Furthermore, it includes 
several graphs to represent how different KPIs have changed during the test 
session. The test report comprises several sections and each section presents 
a different point of view of the test results [63]. 

2.6 Empirical Validation 

In this section, we will demonstrate the applicability of our performance 
testing approach by carrying out different experiments on an auction web 
application, called YAAS. The YAAS web application has a RESTful [77] 
interface that is based on the HTTP protocol and it is implemented in the 
Python programming language. 

2.6.1 Experiment 1: Performance testing 

In the first experiment, we benchmark the performance of YAAS by gen-
erating the workload using the MBPeT tool. For this purpose, we have 
created three PTA workload models corresponding to three different types 
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0.20 I 4 I browse() 

0.10 I 3 I browse() 

0.60 I 3 I browse() 

0.40 141 search(string) 

0.50 I 3 I exit() 

0.30 I 3 I get_bids(id) 

0.50 I 3 I bid(id,price,username,password) 

0.20 I 5 I browse() 

0.87 I 51 get_auction(id) 

0.05 I 5 I browse() 

0.30 I 3 I exit() 

0.03 I 3 I exit() 0.20 I 3 I exit() 

Figure 2.10: Aggressive user model 

of users (i.e., aggressive user, passive users, and non-bidders type) and one 
root model to specify the arrival rate of the different types of users in the 
workload mix and their probabilistic distribution. The aggressive type of 
users makes bids more often compared to the passive type of users. On the 
other hand, the non-bidder type of users does not bid at all. These models 
are constructed manually by analyzing the requirement specifications ac-
cording to the method discussed in Section 2.2.1. For example, Figure 2.10 
illustrates the workload model of aggressive user type. An interested reader 
can find more details about the workload models constructed for YAAS in 
Abbors et al. [76]. 

The goal of this experiment is to determine the maximum number of con-
current users that the current implementation of YAAS can handle while 
keeping the response time values of the user actions under the given target 
response time values. In this experiment, MBPeT has generated the work-
load against the SUT for 20 minutes by linearly increasing the number of 
concurrent virtual users from 0 to 300. Table 2.3 presents the results of the 
experiment. One can notice that the maximum number of concurrent vir-
tual users supported by YAAS without exceeding any target response time 
values is 64, as highlighted in the table. 

Figure 2.11 shows the resource utilization of the SUT during the test 
session. One can notice that the CPU utilization rose very rapidly as the 
number of concurrent virtual users increased. This implies that the YAAS 
is a CPU-intensive web application. 
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Target 
Response 

Time 
Aggressive users (45%) Verdict 

Actions Avg 
(sec) 

Max 
(sec) 

Time of 
breach (sec) 

Time of 
breach (sec) 

Pass/Fail 

browse() 
search(string) 
get action(id) 
get bids(id) 
bid(id,price, username, password) 

4.0 
3.0 
2.0 
3.0 
5.0 

8.0 
6.0 
4.0 
6.0 
10.0 

279 (78 users) 
229 (64 users) 
276 (77 users) 
327 (92 users) 
328 (92 users) 

394 (110 users) 
327 (92 users) 
325 (91 users) 
394 (110 users) 
468 (131 users) 

Failed 
Failed 
Failed 
Failed 
Failed 

Target 
Response 

Time 
Passive users (33%) Verdict 

Actions Avg 
(sec) 

Max 
(sec) 

Time of 
breach (sec) 

Time of 
breach (sec) 

Pass/Fail 

browse() 
search(string) 
get action(id) 
get bids(id) 
bid(id,price, username, password) 

4.0 
3.0 
2.0 
3.0 
5.0 

8.0 
6.0 
4.0 
6.0 
10.0 

323 (90 users) 
279 (78 users) 
279 (78 users) 
325 (91 users) 
327 (92 users) 

394 (110 users) 
394 (110 users) 
279 (78 users) 
394 (110 users) 
474 (132 users) 

Failed 
Failed 
Failed 
Failed 
Failed 

Target 
Response 

Time 
Non-bidders users (22%) Verdict 

Actions Avg 
(sec) 

Max 
(sec) 

Time of 
breach (sec) 

Time of 
breach (sec) 

Pass/Fail 

browse() 
search(string) 
get action(id) 
get bids(id) 
bid(id,price, username, password) 

4.0 
3.0 
2.0 
3.0 
5.0 

8.0 
6.0 
4.0 
6.0 
10.0 

279 (78 users) 
279 (78 users) 
280 (79 users) 
279 (78 users) 

NA 

394 (110 users) 
394 (110 users) 
325 (91 users) 
446 (130 users) 

NA 

Failed 
Failed 
Failed 
Failed 
Failed 

Table 2.3: Response time values for every user actions corresponding to each 
user type (Bold value is the maximum number of concurrent virtual users 
supported by YAAS without exceeding any target response time values.) 
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Figure 2.11: SUT CPU and memory utilization with respect to the number 
of concurrent virtual users 

2.6.2 Experiment 2: Generating workload models 
In Section 2.2, we have discussed three methods to construct workload mod-
els: (1) by analyzing the requirement specifications, (2) by mining system 
usage log, and (3) by capturing the user interactions with the SUT. The 
applicability of the first and the third method have been discussed already 
in Section 2.2.1 and 2.2.3, respectively. In this experiment, we will discuss 
the applicability of the second method on a web application, called Pubili-
iga1 , which is used to manage the results of football games played in a local 
football league. Log2Model generates the workload model by mining the 
web usage log of Pubiliiga. The tool has filtered 30 000 lines of log data 
out of almost 1.3 million, by removing all irrelevant and incorrect lines from 
the log. The tool took 10.38 seconds in total to produce a workload model 
shown in Figure 2.12. 
We have performed another experiment to validate our Log2Model tool. 

The experiment was done in two steps: we generated the workload against 
the YAAS using the workload models that we created manually, and then 
utilized the log data produced during the load generation to construct the 
workload models. Figure 2.13 compares the original workload model and 
the one we created by mining the log data. One can notice that the models 
are almost identical except a few minor differences between the probabilities 
of the edges. The differences in the probabilities of the edges between both 
models are highlighted with red color. 

