

This is an electronic reprint of the original article. This reprint may differ from the original
in pagination and typographic detail.

Performance Exploration and Testing of Web-based Software Systems

Ahmad, Tanwir

Published: 07/12/2020

Document Version
Final published version

Document License
Publisher rights policy

Link to publication

Please cite the original version:
Ahmad, T. (2020). Performance Exploration and Testing of Web-based Software Systems. Åbo Akademi
University. http://urn.fi/URN:ISBN:978-952-12-4000-3

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 13. Mar. 2024

https://research.abo.fi/en/publications/4b5c63b9-9236-43ff-b1c4-dcb96472db4c
http://urn.fi/URN:ISBN:978-952-12-4000-3

DATA

SCENARIOS

DATA ANALYSIS

</>

CLUSTERING

Tanwir Ahmad

Performance Exploration and
Testing of Web-based Software
Systems

Tanw
ir A

hm
ad

 /
/ Perfo

rm
ance Exp

lo
ratio

n and
 Testing

 o
f W

eb
-b

ased
 So

ftw
are System

s /
/ 2

0
2

0

ISBN 978-952-12-3999-1

9 789521 239991

Tanwir Ahmad

Performance Exploration and Testing of
Web-based Software Systems
Modern society relies heavily on a wide range of inter-connected software systems for
finance, energy distribution, communication, and transportation. Due to the adoption
of the Internet, almost all financial, government, and social sectors rely heavily on web-
based information systems. These systems need to be very fast and reliable, and should
be able to support a vast number of concurrent users. As software users are immensely
perceptive about the performance of the software system, the companies relying on
web-based application systems for businesses strive to provide high-quality web ser-
vices in order to stay competitive in the worldwide market.

In this thesis, we propose a set of approaches for performance testing and exploration
of web-based software systems. Although we target web-based software systems, our
methods can be easily adapted to different types of software systems. Our contribu-
tions fall into two categories: approaches for model-based performance testing and ap-
proaches for performance explorations of black-box systems with large input spaces. In
the first category, as a first contribution, we provide model-based performance testing,
where we generate realistic workloads using probabilistic models in order to benchmark
the performance of the system under test. As an extension of the first contribution, we
provide an approach for extracting the workload models from server logs as an alterna-
tive to their manual creation based on the tester’s experience. In the second category
of contributions, we are interested in exploring the performance of black-box software
systems with large input spaces without prior knowledge of the domain. We propose
different exploratory performance testing approaches to identify not only the worst user
scenario with respect to a given workload model but also a set of input combinations
that trigger performance issues and severely degrade the performance of software-in-
tensive systems.

Tanwir Ahmad
Born in Lahore, Pakistan

Previous studies and degrees
Master in Computer Science from Government College University, Pakistan, 2011.
Master in Sofware Engineering from Åbo Akademi University, Finland, 2014.

Performance Exploration and
Testing of Web-based Software

Systems

Tanwir Ahmad

Åbo Akademi University
Faculty of Science and Engineering
Vattenborgsvägen 3, 20500, Åbo

2020

Supervisors

Adjunct Professor, D.Sc. (Tech.) Dragoş Truşcan
Faculty of Science and Engineering
Åbo Akademi University
Vattenborgsvägen 3, 20500, Åbo
Finland

Professor Iván Porres
Faculty of Science and Engineering
Åbo Akademi University
Vattenborgsvägen 3, 20500, Åbo
Finland

Reviewers

Senior researcher, Dr. Mehrdad Saadatmand
Digital platforms
RISE - Research Institutes of Sweden
Stora Gatan 36, SE-722 12, Väster̊as
Sweden

Professor Vittorio Cortellessa
Department of Computer Science and Engineering, and Mathematics
University of L’Aquila
Palazzo Camponeschi, piazza Santa Margherita 2, 67100 L’Aquila
Italy

Opponent

Senior researcher, Dr. Mehrdad Saadatmand
Digital platforms
RISE - Research Institutes of Sweden
Stora Gatan 36, SE-722 12, Väster̊as
Sweden

ISBN: 978-952-12-3999-1 (printed)
ISBN: 978-952-12-4000-3 (digital)
Painosalama Oy, Turku, Finland 2020

Abstract

Modern society relies heavily on a wide range of inter-connected software
systems for finance, energy distribution, communication, and transporta-
tion. The era of controlled communication in closed networks for limited
purposes is over. Due to the adoption of the Internet, almost all finan-
cial, government, and social sectors rely heavily on web-based information
systems. These systems need to be very fast and reliable, and should be
able to support a vast number of concurrent users. As software users are
immensely perceptive about the performance of the software system, the
companies relying on web-based application systems for businesses strive to
provide high-quality web services in order to stay competitive in the world-
wide market. These companies may suffer a considerable loss of customers,
which can detrimentally affect profits and revenues if the applications do
not perform well in terms of functionality and performance. As various
reports show that an application is more prone to fail due to performance
issues rather than functional ones, it is very important that web application
systems are rigorously tested for performance issues before deployment.

In this thesis, we propose a set of approaches for performance testing and
exploration of web-based software systems. Although we target web-based
software systems, our methods can be easily adapted to different types of
software systems.

Our contributions fall into two categories: approaches for model-based
performance testing and approaches for performance explorations of black-
box systems with large input spaces. In the first category, as a first con-
tribution, we provide model-based performance testing, where we generate
realistic workloads using Probabilistic Timed Automata (PTA). During the
load generation process, we monitor different Key Performance Indicators
(KPIs) such as response times, throughput, memory, CPU, and disk. These
KPIs are used to benchmark the performance of the system under test
(SUT). As an extension of the first contribution, we provide an approach
for extracting the workload models from server logs as an alternative to
their manual creation based on the tester’s experience.

In the second category of contributions, we are interested in explor-

i

ing the performance of black-box software systems with large input spaces
without prior knowledge of the domain. We propose different exploratory
performance testing approaches to identify not only the worst user scenario
with respect to a given workload model but also a set of input combina-
tions that trigger performance issues and severely degrade the performance
of software-intensive systems. Our first contribution, in this category, is an
approach to explore the user scenario space randomly based on predefined
mutation operators to find the worst user scenario. As a second contribu-
tion, we extend the previous work to present an exact approach that uses
graphs-search algorithms and guarantees to find the worst user scenario.
However, this approach does not scale well to large workload models with
many loops. In our third contribution, we address the scalability issue of the
exact approach and present an approach that employs genetic algorithms
to identify a near-worst user scenario. As the last contribution, we provide
an exploratory performance testing approach where we use reinforcement
learning to explore a large input space in order to identify the input com-
binations that trigger performance issues in the SUT. This contribution is
motivated by reports that show that almost two-thirds of the performance
issues are detectable on certain input combinations. All the approaches
discussed in this work are accompanied by tool support to automate the
tedious tasks. The approaches have been evaluated against different web
application case studies, but they can be extended to testing and exploring
the performance of software-intensive systems in the other domains by ad-
justing their input artifacts such as workload models and input spaces with
respect to those specific domains.

ii

Sammanfattning

Dagen samhälle är starkt beroende av m̊anga olika slags sammankopplade
mjukvarusystem för hantering av marknader, energi distribution, telekom-
munikation och logistik. Tids̊aldern för kontrollerad kommunikation i slutna
nätverk för begränsade syften g̊att mot sitt slut. I och med introduktionen
av Intenet, har nästan alla finans- och myndighets- och välfärdssektorer
blivit djupt beroende av webb baserade informationssystem. Dessa sys-
tem m̊aste vara mycket snabba och p̊alitliga och borde kunna hantera
ett stort antal samtidiga användare. Eftersom mjukvaruanvändare är my-
cket uppmärksamma p̊a mjukvarusystems prestanda, försöker företag som
förlitar sig p̊a webb baserade tjänster att erbjuda webb tjänster av hög
kvalitet för att kunna h̊allas konkurrenskraftiga p̊a den globala marknaden.
Dessa företag kan förlora en stor andel av sina kunder om tjänsterna de
erbjuder inte uppfyller användarnas krav p̊a funktionalitet och prestanda,
med konsekvens att företagen kan g̊a miste om viktiga intäkter. Det ar¨ my-
cket viktigt att system erbjuder webb tjänster är testade med avseende p̊a
prestanda problem före gruppering, med motiveringen att det finns ett antal
rapporter som visar att mjukvaru applikationer tenderar att misslyckas p̊a
grund av prestanda problem snarare än funktionella problem.

I denna avhandling lägger vi fram ett antal tillvägag̊angssätt för att
testa och utforska prestanda hos mjukvarusystem som erbjuder webb baser-

¨ ate tjänster. Aven om tillvägag̊angssätten är ämnade för webb baserade
mjukvaru system, kan v̊ara metoder lätt anpassas för andra typer av mjuk-
varusystem.

V̊ara kontributioner kan indelas i tv̊a kategorier: tillvägag̊angssätt för
modell-baserad prestanda test och tillvägag̊angssätt för utforskning av
black-box system med stora indatarymder. Fr̊an den första kategorin,
som den första kontributionen, tillhandh̊aller vi modell-baserad prestanda
testning, där vi genererar realistiska arbetsbelastningar för test-systemet
med hjälp av Probabilistic Timed Automata (PTA). Under genereringen
av arbetsbelastningen overvakar¨ vi Key Performance Indicators (KPIs),
s̊asom svarstid, genomströmning, minnesanvändning, processoranvändning
och användning av lagringsmedie. Dessa KPIn använder för att mäta pre-

iii

standautg̊angsläget för systemet som h̊aller p̊a att testas (System Under
Test; SUT). Som en utökning av den första kontributionen, erbjuder vi ett
tillvägag̊angssätt för att extrahera arbetsbelastningsmodeller fr̊an en servers
loggfiler, som en alternativ till att skapa dem manuellt utg̊aende ifr̊an per-
sonen som utförs testens erfarenhet.
I den andra kontributionskategorin är vi intresserade av att utforska

prestandan för black-box mjukvarusystem med stor indatarymder utan att
ha n̊agon a priori kunskapen om mjukvarusystemets applikationsdomän.
Vi tillhandah̊aller olika utforskande tillvägag̊angssätt för testning av prest-
nada, for att identifiera, inte bara den värsta tänkbara användarscenariot
i avseende p̊a en given arbetsbelastningsmodell, men ocks̊a vilken kombi-
nation av indata som orsakar prestanda problem genom att gravt nedsätta
prestandan av mjukvaruintensiva system. V̊ar första kontribution i denna
kategori, är ett tillvägag̊angssätt för att utforska användarscenariorymden
slumpmässigt med fördefiniera muteringsoperatorer för att hitta det värsta
möjliga användarscenariet. I den andra kontributionen utökar vi den
första kontributionen för att tillhandah̊alla ett exakt tillvägag̊angssätt som
använder sig av grafsökningsalgoritmer som garanterat kan hitta det värsta
tänkbara användarscenariot. En nackdel med detta tillvägag̊angssätt är
att den inte lämpar sig för stora arbetsbelastningsmodeller som inneh̊aller
m̊anga loopar. V̊ar tredje kontribution är att ta i tu med den andra kon-
tributionens brist i att inte kunna hantera stora arbetsbelastningsmodeller.
Vi löser detta problem genom att använda oss av genetiska algoritmer för
att identifiera användarscenarier som ar¨ nära det värsta tänkbara. Som den
fjärde och sista kontributionen tillhandah̊aller vi en utforskande prestandat-
estningstillvägag̊angssätt var vi använder oss av förstärkningsinlärning för
att utforska en stor indatarymd för att kunna identifiera de indata kombi-
nationer som utlöser prestandaproblem i systemet som h̊aller p̊a att tes-
tas. Denna kontribution motiveras av rapporter som visar att uppmot
tv̊a tredjedelar av prestandaproblemen kan detekteras fr̊an fr̊an specifika
indata kombinationer. Med alla tillvägag̊angssätt som diskuteras i denna
avhandling har verktygsstöd för att automatisera de tr̊akiga och l̊angdragna
uppgifterna. Tillvägag̊angssätten har jämförts mot olika fallstudier för
webb applikationer, men de kan anpassas för att kunna testa och ut-
forska prestandan av mjukvaruintensiva system in andra domäner genom
att justera indataartefakter som till exempel arbetsbelastningsmodeller och
indatarymder.

iv

Acknowledgements

I have not traveled this exciting yet at times challenging research journey
on my own. There are many pillars that supported me and many amazing
people who never left my side in this great expedition. This adventure would
not have been possible nor enjoyable if I had to go through it alone. And,
as the journey ends, I take the opportunity to express my deepest thanks
to all who have contributed to make it so great for me.