1http://www.pubiliiga.fi/ 
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1

2

0.15 / 0 / exit()

3

0.076 / 0 / action17

4

0.15 / 9 / action216

0.13 / 0 / action16

7

0.033 / 21 / action19
8

0.12 / 4 / action20

9

0.20 / 0 / action15

10

0.081 / 0 / action5

11

0.060 / 10 / action18

0.9 / 0 / exit()

0.05 / 7 / action17

5

0.05 / 16 / action16

0.52 / 0 / exit()

0.39 / 18 / action17

0.089 / 46 / action16

0.59 / 0 / exit()

0.051 / 23 / action17

0.057 / 8 / action21

0.16 / 75 / action16

0.095 / 24 / action15
0.025 / 32 / action5

0.019 / 67 / action18

0.22 / 0 / exit()

0.78 / 4 / action15

0.13 / 0 / exit()

0.87 / 7 / action16

0.93 / 0 / exit()

0.068 / 25 / action17

0.92 / 0 / exit() 0.082 / 1 / action5

0.69 / 0 / exit()

0.23 / 7 / action17

0.086 / 41 / action21

1 / 0 / exit()

Figure 2.12: Workload model by mining the usage log of Pubiliiga 
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1

2

1.0 / 0 / browse()

0.10 / 7 / browse()

3

0.87 / 4 / get_auction(id)

6

0.03 / 0 / exit()

0.05 / 4 / browse()

4

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.20 / 5 / browse()

5

0.50 / 3 / bid(id,price,username,password)

0.30 / 0 / exit()

0.25 / 6 / browse()

0.45 / 4 / get_bids(id)

0.30 / 0 / exit()

(a) Original workload model 

1

3

1.0 / 0 / browse()

0.0095 / 7 / browse()

4

0.87 / 4 / get_auction(id)

2

0.033 / 0 / exit()

0.052 / 4 / browse()

5

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.24 / 5 / browse()

6

0.48 / 3 / bid(id,price,username,password)

0.29 / 0 / exit()

0.23 / 6 / browse()

0.48 / 4 / get_bids(id)

0.30 / 0 / exit()

(b) Generated workload model 

Figure 2.13: Original vs generated workload model (Differences in the prob-
abilities of the edges between both models are highlighted with red color) 
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2.7 Related Work 

Many researchers have investigated the topic of analyzing and benchmarking 
the performance of web-based applications. Vögele et al. [78] have proposed 
a performance testing framework for session-based web applications. The 
author introduces a domain-specific language, called WESSBAS, to create 
workload specifications. The specifications can be extracted from usage log 
files of a production system, which are then used for load generation us-
ing Apache JMeter [79]. Shams et al. [80] have proposed a model-based 
performance testing approach for session-based web applications. The au-
thors utilized Extended Finite State Machines (EFSMs) to capture inter-
request dependency. The state machines are used to create a large trace 
of sessions for the SUT. These sessions are executed against the SUT using 
httperf [81]. Ruffo et al. [82] have presented a model-based performance 
testing tool, called WALTy. The authors extract Customer Behavior Model 
Graphs (CBMGs) [83] from the usage log files of the SUT. CBMGs are 
used to represent the navigation patterns of real users. The authors have 
customized the httperf tool to generate a workload using CBMGs. Krish-
namurthy et al. [84] have extracted the input traces from the usage log files. 
These input traces are used to create a synthetic workload trace with the 
correct inter-request dependencies and desired descriptions for a selected set 
of workload attributes like request rate. These traces are transformed into 
sessions that are provided as input to the httperf tool for load generation. 
Schulz et al. [85] have introduced a load testing approach in the context of 
continuous software engineering. They have used the WESSBAS approach 
to extract workload models from the usage log and the Apache JMeter [79] 
tool for load generation. Shariff et al. [86] proposed a browser-based load 
testing approach using Selenium [87]. Selenium is a browser-based automa-
tion tool that is used for functional testing by simulating a virtual user in 
an independent browser instance. In the approach, the authors utilize a 
single browser instance for several users in order to generate a workload. 
Our approach differs from the approaches mentioned earlier in mainly two 
ways: firstly, in most approaches, the authors focus on the trace generation 
and use other tools to handle workload generation against the SUT, whereas 
we do on-line workload generation from our models. Secondly, CBMG and 
EFSM modeling techniques are suitable for modeling simple user scenarios; 
otherwise, the model would become very complex and difficult to maintain, 
unlike our proposed modeling technique. 

Apte et al. [88] have proposed an approach, called AutoPerf, for gener-
ating load against a web application and measuring the response time and 
throughput with respect to load levels (i.e., number of virtual users). Au-
toPerf runs resource profilers on the SUT. Based on the profiling data, it 
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adjusts the load levels and test duration. A CBMG is provided as an input 
to AutoPerf for load generation. A limitation of AutoPerf is that it only 
notifies the tester at the end of a test session whether the resources of the 
load generating node were saturated during the test session. In contrast, 
MBPeT continuously monitors the resource utilization of the load gener-
ation nodes. If the resources on a node get saturated, MBPeT initiates 
another load generating node to maintain the load generation rate. 
In Barna et al. [89], a model-based performance testing method for 

transactional systems has been presented. The authors utilize a two-layers 
queuing model to represent the software and hardware contention for re-
sources. They use analytical techniques to determine the workloads that 
can trigger bottlenecks in the SUT. When compared to their approach, we 
use a real implementation of the system for performance testing instead of 
a model of the system. 
Guan et al. [90] have presented an approach to evaluate the performance 

of Web Map Tile Service (WMTS) by generating a workload. The authors 
have introduced a new workload model, called HELP, which simulates the 
user interactions with a WMTS map and statistically characterizes whole 
tile request patterns, including session length, think time, session path, and 
tile popularity (hotspots). They use LoadRunner [91] to generate a workload 
using the HELP workload model. The approach is designed to work with 
only WMTS applications. Our approach differs from their approach because 
our PTA-based workload models are agnostic to the type of the SUT. 
There are numerous commercial and open source performance testing 

tools available on Internet [92]. JMeter [79] is the most popular open source 
tool for performance testing of web applications. It is written in Java lan-
guage. Httperf [81] is another open source performance benchmarking tool. 
The tool is capable of conducting both micro and macro-level benchmarks. 
LoadRunner [91] is a commercial performance testing tool from Microfocus. 
The tool can simulate a large number of virtual users in a distributed man-
ner to generate a workload. Each virtual user follows a script containing 
prerecorded user scenarios. In contrast, we advocate for the use of models 
to abstract user behavior and generate user load. 

2.8 Conclusions 

In this chapter, we have extended PTA modeling notation to characterize 
the dynamic behavior of the real users more concisely and intuitively. We 
have presented three methods to generate reasonably complex workload 
models. We have defined several validation rules to check the correctness of 
workload models. 
We have discussed our model-based performance testing approach. The 
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approach uses the workload models to generate an on-the-fly realistic work-
load against the SUT. It is implemented as a tool in Python, called MBPeT, 
which has a highly scalable distributed architecture, allowing it to achieve 
a high workload generation rate. We have empirically evaluated our perfor-
mance testing approach by performing several experiments on an auction 
web application. The results of the experiments show that our performance 
testing approach can be used to generate a workload in order to benchmark 
the performance of the SUT. MBPeT does not need extensive prior domain 
knowledge or access to the source code of the SUT. Thus, it can be applied 
to software applications in other domains by altering the workload model 
and the test adapter with respect to the SUT. 
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Chapter 3 

Performance Exploration of 
Web-based Software Systems 

Dijkstra estimated that it would take more than 10,000 
years to exhaustively test a multiplier of two 27-bit 
integers. 

— Antonia Bertolino [93] 

In the previous chapter, we have employed PTA models to capture the prob-
abilistic behavior of real users. We have used workload models to generate 
load against the SUT in order to benchmark the performance of the SUT. 
A workload model is usually created either by the tester manually based 
on his/her domain knowledge about the SUT and intuitions or by mining 
the common navigational patterns from usage log files. As a result, it typi-
cally represents the user scenarios that are most commonly executed by the 
users. Therefore, some infrequent user scenarios that could trigger perfor-
mance bottlenecks on the SUT will be left untested. In this work, we define 
performance bottlenecks as software defects, which degrade the performance 
of the SUT unexpectedly [37]. 
Selecting the proper input values for the user scenarios is very impor-

tant in detecting the performance bottlenecks. It is indicated that almost 
two-thirds of the performance bottlenecks are detectable on certain input 
combinations [37]. However, exploring the input space manually and finding 
those relevant input combinations that can identify performance bottlenecks 
in a large-scale complex system within a feasible amount of time is a chal-
lenging task because there can be numerous input combinations [37, 94]. 
As we have briefly described in Chapter 1, ET is a software testing 

technique which does not rely on a pre-defined set of test cases; instead the 
tester continuously learns, creates, and executes test cases [36]. The tester 
extracts new information and insights from the results of the previously 
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executed test cases and creates new, better test cases. The goal of ET 
is to find software defects by learning the system behavior and being less 
dependent on the test documentation. ET is usually performed manually 
and requires rigorous domain knowledge and substantial efforts and time. 
In this chapter, we present different novel exploratory performance testing 
approaches to identify not only the worst-case user scenario with respect to 
a given workload model but also a set of input combinations to the SUT 
that can trigger performance bottlenecks on the SUT. 

This chapter is divided into two main sections. Firstly, in Section 3.1, 
we present our contributions to infer the user scenarios in a given workload 
model that can cause high resource utilization on the SUT, resulting in 
poor performance of the system. This section also presents the tool support 
and demonstrates the applicability of the methods by conducting several 
experiments. Secondly, Section 3.2 discusses an approach to explore a large 
input space to identify the input combinations that can trigger performance 
bottlenecks in a black-box system without any prior domain knowledge. In-
stead of exhaustively exploring the input space, the method only explores 
those regions of the input space that have a higher chance of triggering per-
formance bottlenecks. Further, we describe the tool support of the approach 
and investigate the applicability of it by carrying out different experiments 
in the section. We conclude in Section 3.3. 

3.1 Exploring User Scenario Space 

In order to ensure performance requirements are met, testers need to iden-
tify the worst-case user scenario that can degrade the performance of the 
SUT by creating the highest utilization of a given resource on the SUT. As 
discussed before, user models used in performance testing are created based 
on the domain knowledge of the tester or by mining the common naviga-
tional patterns from usage log files. Thus, some infrequent user scenarios 
will be left untested. Manually inspecting the user scenario space to find 
those infrequent user scenarios is a labor-intensive and error-prone activ-
ity because a model with 22 locations can represent more than 68 million 
unique user scenarios [95]. In this section, we present three automated per-
formance exploration approaches to find the worst-case user scenario in a 
given user model. 

3.1.1 Mutation based exploration 

In this method, we create several variants of the given workload model to 
explore the user scenario space. The method is based on mutation test-
ing [96, 97]. 
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Mutation testing is a fault-based software testing technique that is used 
to evaluate the effectiveness of the existing test suites [98]. In this tech-
nique, one creates a set of faulty versions of the SUT, called mutants by 
applying different mutation operators. Each mutation operator is designed 
to make small syntactical changes to the original code of the program un-
der test (PUT). For example, a mutation operator changes the addition 
arithmetic operator (i.e., +) with other operators (i.e., -, *, /) to create 
mutants. Each mutant is executed against the test cases, and a mutant 
is considered to be killed if the test results of the mutant and the original 
PUT are different. The quality of the test cases is directly proportional to 
the number of mutants killed. Specification mutation [99] is an extension 
of mutation testing where we mutate the specification (instead of the code) 
of the SUT to produce mutants. For example, Mi and Ben [100] propose a 
specification mutation testing based approach where they mutate the UML 
State Diagrams, for instance, by adding or removing the transitions. The 
fundamental principle of the specification testing technique is to explore the 
behavioral space of the SUT in order to find hidden defects. 

Our Performance Exploration (PerfX) [101] approach is based on the 
specification mutation, where we explore user scenario space to identify 
performance bottlenecks. We randomly mutate the given workload model 
by applying the following mutation operators to the model: (1) Change 
Probability Distribution (CPD) operator alters the probabilistic distribution 
of outgoing edges of a location; (2) Modify Think Time (MTT) operator 
changes the user think time values of outgoing edges of a location. For 
example, we applied the CPD operator to the model in Figure 3.1(a) to 
produce the mutated model in Figure 3.1(b). The operator changed the 
probability distribution of location 1 of the model in Figure 3.1(a). In this 
work, we focus on only those mutation operators that modify the frequencies 
of user actions. We avoid those mutation operators that can mutate the 
functional behavior of the users by, for instance, changing the direction or 
destination of the edges in the model, merging locations, replacing one user 
action with another. These operators may create invalid behavior and could 
be more useful in the context of robustness or negative testing [102] which 
is a subject of future work. 

The generated mutants of the workload model represent different obser-
vations in the user scenario space. We utilize each mutant for load genera-
tion separately using the MBPeT tool (described in Section 2.5) and record 
the resource utilization of the SUT. We use the same test configuration and 
the test adapter for each test session. Once all the load generation sessions 
have been completed, we rank the mutants in relation to the resource uti-
lization caused by them on the SUT. We identify those mutants which have 
caused the highest resource utilization with respect to each resource type 
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1

2

0.5 / 2 / login

3

0.3 / 3 / browse

4

0.2 / 2 / search

1.0 / 2 / logout 1.0 / 2 / exit

1

2

0.35 / 2 / login

3

0.18 / 3 / browse

4

0.46 / 2 / search

1.0 / 2 / logout 1.0 / 2 / exit

(a) Original workload model (b) Mutated workload model 

Figure 3.1: Original vs mutated workload model 

such as CPU, memory, and disk. By analyzing these mutants, the tester can 
find the potential performance bottlenecks and enhance the performance of 
the SUT. 