I extend my warmest thanks to my supervisors, Adjunct Professor,
D.Sc. (Tech.) Dragoş Truşcan and Professor Iván Porres. Dragoş gave me
freedom, while persistently guiding me to progress efficiently. Knowing that
he would always be there to back me up with academic and financial re-
sources, I had the courage to explore new horizons of research. Thank you
so much for believing in me and accepting me as a Ph.D. student. I am
always amazed by your enthusiasm, commitment, and above all your inex-
plicable capacity to work so much, especially when it is for others! Many
thanks go to my co-supervisor, Iván Porres, for the fruitful discussions, in-
puts, reviews, help and guidance, also for always finding nice ways to give
comments. He made sure that I set my goals high. Together they have
tirelessly guided me on the Ph.D. journey.

In addition, I would like to thank the external reviewers of this disser-
tation, Senior researcher, Dr. Mehrdad Saadatmand and Professor Vittorio
Cortellessa, for their thorough reviews, which have aided me tremendously
in improving this work. Furthermore, I am honored to have Senior re-
searcher, Dr. Mehrdad Saadatmand as my opponent.

The research would not have been possible without financing, which pro-
vided me full-time engagement and participation in many inspiring work-
shops and conferences. For that, I am grateful to the Doctoral Programme in
Information Technologies at Åbo Akademi University, the MegaModelling
at Runtime (MegaM@Rt2) project funded by ECSEL Joint Undertaking,
the Need for Speed (N4S) project funded by Tekes/DIGILE, the Practical
Applications of Model-based technologies to continuous integration & test-
ing methodologies (PAM) project funded by Tekes, the Nokia Foundation,
and the infrastructure provided by the Faculty of Science and Engineering

v

at the Åbo Akademi University. I thank all these organizations for provid-
ing the resources to create a productive environment in which to conduct
research.
I am indebted to all the co-authors of the articles that form elements

of this dissertation. I am especially grateful to Dragoş for providing me
with insightful feedback on the articles and the dissertation despite having
a tight schedule himself. I would also like to thank Pekka Tuuttila for his
valuable contributions and feedback during our collaborative projects. In
addition, Iván Porres, Fredrik Abbors, Junaid Iqbal, Adnan Ashraf, Andi
Domi, and Faezeh Siavashi have been immensely helpful co-authors.
I would like to thank all my colleagues at my department, past and

present, who have provided inspiration: Benjamin Byholm, Usman San-
wal, Luca Zelioli, Hergys Rexha, Valentin Soloviev, Denis Kotkov, Anna-
mari Soini, Sébastien Lafond, Marina Waldén, Mats Aspnäs, Luigia Petre,
Jan Westerholm, Jerker Björkqvist, and Johan Lilius. Very special thanks
go to Wictor Lund for providing the translation of the abstract. While
conducting my research, I have benefited from several intellectual software
engineering-related discussions and brainstorming sessions with Jani Sainio,
Evren Yurtesen, and Jesús Bravo. I would furthermore like to thank all of
the friendly staff at the Åbo Akademi University for creating a pleasant
work environment: Karl Rönnholm, Christel Engblom, Minna Carla, Tove
¨ Osterroos, and Pia-Maria Kallio.
I would like to thank my dear friends Rameez, Freed, Junaid, Ali, Us-

man, Asghar, Taimor, Farhan, Haris, Jani, Markus, and Andi for all discus-
sions, joyous moments, delicious dinners, and relaxing tea/coffee sessions,
and for being there for me. Moreover, I want to thank my friends back
home Shafqat, Zulfiqar, Kashif, Fahad, and Sani for always welcoming me
on my visits to Pakistan, making it easy to recharge my batteries and enjoy
my holidays.
Finally, and most importantly, I would like to express my deepest grat-

itude to my parents, brothers, and sisters for their affection, unconditional
support, and guidance at every stage of my life. I dedicate my thesis to
them, and I hope I have made them proud. Without them next to me, I
could not have achieved this. Last, but not least, I want to thank my wife
for the love and support. Thank you!

Tanwir Ahmad
Turku, December, 2020

vi

List of publications included

P1. Abbors, F., Ahmad, T., Truscan, D., and Porres, I., 2013. Model-
based Performance Testing of Web Services using Probabilistic Timed
Automata. In Proceedings of the International Conference on Web
Information Systems and Technologies (pp. 99-104). SciTePress.

P2. Abbors, F., Ahmad, T., Truscan, D., and Porres, I., 2013. Perfor-
mance Testing in the Cloud using MBPeT. In Developing Cloud Soft-
ware: Algorithms, Applications, and Tools (pp. 191-225). TUCS
General Publication. Turku Centre For Computer Science (TUCS).

P3. Abbors, F., Truscan, D., and Ahmad, T., 2014. Mining Web Server
Logs for Creating Workload Models. In Proceedings of the 9th Interna-
tional Conference on Software Technologies (pp. 131-150). Springer.

P4. Ahmad, T., Abbors, F., and Truscan, D., 2015. Automatic Perfor-
mance Space Exploration of Web Applications. In Proceedings of the
International Conference on the Economics of Grids, Clouds, Systems,
and Services (pp. 223-235). GECON 2015. Lecture Notes in Com-
puter Science, vol 9512. Springer.

P5. Ahmad, T. and Truscan, D., 2016. Automatic Performance Space
Exploration of Web Applications Using Genetic Algorithms. In Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing
(pp. 795-800). ACM.

P6. Ahmad, T., Truscan, D., and Porres, I., 2018. Identifying worst-
case user scenarios for performance testing of web applications using
Markov-chain workload models. Future Generation Computer Sys-
tems, 87, (pp. 910-920). Elsevier.

P7. Ahmad, T., Ashraf, A., Truscan, D., and Porres, I., 2019. Exploratory
Performance Testing Using Reinforcement Learning. In Proceedings
of the 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). (pp. 156-163) IEEE.

vii

viii

List of publications relevant
but not included

• Abbors, F., Ahmad, T., Truscan, D. and Porres, I., 2012. MBPeT:
a model-based performance testing tool. In Proceedings of the 4th In-
ternational Conference on Advances in System Testing and Validation
Lifecycle (pp. 1-8).

• Abbors, F., Ahmad, T., Truscan, D. and Porres, I., 2013. Model-based
performance testing in the cloud using the MBPeT tool. In Proceed-
ings of the 4th ACM/SPEC International Conference on Performance
Engineering (ICPE) (pp. 423-424). ACM.

• Ahmad, T., Abbors, F. and Truscan, D., 2013. Model-Based Perfor-
mance Testing Using the MBPeT Tool. In TUCS Technical Reports
1066. TUCS.

• Abbors, F., Truscan, D. and Ahmad, T., 2014. An automated ap-
proach for creating workload models from server log data. In Proceed-
ings of the 9th International Conference on Software Engineering and
Applications (ICSOFT-EA) (pp. 14-25). IEEE.

• Abbors, F., Truscan, D. and Ahmad, T., 2014. Tool Support for Au-
tomated Workload Model Creation from Web Server Logs. In TUCS
Technical Reports 1066. Turku Centre For Computer Science (TUCS).

• Porres, I., Ahmad, T., Rexha, H., Lafond, S. and Truscan, D., 2020,
October. Automatic exploratory performance testing using a discrim-
inator neural network. In Proceedings of the International Conference
on Software Testing, Verification and Validation Workshops (ICSTW)
(pp. 105-113). IEEE.

ix

x

List of publications not
included

• Koskinen, M., Truscan, D., Ahmad, T. and Grönblom, N., 2013. Com-
bining model-based testing and continuous integration. In Proceedings
of the 8th International Conference on Software Engineering Advances
(ICSEA) (pp. 65-71).

• Truscan, D., Ahmad, T., Siavashi, F. and Tuuttila, P., 2015. A prac-
tical application of UPPAAL and DTRON for runtime verification.
In Proceedings of the 2nd International Workshop on Software Engi-
neering Research and Industrial Practice (pp. 39-45). IEEE.

• Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D. and Porres, I., 2019.
Model-based testing using UML activity diagrams: A systematic map-
ping study. Computer Science Review, 33, (pp.98-112). Elsevier.

• Tran, C. H., Truscan, D., Ahmad, T., 2020. Applying Test-driven
Development to Evaluating Student Projects. In Proceedings of the 6th
International Conference on Higher Education Advances (HEAd’20).
(pp. 1155-1163). UPV Press.

• Truscan, D., Ahmad, T. and Tran, C.H., 2020. Applying Test-Driven
Development for Improved Feedback and Automation of Grading in
Academic Courses on Software Development. In International Work-
shop on Frontiers in Software Engineering Education (pp. 310-323).
Springer, Cham.

xi

xii

Acronyms

API Application Programming Interface

AUT Application Under Test

CBMGs Customer Behavior Model Graphs

CPD Change Probability Distribution operator

DRL Deep Reinforcement Learning

DTMC Discrete Time Markov Chain

EFSMs Extended Finite State Machines

ET Exploratory Testing

GA Genetic Algorithm

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

KPI Key Performance Indicator

MBPeT Model-based Performance Testing tool

MBT Model-Based Testing

MTT Modify Think Time operator

PerfX Performance Exploration

PerfXRL Performance Exploration using Reinforcement Learning

PTA Probabilistic Timed Automata

PUT Program Under Test

RL Reinforcement Learning

SLAs Service Level Agreements

SLOC Source Lines of Code

SUT System Under Test

xiii

xiv

Contents

1 Introduction 1
1.1 Motivation . 6
1.2 Research Objectives and Aims 7
1.3 Research Methodology . 9
1.4 Research Contributions . 10
1.5 Thesis Overview . 12

2 Model-based Performance Testing of Web-based Software
Systems 17
2.1 Modeling user behavior . 18
2.2 Constructing workload models 20

2.2.1 Analyzing requirement specifications 20
2.2.2 Mining system’s usage log 21
2.2.3 Capturing user interactions 22

2.3 Model Consistency Rules . 26
2.4 Model-based Performance Testing Process 27
2.5 Tool Support for Load Generation 28
2.6 Empirical Validation . 31

2.6.1 Experiment 1: Performance testing 31
2.6.2 Experiment 2: Generating workload models 34

2.7 Related Work . 37
2.8 Conclusions . 38

3 Performance Exploration of Web-based Software Systems 41
3.1 Exploring User Scenario Space 42

3.1.1 Mutation based exploration 42
3.1.2 Exact method using graph-search algorithms 44
3.1.3 Approximate method using genetic algorithms 46
3.1.4 Empirical Validation 49
3.1.5 Related Work . 52

3.2 Exploring the input space for identifying performance bottle-
necks . 54

xv

3.2.1 Empirical Validation 56
3.2.2 Related Work . 57

3.3 Conclusion . 59

4 Conclusions and Future Work 61
4.1 Summary . 61
4.2 Limitations . 62
4.3 Future Work . 63

xvi

Chapter 1

Introduction

“Most IT systems fail to meet expectations. They don’t
meet business goals and don’t support users efficiently.”

— Søren Lauesen [1]

In 1936, Turing [2] introduced the concept of a computer program even be-
fore the invention of digital computers. After twelve years, a first computer
program was written for a digital computer [3]. The total storage of the
computer was 32 words, each representing 31 binary digits. The program
ran for 52 minutes and performed 3.5 million operations to compute the
highest proper factor of 218 [4]. This was the first computer program which
was stored in the memory of the computer. Heretofore, computers were pro-
grammed by reconfiguring their electronic components manually. Tukey [5]
used the term software for the first time in a context of programming and
computation in 1958. Since then, the software has become an increasingly
important and indispensable constituent of everyday life.
Modern society relies heavily on a wide range of inter-connected soft-

ware systems for finance, energy distribution, communication, and trans-
portation. In 2011, Andreessen [6] reported that over 2 billion people have
access to the Internet. Owning to these significant technological advance-
ments and growth in the information technologies, the size and complexity
of the software systems are increasing exponentially. For example, Volvo
reported that the size of software in their cars increases by the power of 10
every 5 to 7 years [7]. In 2010, the size of software in some cars was 10
million Source Lines Of Code (SLOC) which then escalated to 150 million
SLOC just after six years [8]. NASA has also reported an ascending trend
in the software size and complexity in avionics systems over time [9]. For
example, Figure 1.1 illustrates the software complexity trend in terms of
SLOC in both commercial and military aircraft. A similar trend regarding
the software sizes can be observed in other industries [6, 10].