Tool Support The method has been automated as a stand-alone tool de-
veloped in the Python programming language. The tool receives a workload 
model and a selected mutation operator as inputs. It generates a set of mu-
tated workload models or mutants by mutating the given workload model. 
This method utilizes the MBPeT tool to generate a workload using each 
mutant in a separate test session. At the end of every test session, MBPeT 
summarizes the maximum, average, minimum resource utilization created 
by the mutant during the entire test session on the SUT and send the results 
to our tool. Once all the test sessions have been carried out, our tool can 
identify which mutants have created the highest resource utilization on the 
SUT with respect to different resource types. 

3.1.2 Exact method using graph-search algo-
rithms 

In the previous approach, we rely on random mutations to explore the user 
scenario space for performance bottlenecks. As a result, in order to find 
the worst-case user scenario that can cause the highest resource utilization 
on the SUT, we would need to rigorously explore the space by producing 
and simulating a large number of mutants for workload generation, which 
is a time-consuming process. In this section, we discuss a performance 
exploration [95] approach (presented in Algorithm 1) that uses graph-search 
algorithms to identify the worst-case user scenario in a given workload model 
before using the model for workload generation. 
In this method, we represent a workload model as a Discrete Time 
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Markov Chain (DTMC) [66] model. A DTMC workload model comprises 
a finite set of states and edges. The labels on the edges represent two val-
ues: (1) the probability value specifies the chances of a certain edge being 
chosen with respect to a probability mass function; (2) the user think time 
between two subsequent actions. A DTMC workload model is similar to a 
PTA workload model except that the user actions are associated with the 
states instead of the edges of the model. Whenever a state is visited, a 
corresponding user action is executed. For example, the DTMC model in 
Figure 3.2 represents the aggressive user model shown in Figure 2.10. In 
the DTMC model, the start() and exit() are the pseudo-states that express 
the initial and the final state of the model, respectively. The simulation of 
a workload model begins from the start() state and ends at the exit() state. 
We use DTMC as a workload model for this and the next approach because 
we can calculate the stationary distribution of the given DTMC model to 
determine which states in the model will be visited more frequently than 
the others based on the probability distribution of the model. 

Figure 3.2: DTMC model of the aggressive user 

We define the worst-case user scenario in a workload model as a path 
(i.e., a sequence of user actions) in the model, which will trigger the highest 
utilization of a given resource on the SUT over a sustained period of time. 
The objective of our method is to find the worst-case user scenario, which 
we denote as the worst path in a given workload model with respect to a 
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given resource type (e.g., CPU or memory). 
First of all, we determine the average resource utilization of each user 

action in the model. Once we have benchmarked every user action with 
respect to a given resource, we identify all the elementary circuits (i.e., a 
path in where only the first and last can appear twice [103]) in the model. 
We sort all the circuits based on the average resource utilization per user 
action. We pick the circuit with the highest average resource utilization 
as the worst circuit. If the start() location exits in the worst circuit, then 
this circuit is the worst-case user scenario. Otherwise, we find and merge 
the shortest path from the start() location to any location in the worst 
circuit to construct the worst-case user scenario. This allows the virtual 
users to simulate the worst circuit more frequently than any other user 
scenario in the model during load generation and thus create the highest 
resource utilization on the SUT. The tester can use such a scenario to debug 
the potential performance bottlenecks in the SUT in the presence of less 
probable but high impact user scenarios. 

Tool Support The method is fully automated with tool support. The 
tool is based on Algorithm 1. It requires a workload model (G), resource 
utilization of each user action (U r) for a given resource type (e.g., CPU or 
memory), and the start state (INode) of the workload model as inputs. It 
finds the worst circuit in the model that is an elementary circuit with the 
highest average resource utilization per user action (lines 2 to 3 ). Next, it 
merges the worst circuit with the shortest path from the start() location in 
order to produce the worst-case user scenario if the worst circuit does not 
contain the start() location; otherwise, the worst circuit is provided as the 
worst-case user scenario (lines 4 to 8 ). 

3.1.3 Approximate method using genetic algo-
rithms 

The previous method identifies the worst-case user scenario in a given work-
load model, but it does not scale to large workload models with numerous 
loops due to its exhaustive nature [95]. To overcome this scalability issue, 
we present a performance exploration [95, 105] approach that uses genetic 
algorithms (GA) [106] to find a near worst-case user scenario in a given 
DTMC workload model. 
GA is a heuristic algorithm that can find a near-optimal solution of dif-

ferent optimization problems by evolving a population of potential solutions 
of that problem. It is based on the natural evolution of species, where a 
new generation of solutions is created by applying various genetic opera-
tors. Each individual in the population is ranked according to its fitness 
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Algorithm 1 Graph-search based approach [95] 
1: procedure WorstPath(G, Ur, INode) 
2: all circuits ← FindAllElementaryCircuits(G) . Use Johnson’s 
algorithm[103] to get a set of all elementary circuits 

3: worst circuit ← SelectMax({(c, CRU(Ur, c)) | c ∈ all circuits}) . Select 
the circuit with the highest resource utilization 

4: if INode ∈/ worst circuit then 
5: short paths ← ShortestPathsFrom(G, INode) . Get all 
the shortest paths from the initial node to all the other nodes using Dijkstra’s 
algorithm[104] 

6: short paths to cir ← {p | p ∈ short paths ∧ p ∩ worst circuit =6 ∅} 
7: min short path ← SelectMinLen(short paths to cir) . Select the 
shortest path with the minimal length 

8: worst path ← MergePaths(min short path, worst circuit) 
9: else 

10: worst path ← worst circuit 
11: end if 
12: end procedure 
13: function CRU(RU, Path) . Calculate resource utilization per node of the 

given P ath 
14: return Sum({RU [n] | n ∈ P ath})÷ | P ath | 
15: end function 
16: function MergePaths(path, circuit) . Merge the given path with circuit 
17: node joint ← path ∩ circuit 
18: Q ← Queue(circuit) 
19: top node ← Q.dequeue() 
20: while top node =6 node joint do 
21: Q.Enqueue(top node) 
22: top node ← Q.dequeue() 
23: end while 
24: return path ∪ Q 
25: end function 
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value that specifies the superiority of an individual with respect to other 
individuals in the population. The individuals with higher fitness values 
have higher chances of surviving and reproducing the offspring for the next 
generation of solutions as compared to the individual with lower fitness 
value, analogous to natural selection. After simulating a certain number of 
generations of the solutions, the best solution across all the generations is 
chosen to be a near-optimal solution of the given problem. 

In our method, each individual in the population represents a workload 
model with a different probability distribution. The first generation of the 
population is created by randomly modifying the probability distributions 
of the given workload model. We calculate the fitness value of each in-
dividual, which represents the expected level of resource utilization that 
a workload model with a given probability distribution will create on the 
SUT. The conjecture is that a workload model with a higher probability of 
the worst-case user scenario will create a greater resource utilization. Thus, 
the objective of our method is to find a workload model with the highest 
probability of the worst-case user scenario. The next generation is obtained 
by applying genetic operators to individuals with higher fitness values. We 
simulate the evolution process for a fixed number of generations. At the end 
of the process, we choose the individual with the highest fitness value among 
all generations as the near-worst workload model. In order to extract the 
near-worst case user scenario from the model, we start our walk from the 
start() state in the model and select the outgoing edge on each state with 
the highest probability. We halt when we revisit a state. 

Tool Support The method is fully automated with tool support. The 
tool is based on Algorithm 2. It requires a workload model (G), resource 
utilization of each user action (U r) for a given resource type (e.g., CPU 
or memory), crossover operator probability (Cp), mutation operator prob-
ability (Mp), mutation rate (Mr), population size (P ), and the maximum 
number of generations (I) as inputs. It starts the evolution process and 
simulates the given number of generations of the given workload model. It 
monitors different statistics (such as maximum, minimum, and average fit-
ness of the individuals) for every generation. At the end of the evolution 
process, the tool walks through the workload model with the highest fit-
ness value among all the generations and provides the near-worst case user 
scenario. The tool utilizes the DEAP [107] library to establish our genetic 
algorithm. 
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Algorithm 2 Pseudocode of genetic algorithm [95] 
1: procedure GA(I, P, G, Cp,Mp,Mr, U

r) 
2: P op ← CreatePopulation(P, G). Randomly generate initial population 
of size P based on the model G 

3: for all Chromosome c ∈ P op do 
4: Fitness(c, Ur) . Calculate fitness of a chromosome 
5: end for 
6: for i ← 1 to I do . Evolve the initial population for I generations 
7: BinaryTournament(P op) . Select chromosomes for the next 
generation 

8: TwoPointCrossover(P op, Cp) . Use to two-point crossover operator 
based on Cp probability 

9: Mutate(P op, Mp,Mr) . Mutate the individuals based on Mp 

probability 
10: for all Chromosome c ∈ P op do 
11: Fitness(c) 
12: end for 
13: end for 
14: end procedure 

3.1.4 Empirical Validation 
In this section, we will demonstrate the applicability of our performance 
exploration approaches by carrying out different experiments on an auction 
web application, called YAAS. The YAAS web application has a REST-
ful [77] interface that is based on the HTTP protocol and is implemented 
in the Python programming language. 
In the first experiment, we have applied PerfX [101] to the user model 

shown in Figure 3.3 and generated a set of 93 mutants of the workload 
model in about 5 seconds. Each mutant is used for load generation using 
MBPeT (discussed in Section 2.4) tool for 10 minutes. This load generation 
step took approximately 15 hours. Based on the load generation results, we 
have identified four mutants: MutantD, MutantM, MutantN, and MutantC, 
which have created the highest disk, memory, network, and CPU utilization 
on the SUT as compared to the other mutants, respectively. Table 3.1 
presents the mutants with their resource utilization. The tester can further 
analyze the identified mutants to inspect which user scenarios are causing 
high resource utilization in order to debug and improve the performance of 
the SUT. 
In the second experiment, we demonstrate the applicability of our ex-

act [95] and approximate method [95]. We have applied both methods to 
the DTMC user model shown in Figure 3.2. Both methods took less than 1 
minute to identify the same worst-case user scenario for the CPU resource 
in the given model. We have constructed a new workload model, namely the 
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0.25 I 3 I browse() 

0.10 I 2 / browse() 

0.60 141 browse() 

0.40 I 3 I search(string) 

0.30 I 3 I exit() 

0.45 / 2 / get_bids(id) 

0.50 I 6 f bid(id,price,username,password) 

0.20 141 browse() 

0.87 I 3 f get_auction(id) 

0.05 I 4 I browse() 

0.30 I 4 I exit() 

0.03 I 2 / exit() 0.20 I 2 / exit() 

Figure 3.3: Workload model 

Resource Original MutantC MutantM MutantD MutantN 
CPU (%) 76.22 92.42 71.44 91.63 89.47 
Memory (GB/s) 3.28 1.50 3.37 0.97 0.93 
Disk Write (KB/s) 117.04 76.16 104.38 247.69 76.56 
Net Send (MB/s) 1.29 2.27 1.62 2.18 3.09 
Net Recv. (KB/s) 71.62 90.02 80.12 114.11 116.16 

Table 3.1: Resource utilization of the mutants vs original workload model. 
A bold value is the highest value in that resource category. 

worst path model, which includes only the identified user scenario by setting 
the transition probabilities to 1. Figure 3.4 illustrates the worst path model, 
where we have highlighted the identified user scenario with red edges. 
We have utilized the worst path model in Figure 3.4, the original work-

load model in Figure 3.2, and nine random variants of the original workload 
model for load generation using the MBPeT tool. These random variants 
are created by randomly changing the probability distributions of the loca-
tions in the original model. The reason behind creating random variants of 
the original model and using them for load generation is to show how much 
the identified user scenario increases the CPU utilization on the SUT com-
pared to the different variants of the model. Figure 3.5 depicts the results of 
the experiment. The average resource utilization caused by the worst path 
model is approximately three times higher than the other workload models. 
One can notice that, in the previous experiment, the approximate 

method produces the worst-case user scenario. Since the method is based on 
a heuristic algorithm (i.e., GA), we cannot guarantee that the method will 
always be able to find the worst-case user scenario. The purpose of our third 
experiment is to measure the accuracy of our approximate method. We have 
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0 .0/2 

1.0/4 

Figure 3.4: Worst path model with respect to CPU 

randomly created eight sparse pseudo-workload models having a different 
number of states and edges listed in Table 3.2. Every edge in pseudo-
workload models is associated with a random think time value; and every 
state executes a dummy action, which causes a specific amount of hypo-
thetical resource utilization. In order to establish the statistical significance 
of the results, we have applied our approximate to each pseudo-workload 
model 10 times. The results of the experiment show that our method was 
able to find the worst-case user scenario in 73% of the cases. 