1

KSLOC

25,000

20,000

15,000

10,000

5,000

Growth of Software Complexity in Aerospace Systems
Thousands of Source Lines of Code (KSLOC) Used in Specific Aircraft over Time

1980 1990

/
~~

~

INS A300B A300FF F16A B757 8767 F16D 8747 A310 B737 A320 A330 B777

2000

- ~ ~

I
-~ ~

-~ ~

-~ ~
F22 F35

Figure 1.1: Growth in software complexity in terms of SLOC in commercial
and military aircraft [11]

Owing to escalating demands for software products and services by the
different industries, the software development organizations are compelled
to deliver high-quality software artifacts which fulfill the customer require-
ments within a very short amount of time. For example, in 2011, Amazon1 ,
a leading online retailer, was updating its production system every 11.6 sec-
onds [12]. IEEE Standard 1044 [13] defines defect as “an imperfection or
deficiency in a work product where that work product does not meet its
requirements or specifications.” According to ISTQB [14], a defect is intro-
duced in a software artifact by a software developer. A failure occurs due to
the defects in the software implementation. Since the software development
is a manual activity, it is inevitable to develop a software artifact without
defects. For instance, during in-house testing, Microsoft [15] detects 10 to
20 defects per 1000 SLOC.
On 4 June 1996, Ariane 5 launcher exploded 40 seconds after lift-off due

to a data conversion error in the software of inertial reference system [16].
The total estimated cost of the disaster was $370 million. In 1999, NASA
lost $125 million Mars Climate Orbiter due to data unit conflict [17]. The

1https://www.amazon.com/

2

https://www.amazon.com/

SUT

Test
Test cases Report

Expected output values Results

software controlling the thrusters of the orbiter calculated the data in En-
glish system; however, the navigation software expected the data to be in
the metric system. Edward Weiler from NASA said [18], “The problem here
was not the error, it was the failure of NASA’s systems engineering, and
the checks and balances in our processes to detect the error. That’s why we
lost the spacecraft.” This statement clearly indicates the need for processes
to detect defects in the software systems. Furthermore, a recent study [19]
reports that software failures cost globally $1.7 trillion and affected around
3.7 billion people in 2017.
Therefore, identifying software defects in the software system before it

goes into production is very important [20]. Software testing has become
a critical component of the software development cycle. It is a process of
ensuring that the software conforms to requirement specifications [21]. The
main objective of software testing is to find defects in the System Under
Test (SUT) and establish confidence in the reliability and robustness of the
SUT [22]. For example, Microsoft saved millions of dollars by uncovering
software defects during the development of Windows 7 [23]. Software testing
accounts for around 50% of the total budget and the time required for
software development [24].
Software testing is a widely three-step process: (1) constructing test

cases, (2) running test cases against the SUT, and (3) evaluating results of
the test cases. A test case is a sequential combination of input and expected
output values [22]. A test case is executed against the SUT in order to collect
the actual output values of the SUT with respect to certain input values.
The result of a test case is obtained by comparing the actual and expected
output values, as shown in Figure 1.2. The result is “pass” if the actual and
the expected output values are equal; otherwise, “fail”.

Figure 1.2: Software testing environment

There are two distinct software testing techniques used to create test
cases [25]: white-box and black-box testing. In white-box testing, the test
cases are derived by analyzing the internal structure or the source code of the

3

SUT. The main goal of white-box testing is to exercise each line of the source
code of the SUT at least once. However, in most cases, it is not feasible to
test 100% of the source code due to limited time and resources [26]. There
are several inherent shortcomings to white-box testing. For example, white-
box testing requires access to the source code of the SUT, which is not
always possible. In order to conduct white-box testing effectively, the tester
needs to have extensive domain knowledge about the SUT and the structure
of the source code. On the other hand, in black-box testing, the tester treats
the SUT as a black-box and tests it only through public interfaces (e.g.,
Application Programming Interface (API)). The test cases are generated
based on the requirement specifications of the SUT. Therefore, the tester
does not require the source code or any implementation details of the SUT
for black-box testing.
Model-Based Testing (MBT) is a black-box testing approach where test

cases are generated based on the abstract models that represent the behav-
ior of the SUT [27]. Requirement specifications are used to construct these
models [28]. One of the main benefits of MBT is that it facilitates automat-
ing or semi-automating the software testing process. In MBT, testers focus
on building the models of the SUT instead of manually writing the test
cases. Using MBT, testers manage to generate quality test cases with less
time and efforts [27]. For instance, Microsoft found 10% more defects with
MBT than manual testing in one of their software application [29]. Several
case studies have demonstrated that MBT can reduce the testing cost by
30% [30].
Software testing techniques can be segmented into two broad categories:

functional testing and non-functional testing. In functional testing, as the
name suggests, we validate that the functional behavior of the SUT conforms
to its requirement specifications by executing a set of test cases against the
SUT. On the other hand, in non-functional testing, we focus on how well
the SUT performs those functionalities. The goal of non-functional testing
is to validate the SUT against its non-functional requirements, for example,
performance, reliability, and security.

Performance testing is a type of non-functional testing, which evaluates
the performance of the SUT when it is subjected to a controlled amount of
workload [31]. A performance test case can be defined as a sequence of user
actions along with the test input data for each action. During performance
testing, we execute performance test cases and monitor Key Performance
Indicators (KPIs) of the SUT [32, 33] such as:

1. response time — how fast the SUT responds to the user’s requests;

2. error rate — the percentage of requests that fail or do not receive a
correct response;

4

3. throughput — the number of requests per time unit the SUT can
process;

4. resource utilization — how much resources are being utilized by the
SUT when it is under a certain amount of workload.

These KPIs are used to establish the robustness and the performance level
of the SUT. The main goal of performance testing is to identify perfor-
mance bugs or bottlenecks [34] that negatively impact the performance of
the SUT [33, 35].

Exploratory Testing (ET) is a software testing technique that is used
to find software defects by learning and exploring the system behavior and
being less dependent on the test documentation [36]. Unlike traditional
software testing, tests are not derived from a pre-defined test plan. They
are dynamically constructed, executed against the SUT, and updated based
on the results of previously executed tests. During exploratory performance
testing, software testers evaluate the performance of a software system with
different user interaction sequences and input combinations in order to iden-
tify potential performance bugs. Typically, the tester is a domain expert
with a good understanding of the SUT. These performance bugs are usually
occurred due to the execution of inefficient code sequences. Finding such
bugs in large-scale, complex software systems with large input spaces is a
challenging task because these bugs are triggered on certain user interaction
sequences and input combinations. A study reported that almost two-thirds
of the performance bottlenecks are only detectable on specific input combi-
nations [37]. Exploratory performance testing is mostly performed manually
and requires rigorous domain knowledge and substantial efforts and time.
During the last two decades, we have witnessed tremendous development

in Internet technologies. It has significantly altered how people communi-
cate with each other, collaborate within a company, and utilize different
services. The era of controlled communication in closed networks for lim-
ited purposes is over, due to the adoption of the Internet almost all financial,
government, entertainment and social sectors rely heavily on web-based ap-
plications.
The architecture of web application systems has become very compli-

cated in recent years [38]. These systems are being developed by integrating
diverse software modules running on different computing units and commu-
nicating with one another through a network. Figure 1.3 shows the 3-tier
architecture of modern web applications where each tier performs a certain
set of operations in the process of serving a user’s request [39]. In order to
provide a high level of reliability and availability, each tier is often deployed
on its own collection of servers that work in parallel. The user employs a

5

Network

User

r---,

Presentation tier

I Web Server 1 I
I Web Server 2 I

I Web Server i I

Web application

Application tier

Application Server 1

Application Server j

Data tier

I Database Server 1 i
I Database Server 21

I Database Server k I

browser application, such as Mozilla Firefox2 , to access a web application.
The browser sends a request to the presentation tier using the Hypertext
Transfer Protocol (HTTP) [40]. The tier accepts the HTTP request and
forwards it to the application tier for further processing. The later tier
implements the core functionality of the web application. It processes the
request and executes the requested operations. Further, it provides the re-
sults of the executed operations to the presentation tier, which formats the
results according to a predefined layout before sending them back to the
user. The data tier is used to store and fetch the data related to the web
application. This tier is maintained by the application tier.

Figure 1.3: Modern web application architecture

Web application systems need to be fast and reliable, and they should
be able to support the vast number of concurrent users [41]. The compa-
nies relying on web applications for business strive to provide high-quality
web services in order to stay competitive in the worldwide market [42, 43].
These companies may suffer significant loss of customers that detrimentally
affects profits and revenues if the applications do not perform up to quality
standards or user expectations [44]. Therefore, it is very significant that the
web application systems are rigorously tested for performance bottlenecks
before deployment. Although we target web-based software systems in this
thesis, our methods can be easily adapted to different types of software
systems.

1.1 Motivation

Performance is considered as a significant metric to evaluate the quality of
the software systems. The software users are immensely perceptive about
the performance of the software system [45, 46]. For example, a study [47]
reports that if a web application takes longer than 3 seconds to respond to

2https://www.mozilla.org/firefox

6

https://www.mozilla.org/firefox

the user’s request, 40% of the users will abandon it. Google, a leading search
engine, notices a 20% drop in traffic and revenue due to 0.5 seconds delay
in producing the search results [48]. Similarly, Amazon loses 1% in sales
due to 100 milliseconds delay in home page generation [49]. Moreover, it is
reported that the US economy lost $43.5 million due to performance-related
issues of eCommerce applications [50].
Despite the above-mentioned facts, performance testing does not get

the same level of importance as functional testing [31, 51]. As a result,
the software systems fail more often due to performance-related problems
than to functional ones [35]. A software project can get canceled if the
software could not achieve the required level of performance; even though,
it is functionally correct [52]. According to a study [53], only 22% of the
software applications, which were not tested for performance, were managed
to meet their performance objectives in production. Gunther [54] reported
that a corporation lost $40 million because its new application cannot satisfy
the service-level targets under a large amount of workload. Thus, ensuring
whether a software system will satisfy its performance targets before it goes
into production has become very important [55, 56]. Furthermore, fixing
performance problems at the development stage is easier and more cost-
effective than the later stages of software development [57].
It is reported that finding and fixing performance related defects is more

challenging than in the case of functional ones [41, 58, 59]. The conjecture
is that performance defects are more complex than functional defects, and
most of the current software testing approaches focus on fixing functional
defects [58].

1.2 Research Objectives and Aims

Generally, performance testing is largely performed using two of the tra-
ditional testing techniques: Script based testing and Capture and replay
testing. In the former method, a tester manually writes user scenarios in
a test script file. In order to generate the workload, the script file is exe-
cuted in parallel to simulate concurrent users, as shown in Figure 1.4. In
the latter method, instead of manually writing the test scripts, the tester
records the interactions between the user and the SUT into a test script.
This method automates the generation of test scripts. Both methods suffer
from three major drawbacks: (1) the tester needs to write test scripts manu-
ally. Manual testing is an error-prone activity especially when dealing with
large-scale, complex software systems [24]. (2) The design of the system and
the customer requirements often change, which means that the test scripts
need to be updated manually corresponding to the new modifications in
the system or requirement specification [52]. This process is tedious and

7

write
simulating concurrent!

users !

N) exit()

Tester
Test script

Test environment

! send workload
11111
11111
11111

monitor KPls ::::!
11111
SUT

demands additional time and effort. (3) The workload generated by execut-
ing test scripts does not accurately represent the dynamic behavior of real
users [60], which could lead to inconclusive performance test results [43].