In the last experiment, we evaluate the scalability of our approximate 
method. We have applied the exact and the approximate method to each 
pseudo-workload method listed in Table 3.2 and monitored the execution 
times of both methods. Figure 3.6 exhibits a comparison between the scal-
ability of the approximate and the exact method. One can observe that the 
execution time of the exact method rises rapidly for the model with more 
than 20 states. 
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Figure 3.5: CPU utilization caused by the workload models 

States Edges Elementary Circuits 
10 23 25 
12 42 270 
14 50 2 030 
16 73 53 211 
18 85 189 776 
19 95 907 861 
20 103 6 141 014 
21 111 12 764 464 

Table 3.2: Random pseudo-workload models 

3.1.5 Related Work 
There are many approaches (e.g., [108, 109, 110, 111, 112]) that employ 
performance modeling techniques to predict and find the performance bot-
tlenecks in web applications. 
Jindal et al. [113] have presented a tool, called Terminus, for building 

a regression-based performance model in order to predict the capacity of a 
microservice (i.e., the maximum number of requests it can handle without 
violating service level objective). The authors collect performance data by 
conducting different load generation sessions and measuring the capacity of a 
microservice on various deployment configurations. The performance data 
is used to train the regression model. The results of the model are used 
for capacity planning for the application user test (AUT) and bottleneck 
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Figure 3.6: Comparison between the execution times of the approximate 
and the exact method 

detection. 
Duttagupta et al. [114] have proposed an analytical model-based ap-

proach to identify bottlenecks in software and hardware of the AUT by 
evaluating the performance of the AUT in terms of the number of users. 
The analytical model comprises two layers of queuing networks. It requires 
the service demands of all software and hardware resources at each tier 
of the AUT. The model is solved iteratively to obtain performance pre-
diction for the AUT. Gao et al. [115] also utilized a queuing network for 
performance analysis and bottleneck identification by building a model of a 
composite web service. A composite web service comprises various service 
centers, and the internal control flow of those service centers is specified as 
a Markov chain model. 
Ayala-Rivera et al. [116] have presented an approach, namely DY-

NAMO, which modifies the workload during the performance test ses-
sion with respect to performance metrics of the SUT. The objective of 
the approach is to find an appropriate workload which identifies workload-
dependent issues in the SUT. One needs to specify adaptive policies (e.g., 
when and how much the workload needs to be changed). These policies are 
used by the approach to adjust the workload. Hernández-Orallo and Vila-
Carbó [117] have used a histogram-based workload model to characterize 
web traffic distributions. The model is used to calculate the response time 
and rejection probability distribution of HTTP requests using histogram 
calculus. Bogárdi-Mészöly and Levendovszky [118] have customized the 
Mean-Value Analysis evaluation algorithm to capture the behavior of the 
thread pool and build a performance model. The proposed algorithm is 
employed to infer the performance metrics of ASP.NET based web applica-
tions. 
Xiao et al. [119] have proposed ΔInfer approach to identify Workload-
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Dependent Performance Bottlenecks (WDPBs). The authors argued that 
performance bottlenecks are caused due to the WDPB loops which exe-
cute resource-intensive statements. The approach identifies those loops for 
a given workload by predicting iteration counts of WDPB loops using com-
plexity models for the workload size. Stewart and Shen [15] have proposed 
a profile-driven performance modeling approach for multi-component web 
services. Application profiles are constructed offline to capture component 
resource requirements and inter-component communications. Subsequently, 
the model is utilized to predict performance bottlenecks in the SUT with 
respect to different operating configurations. Nistor et al. [120] have pre-
sented a tool, called Toddler, which identifies loops that perform similar 
operations across iterations. The conjecture is that these loops are probably 
executing redundant tasks, and fixing them could improve the performance 
of the AUT. Toddler needs to instrument the code of the AUT and other 
third-party libraries used in the code in order to monitor the loops. 
To summarize, in all the studies presented above, the authors estimate 

the performance of the system at design time using design specifications. In 
contrast, we evaluate the performance of the system after it has been fully 
implemented, and we use models that describe the expected behavior of 
the user. There are several shortcomings regarding performance modeling 
based approaches. For example, in many cases, design specifications are not 
accessible on time for performance model construction [121]. Furthermore, 
most of these approaches require access to the source code of the SUT, which 
is not always feasible. Nowadays, modern software systems are incredibly 
complex; as a result, it has become more difficult to predict the performance 
of a complex system than weather [122]. 
There is a large amount of research work (e.g., [123, 124, 125, 126, 127]) 

which uses genetic algorithms to generate test data for software testing, but 
most of the work is targeted towards functional testing. Garousi et al. [128] 
have presented a model-based testing approach to find faults concerning 
network traffic in a distributed system. The authors provide a UML [129] 
model of the SUT as an input to a custom genetic algorithm for generating 
stress test requirements. These requirements consist of certain control flow 
paths in UML sequence diagrams, which can cause stress to the network. 

3.2 Exploring the input space for identi-
fying performance bottlenecks 

As we have stated before, almost two-thirds of the performance bottlenecks 
are detectable on certain input combinations [37]. Executing all possible 
input combinations in order to find those combinations that can trigger 
performance bottlenecks in a large-scale complex system can be a time and 
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cost-intensive task because there can be numerous input combinations [37, 
94]. In this section, we present a method to explore a large input space 
to identify as many input combinations as possible for the user actions 
that can trigger performance bottlenecks in a black-box system without 
any prior domain knowledge. Instead of exhaustively exploring the input 
space, our method only explores those regions of the input space that have 
a higher chance of triggering performance bottlenecks. In this method, we 
are not interested in sequences of the user actions, but individual input 
combinations for the user actions. 

Our method, namely PerfXRL [130], employs a Deep Reinforcement 
Learning (DRL) [131] algorithm, called DDQN [132], to explore a large 
input space of the SUT efficiently. DRL is an aggregation of Reinforcement 
learning (RL) [133] and deep learning [134] methods. RL is a reward-based 
machine learning technique where an agent learns by interacting with an 
unknown environment in order to accomplish a goal. The agent collects 
feedback (or a reward) from the environment by executing an action based 
on the current state of the environment. The purpose of the agent is to 
maximize the expected cumulative rewards over time by finding the optimal 
(or a near-optimal) sequence of actions. In DRL, the agent employs Deep 
Neural Networks (DNNs) to learn the environment. A DNN [134] is a multi-
layer neural network that can approximate a complex function by learning 
higher-level representations of the given training data. 

In our case, the unknown environment is the SUT and the main objec-
tive of the agent is to uncover as many input combinations as possible that 
trigger performance bottlenecks by non-exhaustively exploring the input 
space of the SUT. We denote those input combinations as relevant combi-
nations. The agent executes various input combinations against the SUT 
while observing their performance impact on the SUT in a feedback loop, 
as shown in Figure 3.7. The agent is trained in an episodic manner. In each 
episode, the agent begins from a random input combination and executes 
a predefined number of steps. At each step, we create a new input combi-
nation based on the action suggested by the agent. The input combination 
is executed against the SUT. Based on the performance impact caused by 
the combination, we determine the reward for the agent. A positive reward 
is given for those input combinations which cause resource-intensive com-
putations on the SUT; otherwise, a negative reward is given to the agent. 
The reward is used to improve the selection of future actions by the agent. 
As the agent executes more input combinations, it starts to learn the in-
put space of the SUT and to execute those combinations that are likely 
to cause resource utilization on the SUT. The identification of resource-
intensive computations is made by executing different input combinations 
against the SUT and monitoring the deviations of the KPI values (e.g., 
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input combination 

PerfXRL KPI 

SUT 

Relevant Combinations 

CPU load, disk usage, or elapsed execution time of the SUT) from certain 
pre-configured acceptable performance thresholds. Such thresholds can be 
derived from different sources such as requirement specifications or Service 
Level Agreements (SLAs) and vary from system to system. During the 
process, the approach maintains a list of the identified good combinations, 
which can be used later on for debugging the performance of the SUT. 

Figure 3.7: PerfXRL 

Tool Support The method is fully automated with tool support. One 
needs to define the input space of the SUT and the reward function for 
the agent for the tool to work. Additionally, the tool requires parameter 
values for the DDQN algorithm, such as the number of training steps per 
episode and the number of episodes. Ahmad et al. [130] provide more details 
about the parameters and their values. The tool executes the given number 
of episodes and provides a list of relevant combinations found during the 
performance exploration of the SUT. The tool employs the Keras-rl [135] 
library to implement the DDQN algorithm. 

3.2.1 Empirical Validation 
In this section, we evaluate PerfXRL [130] by comparing it to random testing 
that uniformly samples an input combination without replacement from the 
input space of the SUT for a given number of times. Random testing has 
been proven to be more effective than other systematic testing methods for 
a black-box system with a large input space [136, 137, 138]. 
We have applied our approach to a reference web application RU-

BiS [139]. RUBiS implements an auction site. It has been widely used 
in academia for performance evaluation1 . The size of the input space of 
RUBiS is 3 100 000 (i.e., the total number of input combinations). For the 

1http://scholar.google.com/scholar?q=Specification+and+Implementation+of+ 
Dynamic+Web+Site+Benchmarks 
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Figure 3.8: Comparison between the number of cumulative performance 
bottlenecks found by PerfXRL and random testing 

evaluation purpose, we uniformly injected artificial bottlenecks on 9% of 
the total input combinations. We ran both approaches (i.e., PerfXRL and 
random testing) against RUBiS for 30 times to establish the statistical sig-
nificance of the results. Each approach is allowed to execute 775 000 input 
combinations, which is 25% of the total input combinations. 

Figure 3.8 presents the cumulative number of artificial performance bot-
tleneck identified by PerfXRL and random testing after executing the same 
amount of input combinations. The solid lines in the figure illustrate the 
average values, while the shaded region encapsulating the lines expresses the 
standard deviation. The standard deviation of random testing was compar-
atively small; therefore, it is not visible in the figure. On average, PerfXRL 
and random testing identified about 100 800 and 58 405 bottlenecks, respec-
tively. In other words, PerfXRL found 72% more bottlenecks than random 
testing after executing the same number of input combinations. 

3.2.2 Related Work 

Many researchers (e.g., [140, 141]) have investigated the topic of generating 
test data for performance testing. 

Burnim et al. [142] proposed a test input generation approach, called 
WISE, which identifies worst-case inputs for a given program. The ap-
proach is based on symbolic execution. The approach exhaustively executes 
the program for small input sizes and learns the relationship between the 
complexity and the inputs, which is later on used to guide the symbolic 
execution to search for worst-case test inputs of larger sizes. A similar ap-
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proach has been proposed by Saumya et al. [143], called XSTRESSOR. The 
approach builds a predictive model by running the given program under 
test against small size test input data and monitoring the behavior of the 
program. Subsequently, the model is used to predict the worst-case path 
condition for large-scale test input. In another approach [144], the authors 
have argued that the behavior of the program under test against small size 
input does not accurately predict the behavior of the program against large 
size input. They have proposed an approach, called PySE, which utilizes 
symbolic execution to acquire the behavioral information and incrementally 
updates its policy to drive the program execution toward the worst-case 
using reinforcement learning. Aquino et al. [145] have combined symbolic 
execution with a memetic search algorithm to find a path in the program un-
der test that exhibits the worst-case execution time of the program. Zhang 
et al. [94] have integrated symbolic execution with an iterative-deepening 
search method to eliminate unpromising paths and explore only those paths 
that are likely to induce resource-consuming behavior in the program under 
test. Chen et al. [146] have proposed another symbolic execution-based ap-
proach, called PerfPlotter, which identifies program paths in terms of inputs 
for revealing best-case and worst-case execution times of the program under 
test. 

Toffola et al. [147] have proposed an approach, namely PerfSyn, to create 
test programs that can identify performance bottlenecks at the method level 
of the program under test. The approach employs graph search algorithms 
to mutate the test programs and guide the search towards mutations that 
can uncover bottlenecks in the methods. Lemieux et al. [148] have presented 
an approach, called Perffuzz, for identifying the inputs that can expose 
the performance problems in the program under test. The approach uses 
feedback-directed mutational fuzzing to produce inputs without any domain 
knowledge about the program. However, the approach does require access 
to the source code of the program. 

Furthermore, there are some approaches [149, 150] that focus on finding 
a certain input combination that maximizes a specific criterion, for example, 
computational complexity or execution time. 

In summary, all the methods presented in this section have shortcom-
ings, such as requiring rigorous domain knowledge about the SUT or having 
access to the source code of the SUT. In contrast, we aim to identify as many 
input combinations as possible that can trigger performance bottlenecks in 
a black-box system without any prior domain knowledge. 
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3.3 Conclusion 

In this chapter, we have presented a set of novel tool-supported perfor-
mance exploration approaches to infer the worst-case user scenarios in a 
given workload model that can cause high resource utilization on the SUT, 
resulting in poor performance of the system. The results of the experiments 
presented in Section 3.1.4 show that the proposed approaches can be used to 
reveal the potential performance bottlenecks in the SUT by automatically 
exploring the user scenario space. 
Moreover, we have introduced an approach to explore a large input space 

of the SUT to identify the input combinations that can trigger performance 
bottlenecks in a black-box system without any prior domain knowledge. The 
results of the experiments conducted in Section 3.2.1 substantiate that our 
approach is more effective than random testing in finding the input combi-
nations which can trigger resource-intensive computations on the SUT. 
The proposed approaches do not need extensive prior domain knowledge 

or access to the source code of the SUT. Therefore, they can be applied to 
software applications in other domains by modifying their input artifacts 
such as workload models and input spaces with respect to those specific 
applications. 
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Chapter 4 

Conclusions and Future 
Work 

“An ounce of performance is worth pounds of promises.” 

— Mae West 

This chapter summaries our main contributions. Consequently, we discuss 
the limitations of the research. The final section provides an overview of 
possible directions in which the work could be continued. 