Figure 1.4: Script based testing

Furthermore, exhaustively testing a large-scale complex system for per-
formance bugs has become inefficient and impractical because there can be
numerous potential user scenarios, which cannot be tested cost-effectively
within a reasonable amount of time. Thus, some infrequent user scenarios
will remain untested. However, these untested user scenarios could deteri-
orate the performance of the software system or even crash the system if
they occur. Consequently, there is a need to have an automatic performance
exploration approach to investigate those rare potential user scenarios and
their effects on the performance of the SUT.
A study [37] reported that almost two-thirds of the performance bottle-

necks are only detectable on certain input combinations. However, finding
those useful input combinations for performance test cases that can identify
performance bottlenecks in a large-scale system within a feasible amount of
time is a challenging task because there can be numerous input combina-
tions. Thus, it is impractical for the testers to test each input combination.
The problem becomes even more challenging when the SUT is a black-box
where we cannot inspect the internal dynamics of the system.
This work attempts to address all the shortcomings mentioned above

with the following objectives:

O1. Improve the performance testing process and results by generating a
realistic workload against the SUT. This objective can be broken down
into two sub-objectives:

O1.1. Identify the suitable modeling formulation and right level of ab-
straction to capture the dynamic behavior of real users compre-
hensively.

O1.2. Generate realistic workloads in order to benchmark the perfor-
mance of the SUT accurately.

8

Problem
Identification

Legends:

] research step .._ ___ _,

~artifact

Evaluation

Research Results
(papers/reports/tools)

O2. Develop a performance exploration method that explores the user sce-
nario space and identify those scenarios, which could degrade the per-
formance of the SUT.

O3. Devise a methodology for identifying input combinations that can trig-
ger resource-intensive computations on a black-box system.

1.3 Research Methodology

A research method represents a well-established procedure (such as algorith-
mic analysis, prototyping, conducting controlled experiments) to address
and solve a research problem [61]. A research methodology is a framework,
which consists of several research methods, rules and postulates employed
by a particular research discipline to carry out, present, and publish the
research [62].
The central component of our research methodology is the research pro-

cess presented in Figure 1.5. In this thesis, the research process is adapted
from the design science research methodology proposed by Peffers et al. [62]
to conduct our software engineering research.

Figure 1.5: The cycle of our research process

Our research process starts with identifying a general research problem
(presented in Section 1.1) originating from real-world observations. The
ultimate goal of the research is to present a solution to this pragmatic re-
search problem. During the next step, we decompose the research problem
into various research objectives (outlined in Section 1.2), each expressing
a certain aspect of the problem. Then, we analyze related methods, ap-
proaches, or theories in order to ensure that our research objectives have
not been already addressed in the existing body of knowledge; otherwise, we

9

update our objectives. This research step is an iterative procedure in which
we repeatedly refine our research objectives based on the state-of-the-art
literature.
During the design and implementation step, we build solutions (dis-

cussed in Section 1.4) to address the research objectives. At the last step of
our research process, we evaluate the implemented solutions by conducting
several controlled experiments. We compare the research results against
the research objectives to check whether they satisfy the research problem
identified at the first step of the research process. The last two steps can
be repeated several times until we get satisfactory research results.
Once the evaluation step is completed, we summarize the research objec-

tives, the solution, and the research results into several manuscripts (listed
in Section 1.5) that are published in international conferences and journals
referred to the topic of software testing. Additionally, we publish several
technical reports [63, 64] detailing the technical aspects and preliminary
results of the research.

1.4 Research Contributions

This section comprehensively outlines the four main contributions of this
thesis. The first two contributions relate to performance testing of a software
system, and the last two contributions concern performance exploration
where we identify user scenarios and the input data, which could degrade
the performance of the SUT.

Model user behavior for workload generation: Our first contribu-
tion mainly addresses the problem that, in most traditional performance
testing approaches, user scenarios are created for most frequent uses, and
they are implemented as static scripts. As we have discussed in the previ-
ous section, these scripts are difficult to maintain. Moreover, they do not
accurately capture the dynamic user behavior. In Paper 1, we have investi-
gated how probabilistic models can be used to represent user behavior such
as Probabilistic Timed Automata [65] and Discrete Time Markov Chain [66]
model. We have extended and defined modeling notations in order to cap-
ture the dynamic behavior of real users more accurately than the sequential
scripts. We present three methods to construct models. The first method
is manual and requires inspecting the requirement specifications, whereas
the other two methods are fully automatic. The second method, proposed
in Paper 3, analyzes the historical usage log to produce user models and
the third method, presented in Chapter 2, generates a user model by moni-
toring the live interactions between a user and the SUT. This contribution
addresses the O1.1 objective.

10

Generate a realistic workload: For performance testing, we present
an approach, discussed in Paper 2, for automated generation of a realistic
workload. The method utilizes the user models discussed in the previous
contribution. The workload is applied to the SUT in real-time. During the
test session, we measure different KPIs such as response time, error rate,
resource utilization and throughput, in order to benchmark the performance
of the SUT. We have implemented the approach as a tool in Python3 , called
Model-based Performance Testing (MBPeT). The tool follows a distributed
architecture, which allows us to generate a large amount of workload by ex-
tensively parallelizing the load generation process among several computing
nodes. Further, MBPeT performs a series of validation checks to ensure the
syntactic and semantic correctness of the user models. The utility of the
MBPeT is demonstrated by conducting several test sessions. The results
show that MBPeT can effectively benchmark the performance of the SUT.
This contribution addresses the O1.2 objective.

Identify the worst-case user scenario in a user model: We describe
three performance exploration approaches: mutation-based in Paper 4,
approximate in Papers 5-6, and exact approach in Paper 6. These ap-
proaches utilize a given user model in order to find the worst user scenario in
the model, which can degrade the performance of the SUT by creating the
highest utilization of a given resource on the SUT. Such scenarios facilitate
the testers to identify potential performance bottlenecks in the SUT. The
mutation-based approach explores the user scenario space randomly by ap-
plying predefined mutation operators to a given user model. This approach
does not guarantee to find the worst user scenario due to the random nature
of it. In addition, it needs to be run for a significant amount of time in order
to get better results. The exact approach is deterministic and always pro-
vides the worst user scenario; however, it does not scale well to large models
with numerous loops. The approximate approach utilizes genetic algorithms
to explore the user scenario space. It cannot always find the worst user sce-
nario, but it can identify a near-worst user scenario faster than the other
methods, even for large models. An assessment of the approaches shows
that the identified user scenarios trigger more resource-expensive computa-
tions on the SUT as compared to the original models. This contribution
addresses the O2 objective.

Find input combinations that trigger performance bottlenecks As
we have discussed at the beginning of this chapter, today’s systems are be-
coming increasingly large and complex. As a result, they exhibit huge input

3https://www.python.org/

11

https://www.python.org/

spaces with many input parameters and large ranges. Thus, it has become
impractical to exhaustively test all possible input combinations in order to
identify performance bottlenecks. To mitigate this problem, Paper 7 in-
troduces a methodology to explore a large space of input combinations to
identify performance bottlenecks in a black-box system without any prior
domain knowledge. The method only explores a subset of the input space
and tries to find as many of those input combinations as possible that can
trigger performance bottlenecks in the SUT. Our evaluation of the method
indicates that it can be fully automated and is effective enough to detect
72% more bottlenecks than the random testing. This contribution under-
takes the O3 objective.

1.5 Thesis Overview

The thesis is divided into two main parts. The first part is an overall sum-
mary of the thesis, organized as follows. In Chapter 2, we present our
model-based performance testing approach and different methods to pro-
duce workload models characterizing the dynamic behavior of the real users.
We present the tool support of our approach and demonstrate its applica-
bility by carrying out different experiments on an auction web application.
Chapter 3 provides an overview of our performance exploration approach for
inferring the worst-case user scenarios in a given workload model that can
cause high resource utilization on the SUT, resulting in poor performance of
the system. In the chapter, we also discuss an approach to explore a large in-
put space to identify the input combinations that can trigger performance
bottlenecks in a black-box system without any prior domain knowledge.
The chapter also presents the tool support and the empirical evaluation of
our approaches. Conclusions and directions for future work are given in
Chapter 4 that concludes the first part of the thesis.
The second part comprises seven publications that enclose all thesis

contributions. The included papers are the following:

Paper 1 - Abbors, F., Ahmad, T., Truscan, D. and Porres, I., 2013.
Model-based Performance Testing of Web Services using Proba-
bilistic Timed Automata. In International Conference on Web In-
formation Systems and Technologies (pp. 99-104). SciTePress
In this paper, we present an approach for performance testing of web ser-
vices in which we use abstract models, specified using Probabilistic Timed
Automata, to describe how users interact with the system. The models are
used to generate load against the system. The abstract actions from the
model are sent in real-time to the system via an adapter. Different perfor-
mance indicators are monitored during the test session and reported at the

12

end of the process. We exemplify with an auction web service case study
on which we run several experiments.

Contribution Fredrik Abbors and I are the main authors of this paper. I
was responsible for designing and implementing the tool. Together, Fredrik
Abbors and I have defined the modeling notations to capture the dynamic
behavior of the real users. The other authors have contributed with impor-
tant ideas, discussions, and feedback.

Paper 2 - Abbors, F., Ahmad, T., Truscan, D. and Porres, I.,
2013. Performance Testing in the Cloud using MBPeT. In Devel-
oping Cloud Software: Algorithms, Applications, and Tools (pp.
191-225). TUCS General Publication. Turku Centre For Com-
puter Science (TUCS).
We present a model-based performance testing approach using the MBPeT
tool. We use probabilistic timed automata to model the user profiles and
to generate a synthetic workload. The MBPeT generates the load in a
distributed fashion and applies it in real-time to the system under test,
while measuring several key performance indicators, such as response time,
throughput, error rate, etc. At the end of the test session, a detailed test
report is provided. MBPeT has a distributed architecture and supports load
generation distributed over multiple machines. New generation nodes are
allocated dynamically during load generation. In this book chapter, we will
present the MBPeT tool, its architecture, and demonstrate its applicability
with a set of experiments on a case study. We also show that using abstract
models for describing the user profiles allows us quickly experiment different
load mixes and detect the worst case scenarios.

Contribution This paper was written with an equal contribution of the
first two authors. I was responsible mainly for implementing the approach
and conducting the experiments for the evaluation. The other authors have
contributed with essential ideas, discussions, and feedback.

Paper 3 - Abbors, F., Truscan, D. and Ahmad, T., 2014. Mining
Web Server Logs for Creating Workload Models. In International
Conference on Software Technologies (pp. 131-150). Springer
We present a tool-supported approach where we used data mining tech-
niques for automatically inferring workload models from historical web
server log data. The workload models are represented as Probabilistic
Timed Automata (PTA) and describe how users interact with the system.
Via their stochastic nature, PTAs have more advantages over traditional
scripting approaches which simply playback scripted or pre-recorded traces:

13

they are easier to create and maintain and achieve higher coverage of the
tested application. The purpose of these models is to mimic real-user be-
havior as closely as possible when generating load. To show the validity
and applicability of our proposed approach, we present several experiments.
The results show, that the workload models automatically derived from web
server logs are able to generate load similar with the one applied by real-
users on the system and that they can be used as the starting point for
performance testing process.

Contribution This paper was written with an equal contribution of all
the authors. I was responsible mainly for implementing the approach and
conducting the experiments for the evaluation.

Paper 4 - Ahmad, T., Abbors, F. and Truscan, D., 2015. Au-
tomatic Performance Space Exploration of Web Applications. In
International Conference on the Economics of Grids, Clouds, Sys-
tems, and Services (pp. 223-235). Springer
We present a tool-supported performance exploration approach to investi-
gate how potential user behavioral patterns affect the performance of the
system under test. This work builds on our previous work in which we
generate load from workload models describing the expected behavior of
the users. We mutate a given workload model (specified using Probabilis-
tic Timed Automata) in order to generate different potential user profiles.
Each mutant is used for load generation using the MBPeT tool and the
resource utilization of the system under test is monitored. At the end of
an experiment, we analyze the mutants in two ways: cluster the mutants
based on the resource utilization of the system under test and identify those
mutants that satisfy the criteria of given objective functions.

Contribution I was the primary author of this paper. I proposed the
mutation-based performance exploration approach and I developed the tool
support. The other authors have contributed with important ideas, discus-
sions, and feedback.