4.1 Summary 

As we have previously mentioned in Chapter 1, the problem targeted in 
this thesis is the use of automated approaches to test and improve the per-
formance of software systems. In Chapter 2, we proposed our model-based 
performance testing approach. The approach uses the workload models to 
generate an on-the-fly realistic workload against the SUT. We have pre-
sented how PTA models can be used to represent the dynamic behavior 
of real users more accurately than the sequential scripts. We have pre-
sented three systematic methods to generate user models: (1) mining the 
common navigational patterns from the usage log files; (2) capturing the 
HTTP requests made by the browser to the SUT in real-time; (3) inspect-
ing the requirement specifications manually. Further, we have defined a 
set of validation rules to ensure the syntactic and semantic correctness of 
the workload models. We have implemented the approach as a tool called 
Model-based Performance Testing (MBPeT). The tool is able to parallelize 
the load generation process among several computing nodes in order to 
achieve a high load generation rate. Throughout the performance test ses-
sion, MBPeT monitors different KPIs such as response time, error rate, 
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resource utilization, and throughput. The utility of the MBPeT is demon-
strated by conducting several test sessions. The results show that MBPeT 
can generate a realistic workload in order to benchmark the performance of 
the SUT effectively. 
In Chapter 3, we have presented three model-based performance explo-

ration approaches: the mutation-based, the approximate, and the exact ap-
proach. These approaches are used to infer the worst user scenario in a given 
workload model that can cause high resource utilization on the SUT, result-
ing in poor performance of the system. Such user scenarios are beneficial to 
identify potential performance bottlenecks in the SUT. The mutation-based 
approach explores the user scenario space randomly. Therefore, it does not 
guarantee to find the worst user scenario, and it needs to be run for a sig-
nificant amount of time in order to get better results. The exact approach 
is deterministic and always provides the worst user scenario; however, it 
does not scale well to large models with numerous loops. The approximate 
approach utilizes genetic algorithms to explore the user scenario space. It 
cannot always find the worst user scenario, but it can identify a near-worst 
user scenario faster than the other methods, even for large models. An as-
sessment of the approaches shows that the worst user scenario does trigger 
more resource-intensive computations on the SUT and cause more stress to 
the SUT as compared to the original model. 
Nowadays, systems exhibit huge input spaces with many input parame-

ters and large ranges. As a result, it has become impractical to exhaustively 
test all possible input combinations in order to identify performance bottle-
necks. It is indicated that almost two-thirds of the performance bottlenecks 
are detectable on certain input combinations [37]. To address this problem, 
in Chapter 3, we have introduced a methodology to explore a large space 
of input combinations to identify performance bottlenecks in a black-box 
system without any prior domain knowledge. The approach is implemented 
as a tool called PerfXRL. The tool only explores a subset of the input space 
and tries to find as many input combinations as possible, which can trigger 
performance bottlenecks in the SUT. Our evaluation of the method indicates 
that it is effective enough to detect 72% more bottlenecks than alternative 
approaches. 

4.2 Limitations 

One of the primary limitations relate to all the proposed approaches is the 
restricted validation that is conducted over two web applications. The pro-
posed approaches are supposed to work with all kinds of software systems 
where one can directly interact with them through their public interfaces. 
However, in this thesis, we perform validation only on web applications be-
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cause the research work presented in this thesis has been carried out over 
several research projects that focus mainly on web application systems. An-
other limitation is that we have not tested the maximum load generation 
capacity of our MBPeT tool (presented in Chapter 2). During our evalu-
ation, the tool was hosted on a private cloud featuring an 8-core CPU, 16 
GB of memory, and 7200 rpm hard drive. 
We have validated the PerfXRL tool by randomly injecting artificial 

bottlenecks into the subject application. Therefore, there is a chance that 
we may get different results when we run PerfXRL against a system with 
real bottlenecks. However, this experimental design allowed us to evaluate 
PerfXRL in a controlled environment and get reliable results. 
For PerfXRL, like other machine learning-based approaches, one needs 

to tune some hyperparameters to get good results. Further, one set of 
values of hyperparameters for one case study might not work well for others. 
During our evaluation, we have selected the values for hyperparameters 
based on the practical experiences reported by other researchers [131, 132]. 

4.3 Future Work 

There are many directions for future research in order to enhance and ad-
vance the approaches presented in this thesis. We have only tested the 
MBPeT tool in the context of web applications. We aim to apply the tool 
to the software systems from the other domains. Furthermore, as discussed 
in the previous section, the tool has not been tested for its maximum load 
generation capacity. We plan to deploy it on public clouds such as Amazon 
EC21 to benchmark its load generation capacity. 
The approximate approach (discussed in Chapter 3) to infer the worst 

user scenario optimizes a given workload model for a single resource type 
(e.g., CPU, memory, or disk). We aim to employ a multi-objective optimiza-
tion algorithm [151] for optimizing the model for more than one resource 
type. A similar improvement can be made to our PerfXRL approach, where 
we are just using one KPI (i.e., elapsed execution time) to identify per-
formance bottlenecks. In the future, we plan to utilize several KPIs to 
recognize performance bottlenecks. 

1https://aws.amazon.com/ec2/ 
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Performance Exploration and Testing of 
Web-based Sofware Systems 
Modern society relies heavily on a wide range of inter-connected sofware systems for 
fnance, energy distribution, communication, and transportation. Due to the adoption 
of the Internet, almost all fnancial, government, and social sectors rely heavily on web-
based information systems. These systems need to be very fast and reliable, and should 
be able to support a vast number of concurrent users. As sofware users are immensely 
perceptive about the performance of the sofware system, the companies relying on 
web-based application systems for businesses strive to provide high-quality web ser-
vices in order to stay competitive in the worldwide market. 

In this thesis, we propose a set of approaches for performance testing and exploration 
of web-based sofware systems. Although we target web-based sofware systems, our 
methods can be easily adapted to diferent types of sofware systems. Our contribu-
tions fall into two categories: approaches for model-based performance testing and ap-
proaches for performance explorations of black-box systems with large input spaces. In 
the frst category, as a frst contribution, we provide model-based performance testing, 
where we generate realistic workloads using probabilistic models in order to benchmark 
the performance of the system under test. As an extension of the frst contribution, we 
provide an approach for extracting the workload models from server logs as an alterna-
tive to their manual creation based on the tester’s experience. In the second category 
of contributions, we are interested in exploring the performance of black-box sofware 
systems with large input spaces without prior knowledge of the domain. We propose 
diferent exploratory performance testing approaches to identify not only the worst user 
scenario with respect to a given workload model but also a set of input combinations 
that trigger performance issues and severely degrade the performance of sofware-in-
tensive systems. 
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