Paper 5 - Ahmad, T. and Truscan, D., 2016. Automatic perfor-
mance space exploration of web applications using genetic algo-
rithms. In Proceedings of the 31st Annual ACM Symposium on
Applied Computing (pp. 795-800). ACM
We describe a tool-supported performance exploration approach in which
we use genetic algorithms to find a potential user behavioural pattern that
maximizes the resource utilization of the system under test. This work
is built upon our previous work in which we generate load from workload

14

models that describe the expected behaviour of the users. In this paper, we
evolve a given probabilistic workload model (specified as a Markov Chain
Model) by optimizing the probability distribution of the edges in the model
and generating different solutions. During the evolution, the solutions are
ranked according to their fitness values. The solutions with the highest fit-
ness are chosen as parent solutions for generating offsprings. At the end of
an experiment, we select the best solution among all the generations. We
validate our approach by generating load from both the original and the
best solution model, and by comparing the resource utilization they create
on the system under test.

Contribution I was the principal author of this paper. I contributed
by modeling the user behavior using Markov Chain Model, developing a
heuristic-based performance exploration approach to identify a potential
user scenario that maximizes the resource utilization of the system under
test, and implementing the tool. The other authors have contributed with
important ideas, discussions, and feedback.

Paper 6 - Ahmad, T., Truscan, D. and Porres, I., 2018. Iden-
tifying worst-case user scenarios for performance testing of web
applications using Markov-chain workload models. Future Gener-
ation Computer Systems, 87, (pp. 910-920). Elsevier
The poor performance of web-based systems can negatively impact the prof-
itability and reputation of the companies that rely on them. Finding those
user scenarios which can significantly degrade the performance of a web
application is very important in order to take necessary countermeasures,
for instance, allocating additional resources. Furthermore, one would like
to understand how the system under test performs under increased work-
load triggered by the worst-case user scenarios. In our previous work, we
have formalized the expected behavior of the users of web applications using
probabilistic workload models and we have shown how to use such models
to generate load against the system under test. As an extension, in this ar-
ticle, we suggest a performance space exploration approach for inferring the
worst-case user scenario in a given workload model which has the potential
to create the highest resource utilization on the system under test with re-
spect to a given resource. We propose two alternative methods: one which
identifies the exact worst-case user scenario of the given workload model,
but it does not scale up for models with a large number of loops, and one
which provides an approximate solution which, in turn, is more suitable for
models with a large number of loops. We conduct several experiments to
show that the identified user scenarios do provide in practice an increased
resource utilization on the system under test when compared to the original

15

models.

Contribution I was the main author of this paper. I contributed by
improving the previously proposed heuristic-based performance exploration
approach, introducing a graph-based performance exploration approach to
identify the worst user scenario that maximizes the resource utilization of
the system under test, and implementing the tool. The other authors have
contributed with important ideas, discussions, and feedback.

Paper 7 - Ahmad, T., Ashraf, A., Truscan, D. and Porres, I., 2019.
Exploratory Performance Testing Using Reinforcement Learning.
In 45th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). (pp. 156-163) IEEE
Performance bottlenecks resulting in high response times and low through-
put of software systems can ruin the reputation of the companies that rely on
them. Almost two-thirds of performance bottlenecks are triggered on spe-
cific input values. However, finding the input values for performance test
cases that can identify performance bottlenecks in a large-scale complex
system within a reasonable amount of time is a cumbersome, cost-intensive,
and time-consuming task. The reason is that there can be numerous com-
binations of test input values to explore in a limited amount of time. This
paper presents PerfXRL, a novel approach for finding those combinations
of input values that can reveal performance bottlenecks in the system un-
der test. Our approach uses reinforcement learning to explore a large input
space comprising combinations of input values and to learn to focus on
those areas of the input space which trigger performance bottlenecks. The
experimental results show that PerfXRL can detect 72% more performance
bottlenecks than random testing by only exploring the 25% of the input
space.

Contribution I was the main driver of this work. I proposed an approach
for identifying input combinations that can reveal performance bottlenecks
in the system under test using reinforcement learning, and I implemented
the tool support. I wrote the major part of the paper. The other authors
have contributed with important ideas, discussions, and feedback.

16

Chapter 2

Model-based Performance
Testing of Web-based
Software Systems

“Essentially, all models are wrong, but some are useful.”
— George E. P. Box [67]

Performance testing is a type of non-functional testing, which evaluates the
performance of the SUT when it is subjected to a controlled amount of
workload [31]. The main objective of performance testing is to evaluate the
two crucial aspects of the SUT: responsiveness and scalability. The former
specifies how instantly the SUT responds when it is subjected to a certain
amount of workload. For instance, in case of a web application, we measure
the average response time of all the requests made by a certain number of
concurrent virtual users to the SUT. The performance of the SUT degrades
as the average response time increases. Secondly, scalability determines the
maximum amount of workload that the SUT can handle before it crashes or
becomes unresponsive. These two metrics help infrastructure engineers in
selecting suitable hardware and software platforms for the system [31, 33]
but also in optimizing the software.
As we have mentioned in Chapter 1, performance testing is largely per-

formed using two of the traditional testing techniques: Script based testing
and Capture and replay testing. In the former method, the tester manually
writes user scenarios in a test script file, whereas in the latter method, the
tester records the interactions between the user and the SUT into the file.
In order to generate the workload, the script file is executed in parallel to
simulate concurrent users. There are several drawbacks to these methods
including the fact that the design of the system and the requirement specifi-

17

cations often change, which means that the test scripts need to be modified
manually to reflect the new changes [52]. This process is tedious and time-
consuming. Further, the workload generated by executing test script files
does not accurately represent the dynamic behavior of real users [60], which
could lead to inconclusive performance test results [43].
In this work, we propose a model-based performance testing ap-

proach where we generate a workload from Probabilistic Timed Automata
(PTA) [65] models characterizing the dynamic behavior of the real users.
The abstract PTA models are easy to create and maintain, allowing quick
and easy iteration cycles. During the load generation process, we monitor
different KPIs, such as response times, throughput, memory, CPU, and disk
utilization. These KPIs are used to benchmark the performance of the SUT.
The rest of the chapter is structured as follows: In Section 2.1, we intro-

duce workload models and extend the probabilistic timed automata model-
ing notation for modeling user scenarios. Section 2.2 describes how workload
models are produced. Section 2.3 presents several rules to check the con-
sistency and correctness of the workload models. In Section 2.4, we briefly
explain the model-based performance testing process. Section 2.5 provides
an overview of the architecture of our tools. In Section 2.6, we investigate
the applicability of our model-based performance testing approach by car-
rying out different experiments on an auction web application. Section 2.7
concisely presents the related work. We conclude in Section 2.8.

2.1 Modeling user behavior

In this section, we will introduce the workload models used for capturing the
dynamic behavior of a group of real users in our model-based performance
testing approach. We employ PTA [65] as workload models. PTA comprises
a finite set of locations with clocks and probabilistic edges that connect
automata locations to each other. A clock is a variable whose value spans
over the non-negative real numbers. It proceeds at the same rate as time
and can be reset. Time can only progress in any location in PTA as long
as the location invariant holds while time elapses. A probabilistic edge can
be selected non-deterministically only if its guard is satisfied by the current
values of the clocks.
Figure 2.1 shows an example of a PTA model, which contains five loca-

tions and one clock variable, named X. The model in the figure represents
the probabilistic behavior of a user interacting with a news forum web ap-
plication. A user begins from the initial location. From this location, the
user can either choose to browse through a list of news stories with 0.4
probability or to search for a news story with 0.6 probability. The user
waits for either 3 or 4 time units before performing browse or search action,

18

X>=5
browse_page quit()

X <= 15 0.35

X>=15, X:=0
read()

X>=20

initial news_details
quit()

0.6 X>=4, X:=0
search()

X>=5

G search_page quit()

X <= 10 0.2

respectively, as specified by the guards on the edges from the intermediate
nodes to the browse page and the search page location. These guards on the
edges are used to specify user think times. If the search action is selected,
the user waits for 3 time units and then transits to the search page location.
This location has a clock invariant: X <= 10 meaning that a user cannot
stay at this location for more than 10 time units. Now, the user can either
choose to read a news story with 0.8 probability or quit with 0.2 probability.
In the former case, the user can quit after waiting for at least 20 time units.

Figure 2.1: Example of a PTA (adapted from[65])

One can notice that PTA modeling notation is not very intuitive and
visually concise when modeling user behavior. Therefore, we make the fol-
lowing modifications to the PTA modeling notation to make it more compact
and easy to understand:

1. A user model have only one implicit clock variable, which is set to
zero after every transition.

2. A label on an edge represents a probability, a user think time (specified
in time units), and a user action separated by a / (i.e., forward slash)
character.

3. Each location has a hidden clock invariant that is always true. This
means that a user is not restricted to leave a location after a certain
amount of time.

19

0.35 / 5 / quit()

1.0 / 20 / quit()

0.2 / s / quit()

We have transformed the model in Figure 2.1 into the model in Fig-
ure 2.2 by applying our above transformation rules. The transformed model
describes the same user behavior as the model in Figure 2.1. A user begins
from the 1 location in the model. From this location, the user can either
execute the browse action with 0.4 probability or the search action with 0.6
probability. The user waits for either 3 or 4 time units before performing
browse or search action, respectively.

Figure 2.2: Example of a workload model with compact PTA notations

2.2 Constructing workload models

In this section, we present three methods to construct workload models.
The first method is manual and requires inspecting the requirement spec-
ifications, whereas the other two methods are fully automated with tool
support and require little to no manual efforts.

2.2.1 Analyzing requirement specifications

In this method, we need to determine the actions and the inputs to the
SUT, arrival rates of the actions (which will be translated into user think
times between two actions), different types of users, and what are the most
common user scenarios performed by each user type. One can perceive a
user type as a cluster of users behaving similarly. Each user type is materi-
alized into a single workload model, as in Figure 2.2. Furthermore, in order
to properly benchmark the performance of the SUT, we need to establish
the performance expectations and objectives for the SUT such as what is
the acceptable average response times for the actions, expected resource
utilization, or intended throughput when the system is being accessed by a
certain number of concurrent users.

20

The required information for workload model construction and perfor-
mance objectives can be extracted from the requirement specifications, Ser-
vice Level Agreements (SLAs), and system usage log using the procedure
proposed by Calzarossa et al. [68]. On the other hand, if we do not have
access to the artifacts mentioned previously (e.g., SLAs, usage log), we
can interview personnel at the marketing department, current users of the
SUT, or the business stakeholder to collect the required information for con-
structing the workload models. These interviews are considered beneficial
because they provide insights into understanding what are the performance
expectations and interests of the company [69].

2.2.2 Mining system’s usage log
In this method, we parse the historical usage log of the SUT to generate
workload models. A usage log file consists of a series of requests made to
the SUT by different users at different points in time. For example, if the
SUT is a web application, each line in the usage log file usually contains
the time stamp, the IP Address of the user, the HTTP request method, the
requested resource, etc.
This method can be decomposed into the following steps:

1. Preprocessing usage log: we filter out all the entries made by the
Web Crawlers [70]. We only considered those entries in the log file
for further processing, which correspond to the requests made by the
real users.

2. Identify user sessions: we extract the required information such as
the IP address, the requested resource, and the time stamp from each
entry of the usage log file using the regular expressions. We assume
that each IP address correlates to a different user. It is a reasonable
assumption today since 3.5 billion people are accessing the Internet us-
ing their devices [71]. We use the IP address to segregate the requests
in the log file into separate sequences for each user. These request
sequences are further segmented into smaller chunks, called sessions,
according to the given session timeout value. A session timeout is a
time between two subsequent requests made by the same user, and it
is utilized as a session border when it surpasses a certain threshold.
Consequently, we can define a user session as a stream of requests
made a user where no two successive requests are separated by more
than the given session timeout value.

3. Filtering user sessions: we remove the less frequent user sessions
using a Pareto probability density function [72] where we trim the tail
of the distribution by a given cut-off threshold value. The conjecture

21

is that, in many cases, the most frequent user scenarios are the ones,
which affect the performance of the SUT more significantly than the
other scenarios. The tester can decide to include all the user scenarios
to build a model, but it would not significantly affect the results of
the load generation because the most frequent user scenarios in the
model will be simulated more often than the other scenarios during
the load generation. Furthermore, including only the most frequent
user sessions keeps the resulted workload models concise and easy to
understand.

4. Clustering user sessions: Using the K-means [73] clustering algo-
rithm, we cluster the filtered user sessions based on their similarities.
We construct a workload model by superimposing user sessions one by
one from a cluster. We keep track of how many times a certain edge
in the model have been used in order to determine the probability
and the average think time for the edge. Each cluster of user sessions
results in a workload model.

This method allows us to generate the workload models, but it requires
the historical usage data of the system. The following method does not have
that requirement.

Tool Support: Log2Model

Log2Model tool is implemented in the Python programming language to
create workload models by mining usage log files (discussed in the previ-
ous section). The tool is capable of parsing the most commonly used log
formats, such as the Apache HTTP Server log [74] and the Microsoft IIS
log [75]. Additionally, the tester can define the custom log formats using
regular expressions. Furthermore, the tester can interactively fine-tune the
cut-off threshold value (as shown in Figure 2.3) to limit how many user ses-
sions should be used to construct the workload models. In addition to the
workload models, the tool generates the Python code for the test adapter
code containing the mapping of every user action in the workload models.

2.2.3 Capturing user interactions
In this method, we generate a workload model by capturing the HTTP re-
quests made by the user to the SUT in real-time. As the tester interacts with
the web application, we capture the HTTP requests made by the browser
to the web application and store them in a queue. Table 2.1 exemplifies a
sequence of five HTTP requests. This method entails the following stages:

Creating user actions: At the first stage, we create and assign a user
action to each request. A user action can be considered as an abstract

22

Rgure l

K-50.7205 y-25.7367

Figure 2.3: Graphical user interface of the Log2Model tool

representation of a given request. If we encounter a certain request for
the first time, we create a new user action corresponding to the request;
otherwise, we reassign the previously created user action to the request.
Table 2.2 lists all the user actions corresponding to the requests in Table 2.1.
The mapping between the requests and the user actions is used to generate
another artifact, called a test adapter. The test adapter code consists of
every user action in an executable format. It is utilized as an interface
between the workload model and the SUT by our MBPeT tool, which we
will discuss in Section 2.4.

Building the model: At the second stage, we start creating the work-
load model incrementally by processing each request in the queue sequen-
tially in order to preserve the order of the requests. In the beginning, the
workload model has only the initial location, which is also the current dock-
ing location. The docking location in the model is used as the source location
for the next new edge. We add a new edge in the model with the following
characteristics for each request:

• Source location: the current docking location in the model becomes
the source location of the new edge. For example, the source location

23

No. Time stamp Accessed resource
R1 19/11/2019:14:22:35 GET /home
R2 19/11/2019:14:22:39 GET /browse
R3 19/11/2019:14:23:01 GET /read/posts
R4 19/11/2019:14:23:51 GET /home
R5 19/11/2019:14:23:57 GET /search

Table 2.1: A queue of HTTP requests

No. Accessed resource User action
R1 GET /home home()
R2 GET /browse browse()
R3 GET /read/posts read()
R4 GET /home home()
R5 GET /search search()

Table 2.2: User actions corresponding to the HTTP requests

of the edge for the first request (i.e., R1) is the initial location (i.e.,
location 1), as illustrated in Figure 2.4(a).

• Destination location: it depends on whether a similar request already
exists in the model or not. In the latter case, we add a new destination
location for the new edge. For instance, we have added three new
locations for the first three requests, as shown in Figure 2.4(b). In
the former case, the new edge points to the same location where the
existing edge performing the same request points to. For example,
in Figure 2.4(c), the edge for the R1 request (from location 1 to 2)
and the edge for the R4 request (from location 4 to 2) have the same
destination location (i.e., location 2). The destination location of the
latest edge becomes the docking location.

• User action: we assign a user action to the new edge corresponding
to the request.

• User think time: it is determined by calculating the time difference
between the timestamps of the current and the previous request.

• Probability: It is based on the number of outgoing edges from the
source location and how many times a certain user action has been
performed. For example, in Figure 2.4(d), there are two outgoing
edges corresponding to user actions browse() and search(), and both
actions are performed only once by the user. Thus, both edges have
the same probability (i.e., 0.5)

24

0 1.0 / 0 / home() ,--,
1 r--------►(2)

'--✓

1.0 / 0 / home()
1

0 1.0 / O / home()
1 1--------

1.0 / 50 / home()

1.0 / O / home()
1

(a) Workload model after incorporating
the first request

(b) Workload model after incorporating the first 3 requests

(c) Workload model after incorporating the first 4 requests

(d) Workload model after incorporating all the requests

Figure 2.4: Incremental development of a workload model based on the
requests listed in Table 2.2. Docking locations are represented as dashed
circles.

The method allows us to characterize the user behavior for workload
generation without the need for log files. This is beneficial because, in most
cases, the log files are not available, or they do not contain sufficient details
to construct the workload models.

25

HTTP Requests
Click&Capture

User Generate SUT

Workload model Test adapter

Tool Support: Click&Capture

We have implemented a tool, called Click&Capture in Python, which serves
as a proxy to the SUT in order to capture the HTTP requests between the
user and the SUT as depicted in Figure 2.5. The captured requests are used
to generate a workload model and an executable test adapter code in the
Python programming language by the tool.

Figure 2.5: Capturing HTTP requests to generate a workload model and a
test adapter

2.3 Model Consistency Rules

In order to check the consistency and correctness of the workload models,
we have defined the following validation rules that later on are enforced by
our tool chain:

• One initial location: a workload model must have precisely one
initial location (i.e., a location with no incoming edges).

• One or more exit locations: there should be at least one exit
location (i.e., a location with no outgoing edges) in a workload model.

• Probabilities and user actions: probabilities and user actions must
be specified correctly for each edge in the model, and the sum of the
probabilities of all the outgoing edges from a location must be equal
to 1.

• Isolated locations: there should be no location with no incoming
and outgoing edges in a workload model.

26

2.4 Model-based Performance Testing
Process

In this section, we describe our model-based performance testing approach,
where we benchmark the performance of the SUT when it is subjected to a
controlled amount of workload. We generate workload using PTA models,
characterizing the dynamic behavior of the real users.
In our approach, we employ a collection of workload models to describe

the different groups of users. Figure 2.4(d) depicts an example of a workload
model. In addition to the workload models, we define a root model, which
describes the arrival rate of the different groups of users in the workload
mix and their probabilistic distribution. The root model is also represented
using the PTA modeling notation. For example, the root model in Fig-
ure 2.6 indicates two groups of users where 60% and 40% of users belong to
user group1 and user group2, respectively.

Figure 2.6: Root model

The workload model in Figure 2.4(d) describes the probabilistic behavior
of a particular group of users interacting with a news forum web application.
Each edge in the model specifies the probability of choosing the edge, the
user think time before traversing the edge, and the user action to execute.
The workload is generated by simulating the workload model. The sim-

ulation starts from the initial location. Upon traversing an edge in the
workload model, the action associated with the edge is translated into a re-
quest using the test adapter, and the translated request is sent to the SUT.
For example, the open home function defined (at the line 8) in Listing 2.1
implements the home action in the model shown in Figure 2.4(a). In the
open home function, we send an HTTP request (line 10) to the SUT for

27

1 from petadapter import AbstractAdapter , action
2

3 class Generic_Adapter(AbstractAdapter):
4 def __init__(self , *arg , ** kwarg):
5 AbstractAdapter .__init__(self , *arg , ** kwarg)
6

7 @action("home ")
8 def open_home(self , username , user_id , parameters):
9 url = "https :// www .mywebapplication .com/home "

10 res = self .session .get(url)
11 repeat = False # do not repeat this action
12 return res , repeat

Listing 2.1: A Python code snippet of the test adapter created for the model
shown in Figure 2.4(a)

the home web page. Whenever we arrive at one of the exit locations of
the model, the current user session is terminated, and the simulation of the
workload model restarts. This procedure is repeated during the entire load
generation process.

The request generation process imposes a certain amount of load on the
system because the system has to process the requests and generate the
corresponding responses. Each simulation of the workload model represents
one virtual user. Using the root model, we can employ different workload
models to generatethe workload from different groups of users. The amount
of the workload is regulated using a ramp function that specifies the desired
number of parallel simulations of the workload model at any given moment
during the test session.

PTA workload models allow us to capture the probabilistic behavior of
the real users and introduce randomness up to a certain degree into the
testing process. This is beneficial in identifying rare sequences of actions
that could negatively affect the performance of the system. Finding such
sequences using traditional testing methods like static test scripts, where
we execute actions in a deterministic order, would be infeasible.

2.5 Tool Support for Load Generation

We have implemented our performance testing approach as a tool in the
Python programming language, called Model-based Performance Testing
(MBPeT) [63, 76]. The tool generates the workload against the SUT in
real-time using the workload models, as shown in Figure 2.7. The tool
also requires a test adapter that translates each user action in the workload
models to an executable format and a test configuration, which includes dif-

28

https://www

Workload models

Test
Configuration

MBPeT

Test
Report

workload
L.

..., QI 1-----~

:lJ a. KPI
I-~ 14------1

ro

SUT

ferent parameters such as test session duration and a ramp function. The
tool monitors different KPIs like resource utilization of the SUT, response
times of user actions, throughput, and error rate. At the end of a per-
formance test session, a test report is generated based on the information
regarding each KPIs collected during the test session.

Figure 2.7: MBPeT tool

Distributed Architecture As we have discussed in Section 2.4, the
workload is generated by simulating concurrent virtual users. Simulating a
virtual user consumes a certain amount of hardware resources such as CPU
and memory on a load generating slave node. This restriction makes sim-
ulating a large number of concurrent virtual users impossible. In order to
overcome this limitation, MBPeT generates a workload using a distributed
architecture where it uses several computing nodes to simulate virtual users.
The architecture of the MBPeT consists of two types of nodes: a master
node and slave nodes. A master node orchestrates the entire test session by
managing several remote slave nodes, as shown in Figure 2.8. The tester
provides the test configuration and workload models to the master node and
gets a test report at the end of the test session. Slave nodes are generic and
they do not have prior knowledge of the SUT or the workload models. The
master collects and parses the required information (e.g., workload models
and the test configuration) for every test session and sends that information
to all the slave nodes for the workload generation.
The master node triggers one of the slave nodes to start the workload

generation while the rest of the slave nodes wait in their idle state. Load
generating slave nodes monitors their local resource utilization. A load
generating slave node stops increasing the number of concurrent virtual

29

f- ·
; MBPeT

Master
node

Slave
node 1

Slave
node 2

I...

t,~
Q) a.
I-~

ro

I...

tn2
Q) a.
I-~

ro
i

---------·------ !--

Slave
node N

I...

t,~
Q) a.
I-~

ro

' i

'·- ·- ·-·-·-•-·-·-·-·-·- ·- ·- ·- ·-·-·-·-·-·-·-·- ·-·- ·- ·-·-

users and informs the master node if the resource utilization of the node
crosses a given threshold value. In response to a saturated slave node, the
master node initiates another idling slave node for workload generation.
This procedure allows us to sustain the given workload generation rate by
simulating any desired number of virtual users.

Figure 2.8: Distributed architecture of MBPeT tool

Graphical User Interface In addition to a command-line interface,
MBPeT features a Graphical User Interface (GUI) dashboard, shown in
Figure 2.9. The MBPeT dashboard is composed of two panels. The right
panel of the dashboard allows the tester to set up the test configuration
before starting the test session. Moreover, the tester can use the slider to
change the number of concurrent virtual users during the test session. The
slave indicators show the state of the slave nodes. An idle slave node is
expressed by a gray indicator. Likewise, active and saturated nodes are
represented by green and red indicators, respectively. The left panel of
the dashboard is used to monitor the performance of the SUT during the
test session in real-time. It consists of two graphs and a label. The Avg.
Response Time label displays the current average response time of all the
actions that are being executed. The Response Time graph shows the aver-
age response time of all the actions with respect to the number of seconds
since the test session started. The graph at the bottom of the panel illus-
trates the ramp function. Both graphs are continually updated in real-time
during the entire test session.

30

"" - - Abo Akademi - MBPeT

0 Start ~aster M [Settings

Abo Akademi Number of slaves

Generate Load Avg. Response Time: 0.86

I r~_~g~u_it __ ~I Graph:

~roject folder: 1mad1 Norkspace/PeT/projects/webdav

Number of &users: I 00

Test progress: -

slave Indicators

■
Master Log:

Va lidating user models ..

_ Test duration: SOO

12%

■

Master is listening For 3 slave(s) ...
Master is wai t ing fo r all slaves to be initialized ...
Slave 1 is initialized.
Slave 2 is initi alized.
Slave 3 is initialized.
All slaves are initialized.
Starting dstat ...
Slave 1 starts load gene ration
Slave 1 Saturated
Slave 2 starts load generation

Browse

(seconds)

100

Figure 2.9: Graphical user interface of the MBPeT tool

Test Report At the end of a test session, the master node aggregates the
KPI information from the slave nodes to produce a test report. The master
node monitors the resource utilization of the SUT and presents that infor-
mation in the test report as well. The report comprehensively presents the
information using different statistical functions. Furthermore, it includes
several graphs to represent how different KPIs have changed during the test
session. The test report comprises several sections and each section presents
a different point of view of the test results [63].

2.6 Empirical Validation

In this section, we will demonstrate the applicability of our performance
testing approach by carrying out different experiments on an auction web
application, called YAAS. The YAAS web application has a RESTful [77]
interface that is based on the HTTP protocol and it is implemented in the
Python programming language.

2.6.1 Experiment 1: Performance testing

In the first experiment, we benchmark the performance of YAAS by gen-
erating the workload using the MBPeT tool. For this purpose, we have
created three PTA workload models corresponding to three different types

31

0.20 I 4 I browse()

0.10 I 3 I browse()

0.60 I 3 I browse()

0.40 141 search(string)

0.50 I 3 I exit()

0.30 I 3 I get_bids(id)

0.50 I 3 I bid(id,price,username,password)

0.20 I 5 I browse()

0.87 I 51 get_auction(id)

0.05 I 5 I browse()

0.30 I 3 I exit()

0.03 I 3 I exit() 0.20 I 3 I exit()

Figure 2.10: Aggressive user model

of users (i.e., aggressive user, passive users, and non-bidders type) and one
root model to specify the arrival rate of the different types of users in the
workload mix and their probabilistic distribution. The aggressive type of
users makes bids more often compared to the passive type of users. On the
other hand, the non-bidder type of users does not bid at all. These models
are constructed manually by analyzing the requirement specifications ac-
cording to the method discussed in Section 2.2.1. For example, Figure 2.10
illustrates the workload model of aggressive user type. An interested reader
can find more details about the workload models constructed for YAAS in
Abbors et al. [76].

The goal of this experiment is to determine the maximum number of con-
current users that the current implementation of YAAS can handle while
keeping the response time values of the user actions under the given target
response time values. In this experiment, MBPeT has generated the work-
load against the SUT for 20 minutes by linearly increasing the number of
concurrent virtual users from 0 to 300. Table 2.3 presents the results of the
experiment. One can notice that the maximum number of concurrent vir-
tual users supported by YAAS without exceeding any target response time
values is 64, as highlighted in the table.

Figure 2.11 shows the resource utilization of the SUT during the test
session. One can notice that the CPU utilization rose very rapidly as the
number of concurrent virtual users increased. This implies that the YAAS
is a CPU-intensive web application.

32

Target
Response

Time
Aggressive users (45%) Verdict

Actions Avg
(sec)

Max
(sec)

Time of
breach (sec)

Time of
breach (sec)

Pass/Fail

browse()
search(string)
get action(id)
get bids(id)
bid(id,price, username, password)

4.0
3.0
2.0
3.0
5.0

8.0
6.0
4.0
6.0
10.0

279 (78 users)
229 (64 users)
276 (77 users)
327 (92 users)
328 (92 users)

394 (110 users)
327 (92 users)
325 (91 users)
394 (110 users)
468 (131 users)

Failed
Failed
Failed
Failed
Failed

Target
Response

Time
Passive users (33%) Verdict

Actions Avg
(sec)

Max
(sec)

Time of
breach (sec)

Time of
breach (sec)

Pass/Fail

browse()
search(string)
get action(id)
get bids(id)
bid(id,price, username, password)

4.0
3.0
2.0
3.0
5.0

8.0
6.0
4.0
6.0
10.0

323 (90 users)
279 (78 users)
279 (78 users)
325 (91 users)
327 (92 users)

394 (110 users)
394 (110 users)
279 (78 users)
394 (110 users)
474 (132 users)

Failed
Failed
Failed
Failed
Failed

Target
Response

Time
Non-bidders users (22%) Verdict

Actions Avg
(sec)

Max
(sec)

Time of
breach (sec)

Time of
breach (sec)

Pass/Fail

browse()
search(string)
get action(id)
get bids(id)
bid(id,price, username, password)

4.0
3.0
2.0
3.0
5.0

8.0
6.0
4.0
6.0
10.0

279 (78 users)
279 (78 users)
280 (79 users)
279 (78 users)

NA

394 (110 users)
394 (110 users)
325 (91 users)
446 (130 users)

NA

Failed
Failed
Failed
Failed
Failed

Table 2.3: Response time values for every user actions corresponding to each
user type (Bold value is the maximum number of concurrent virtual users
supported by YAAS without exceeding any target response time values.)

33

I- CPU - Physical Memory - ramp function Actual number of users I

100 300

250
80

C: .,
le

200 ~ .,
.3- :, ., 60 -0, 0

:li
150 ~ :, ., E

le :,
:, 40 z
Sl
~ 100

20
50

200 400 600 800 1000 12ah
test durat ion (sec)

Figure 2.11: SUT CPU and memory utilization with respect to the number
of concurrent virtual users

2.6.2 Experiment 2: Generating workload models
In Section 2.2, we have discussed three methods to construct workload mod-
els: (1) by analyzing the requirement specifications, (2) by mining system
usage log, and (3) by capturing the user interactions with the SUT. The
applicability of the first and the third method have been discussed already
in Section 2.2.1 and 2.2.3, respectively. In this experiment, we will discuss
the applicability of the second method on a web application, called Pubili-
iga1 , which is used to manage the results of football games played in a local
football league. Log2Model generates the workload model by mining the
web usage log of Pubiliiga. The tool has filtered 30 000 lines of log data
out of almost 1.3 million, by removing all irrelevant and incorrect lines from
the log. The tool took 10.38 seconds in total to produce a workload model
shown in Figure 2.12.
We have performed another experiment to validate our Log2Model tool.

The experiment was done in two steps: we generated the workload against
the YAAS using the workload models that we created manually, and then
utilized the log data produced during the load generation to construct the
workload models. Figure 2.13 compares the original workload model and
the one we created by mining the log data. One can notice that the models
are almost identical except a few minor differences between the probabilities
of the edges. The differences in the probabilities of the edges between both
models are highlighted with red color.

1http://www.pubiliiga.fi/

34

http://www.pubiliiga.fi/

1

2

0.15 / 0 / exit()

3

0.076 / 0 / action17

4

0.15 / 9 / action216

0.13 / 0 / action16

7

0.033 / 21 / action19
8

0.12 / 4 / action20

9

0.20 / 0 / action15

10

0.081 / 0 / action5

11

0.060 / 10 / action18

0.9 / 0 / exit()

0.05 / 7 / action17

5

0.05 / 16 / action16

0.52 / 0 / exit()

0.39 / 18 / action17

0.089 / 46 / action16

0.59 / 0 / exit()

0.051 / 23 / action17

0.057 / 8 / action21

0.16 / 75 / action16

0.095 / 24 / action15
0.025 / 32 / action5

0.019 / 67 / action18

0.22 / 0 / exit()

0.78 / 4 / action15

0.13 / 0 / exit()

0.87 / 7 / action16

0.93 / 0 / exit()

0.068 / 25 / action17

0.92 / 0 / exit() 0.082 / 1 / action5

0.69 / 0 / exit()

0.23 / 7 / action17

0.086 / 41 / action21

1 / 0 / exit()

Figure 2.12: Workload model by mining the usage log of Pubiliiga

35

1

2

1.0 / 0 / browse()

0.10 / 7 / browse()

3

0.87 / 4 / get_auction(id)

6

0.03 / 0 / exit()

0.05 / 4 / browse()

4

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.20 / 5 / browse()

5

0.50 / 3 / bid(id,price,username,password)

0.30 / 0 / exit()

0.25 / 6 / browse()

0.45 / 4 / get_bids(id)

0.30 / 0 / exit()

(a) Original workload model

1

3

1.0 / 0 / browse()

0.0095 / 7 / browse()

4

0.87 / 4 / get_auction(id)

2

0.033 / 0 / exit()

0.052 / 4 / browse()

5

0.75 / 4 / get_bids(id)

0.20 / 0 / exit()

0.24 / 5 / browse()

6

0.48 / 3 / bid(id,price,username,password)

0.29 / 0 / exit()

0.23 / 6 / browse()

0.48 / 4 / get_bids(id)

0.30 / 0 / exit()

(b) Generated workload model

Figure 2.13: Original vs generated workload model (Differences in the prob-
abilities of the edges between both models are highlighted with red color)

36

2.7 Related Work

Many researchers have investigated the topic of analyzing and benchmarking
the performance of web-based applications. Vögele et al. [78] have proposed
a performance testing framework for session-based web applications. The
author introduces a domain-specific language, called WESSBAS, to create
workload specifications. The specifications can be extracted from usage log
files of a production system, which are then used for load generation us-
ing Apache JMeter [79]. Shams et al. [80] have proposed a model-based
performance testing approach for session-based web applications. The au-
thors utilized Extended Finite State Machines (EFSMs) to capture inter-
request dependency. The state machines are used to create a large trace
of sessions for the SUT. These sessions are executed against the SUT using
httperf [81]. Ruffo et al. [82] have presented a model-based performance
testing tool, called WALTy. The authors extract Customer Behavior Model
Graphs (CBMGs) [83] from the usage log files of the SUT. CBMGs are
used to represent the navigation patterns of real users. The authors have
customized the httperf tool to generate a workload using CBMGs. Krish-
namurthy et al. [84] have extracted the input traces from the usage log files.
These input traces are used to create a synthetic workload trace with the
correct inter-request dependencies and desired descriptions for a selected set
of workload attributes like request rate. These traces are transformed into
sessions that are provided as input to the httperf tool for load generation.
Schulz et al. [85] have introduced a load testing approach in the context of
continuous software engineering. They have used the WESSBAS approach
to extract workload models from the usage log and the Apache JMeter [79]
tool for load generation. Shariff et al. [86] proposed a browser-based load
testing approach using Selenium [87]. Selenium is a browser-based automa-
tion tool that is used for functional testing by simulating a virtual user in
an independent browser instance. In the approach, the authors utilize a
single browser instance for several users in order to generate a workload.
Our approach differs from the approaches mentioned earlier in mainly two
ways: firstly, in most approaches, the authors focus on the trace generation
and use other tools to handle workload generation against the SUT, whereas
we do on-line workload generation from our models. Secondly, CBMG and
EFSM modeling techniques are suitable for modeling simple user scenarios;
otherwise, the model would become very complex and difficult to maintain,
unlike our proposed modeling technique.

Apte et al. [88] have proposed an approach, called AutoPerf, for gener-
ating load against a web application and measuring the response time and
throughput with respect to load levels (i.e., number of virtual users). Au-
toPerf runs resource profilers on the SUT. Based on the profiling data, it

37

adjusts the load levels and test duration. A CBMG is provided as an input
to AutoPerf for load generation. A limitation of AutoPerf is that it only
notifies the tester at the end of a test session whether the resources of the
load generating node were saturated during the test session. In contrast,
MBPeT continuously monitors the resource utilization of the load gener-
ation nodes. If the resources on a node get saturated, MBPeT initiates
another load generating node to maintain the load generation rate.
In Barna et al. [89], a model-based performance testing method for

transactional systems has been presented. The authors utilize a two-layers
queuing model to represent the software and hardware contention for re-
sources. They use analytical techniques to determine the workloads that
can trigger bottlenecks in the SUT. When compared to their approach, we
use a real implementation of the system for performance testing instead of
a model of the system.
Guan et al. [90] have presented an approach to evaluate the performance

of Web Map Tile Service (WMTS) by generating a workload. The authors
have introduced a new workload model, called HELP, which simulates the
user interactions with a WMTS map and statistically characterizes whole
tile request patterns, including session length, think time, session path, and
tile popularity (hotspots). They use LoadRunner [91] to generate a workload
using the HELP workload model. The approach is designed to work with
only WMTS applications. Our approach differs from their approach because
our PTA-based workload models are agnostic to the type of the SUT.
There are numerous commercial and open source performance testing

tools available on Internet [92]. JMeter [79] is the most popular open source
tool for performance testing of web applications. It is written in Java lan-
guage. Httperf [81] is another open source performance benchmarking tool.
The tool is capable of conducting both micro and macro-level benchmarks.
LoadRunner [91] is a commercial performance testing tool from Microfocus.
The tool can simulate a large number of virtual users in a distributed man-
ner to generate a workload. Each virtual user follows a script containing
prerecorded user scenarios. In contrast, we advocate for the use of models
to abstract user behavior and generate user load.

2.8 Conclusions

In this chapter, we have extended PTA modeling notation to characterize
the dynamic behavior of the real users more concisely and intuitively. We
have presented three methods to generate reasonably complex workload
models. We have defined several validation rules to check the correctness of
workload models.
We have discussed our model-based performance testing approach. The

38

approach uses the workload models to generate an on-the-fly realistic work-
load against the SUT. It is implemented as a tool in Python, called MBPeT,
which has a highly scalable distributed architecture, allowing it to achieve
a high workload generation rate. We have empirically evaluated our perfor-
mance testing approach by performing several experiments on an auction
web application. The results of the experiments show that our performance
testing approach can be used to generate a workload in order to benchmark
the performance of the SUT. MBPeT does not need extensive prior domain
knowledge or access to the source code of the SUT. Thus, it can be applied
to software applications in other domains by altering the workload model
and the test adapter with respect to the SUT.

39

40

Chapter 3

Performance Exploration of
Web-based Software Systems

Dijkstra estimated that it would take more than 10,000
years to exhaustively test a multiplier of two 27-bit
integers.

— Antonia Bertolino [93]

In the previous chapter, we have employed PTA models to capture the prob-
abilistic behavior of real users. We have used workload models to generate
load against the SUT in order to benchmark the performance of the SUT.
A workload model is usually created either by the tester manually based
on his/her domain knowledge about the SUT and intuitions or by mining
the common navigational patterns from usage log files. As a result, it typi-
cally represents the user scenarios that are most commonly executed by the
users. Therefore, some infrequent user scenarios that could trigger perfor-
mance bottlenecks on the SUT will be left untested. In this work, we define
performance bottlenecks as software defects, which degrade the performance
of the SUT unexpectedly [37].
Selecting the proper input values for the user scenarios is very impor-

tant in detecting the performance bottlenecks. It is indicated that almost
two-thirds of the performance bottlenecks are detectable on certain input
combinations [37]. However, exploring the input space manually and finding
those relevant input combinations that can identify performance bottlenecks
in a large-scale complex system within a feasible amount of time is a chal-
lenging task because there can be numerous input combinations [37, 94].
As we have briefly described in Chapter 1, ET is a software testing

technique which does not rely on a pre-defined set of test cases; instead the
tester continuously learns, creates, and executes test cases [36]. The tester
extracts new information and insights from the results of the previously

41

executed test cases and creates new, better test cases. The goal of ET
is to find software defects by learning the system behavior and being less
dependent on the test documentation. ET is usually performed manually
and requires rigorous domain knowledge and substantial efforts and time.
In this chapter, we present different novel exploratory performance testing
approaches to identify not only the worst-case user scenario with respect to
a given workload model but also a set of input combinations to the SUT
that can trigger performance bottlenecks on the SUT.

This chapter is divided into two main sections. Firstly, in Section 3.1,
we present our contributions to infer the user scenarios in a given workload
model that can cause high resource utilization on the SUT, resulting in
poor performance of the system. This section also presents the tool support
and demonstrates the applicability of the methods by conducting several
experiments. Secondly, Section 3.2 discusses an approach to explore a large
input space to identify the input combinations that can trigger performance
bottlenecks in a black-box system without any prior domain knowledge. In-
stead of exhaustively exploring the input space, the method only explores
those regions of the input space that have a higher chance of triggering per-
formance bottlenecks. Further, we describe the tool support of the approach
and investigate the applicability of it by carrying out different experiments
in the section. We conclude in Section 3.3.

3.1 Exploring User Scenario Space

In order to ensure performance requirements are met, testers need to iden-
tify the worst-case user scenario that can degrade the performance of the
SUT by creating the highest utilization of a given resource on the SUT. As
discussed before, user models used in performance testing are created based
on the domain knowledge of the tester or by mining the common naviga-
tional patterns from usage log files. Thus, some infrequent user scenarios
will be left untested. Manually inspecting the user scenario space to find
those infrequent user scenarios is a labor-intensive and error-prone activ-
ity because a model with 22 locations can represent more than 68 million
unique user scenarios [95]. In this section, we present three automated per-
formance exploration approaches to find the worst-case user scenario in a
given user model.

3.1.1 Mutation based exploration

In this method, we create several variants of the given workload model to
explore the user scenario space. The method is based on mutation test-
ing [96, 97].

42

Mutation testing is a fault-based software testing technique that is used
to evaluate the effectiveness of the existing test suites [98]. In this tech-
nique, one creates a set of faulty versions of the SUT, called mutants by
applying different mutation operators. Each mutation operator is designed
to make small syntactical changes to the original code of the program un-
der test (PUT). For example, a mutation operator changes the addition
arithmetic operator (i.e., +) with other operators (i.e., -, *, /) to create
mutants. Each mutant is executed against the test cases, and a mutant
is considered to be killed if the test results of the mutant and the original
PUT are different. The quality of the test cases is directly proportional to
the number of mutants killed. Specification mutation [99] is an extension
of mutation testing where we mutate the specification (instead of the code)
of the SUT to produce mutants. For example, Mi and Ben [100] propose a
specification mutation testing based approach where they mutate the UML
State Diagrams, for instance, by adding or removing the transitions. The
fundamental principle of the specification testing technique is to explore the
behavioral space of the SUT in order to find hidden defects.

Our Performance Exploration (PerfX) [101] approach is based on the
specification mutation, where we explore user scenario space to identify
performance bottlenecks. We randomly mutate the given workload model
by applying the following mutation operators to the model: (1) Change
Probability Distribution (CPD) operator alters the probabilistic distribution
of outgoing edges of a location; (2) Modify Think Time (MTT) operator
changes the user think time values of outgoing edges of a location. For
example, we applied the CPD operator to the model in Figure 3.1(a) to
produce the mutated model in Figure 3.1(b). The operator changed the
probability distribution of location 1 of the model in Figure 3.1(a). In this
work, we focus on only those mutation operators that modify the frequencies
of user actions. We avoid those mutation operators that can mutate the
functional behavior of the users by, for instance, changing the direction or
destination of the edges in the model, merging locations, replacing one user
action with another. These operators may create invalid behavior and could
be more useful in the context of robustness or negative testing [102] which
is a subject of future work.

The generated mutants of the workload model represent different obser-
vations in the user scenario space. We utilize each mutant for load genera-
tion separately using the MBPeT tool (described in Section 2.5) and record
the resource utilization of the SUT. We use the same test configuration and
the test adapter for each test session. Once all the load generation sessions
have been completed, we rank the mutants in relation to the resource uti-
lization caused by them on the SUT. We identify those mutants which have
caused the highest resource utilization with respect to each resource type

43

1

2

0.5 / 2 / login

3

0.3 / 3 / browse

4

0.2 / 2 / search

1.0 / 2 / logout 1.0 / 2 / exit

1

2

0.35 / 2 / login

3

0.18 / 3 / browse

4

0.46 / 2 / search

1.0 / 2 / logout 1.0 / 2 / exit

(a) Original workload model (b) Mutated workload model

Figure 3.1: Original vs mutated workload model

such as CPU, memory, and disk. By analyzing these mutants, the tester can
find the potential performance bottlenecks and enhance the performance of
the SUT.

Tool Support The method has been automated as a stand-alone tool de-
veloped in the Python programming language. The tool receives a workload
model and a selected mutation operator as inputs. It generates a set of mu-
tated workload models or mutants by mutating the given workload model.
This method utilizes the MBPeT tool to generate a workload using each
mutant in a separate test session. At the end of every test session, MBPeT
summarizes the maximum, average, minimum resource utilization created
by the mutant during the entire test session on the SUT and send the results
to our tool. Once all the test sessions have been carried out, our tool can
identify which mutants have created the highest resource utilization on the
SUT with respect to different resource types.

3.1.2 Exact method using graph-search algo-
rithms

In the previous approach, we rely on random mutations to explore the user
scenario space for performance bottlenecks. As a result, in order to find
the worst-case user scenario that can cause the highest resource utilization
on the SUT, we would need to rigorously explore the space by producing
and simulating a large number of mutants for workload generation, which
is a time-consuming process. In this section, we discuss a performance
exploration [95] approach (presented in Algorithm 1) that uses graph-search
algorithms to identify the worst-case user scenario in a given workload model
before using the model for workload generation.
In this method, we represent a workload model as a Discrete Time

44

Markov Chain (DTMC) [66] model. A DTMC workload model comprises
a finite set of states and edges. The labels on the edges represent two val-
ues: (1) the probability value specifies the chances of a certain edge being
chosen with respect to a probability mass function; (2) the user think time
between two subsequent actions. A DTMC workload model is similar to a
PTA workload model except that the user actions are associated with the
states instead of the edges of the model. Whenever a state is visited, a
corresponding user action is executed. For example, the DTMC model in
Figure 3.2 represents the aggressive user model shown in Figure 2.10. In
the DTMC model, the start() and exit() are the pseudo-states that express
the initial and the final state of the model, respectively. The simulation of
a workload model begins from the start() state and ends at the exit() state.
We use DTMC as a workload model for this and the next approach because
we can calculate the stationary distribution of the given DTMC model to
determine which states in the model will be visited more frequently than
the others based on the probability distribution of the model.

Figure 3.2: DTMC model of the aggressive user

We define the worst-case user scenario in a workload model as a path
(i.e., a sequence of user actions) in the model, which will trigger the highest
utilization of a given resource on the SUT over a sustained period of time.
The objective of our method is to find the worst-case user scenario, which
we denote as the worst path in a given workload model with respect to a

45

given resource type (e.g., CPU or memory).
First of all, we determine the average resource utilization of each user

action in the model. Once we have benchmarked every user action with
respect to a given resource, we identify all the elementary circuits (i.e., a
path in where only the first and last can appear twice [103]) in the model.
We sort all the circuits based on the average resource utilization per user
action. We pick the circuit with the highest average resource utilization
as the worst circuit. If the start() location exits in the worst circuit, then
this circuit is the worst-case user scenario. Otherwise, we find and merge
the shortest path from the start() location to any location in the worst
circuit to construct the worst-case user scenario. This allows the virtual
users to simulate the worst circuit more frequently than any other user
scenario in the model during load generation and thus create the highest
resource utilization on the SUT. The tester can use such a scenario to debug
the potential performance bottlenecks in the SUT in the presence of less
probable but high impact user scenarios.

Tool Support The method is fully automated with tool support. The
tool is based on Algorithm 1. It requires a workload model (G), resource
utilization of each user action (U r) for a given resource type (e.g., CPU or
memory), and the start state (INode) of the workload model as inputs. It
finds the worst circuit in the model that is an elementary circuit with the
highest average resource utilization per user action (lines 2 to 3). Next, it
merges the worst circuit with the shortest path from the start() location in
order to produce the worst-case user scenario if the worst circuit does not
contain the start() location; otherwise, the worst circuit is provided as the
worst-case user scenario (lines 4 to 8).

3.1.3 Approximate method using genetic algo-
rithms

The previous method identifies the worst-case user scenario in a given work-
load model, but it does not scale to large workload models with numerous
loops due to its exhaustive nature [95]. To overcome this scalability issue,
we present a performance exploration [95, 105] approach that uses genetic
algorithms (GA) [106] to find a near worst-case user scenario in a given
DTMC workload model.
GA is a heuristic algorithm that can find a near-optimal solution of dif-

ferent optimization problems by evolving a population of potential solutions
of that problem. It is based on the natural evolution of species, where a
new generation of solutions is created by applying various genetic opera-
tors. Each individual in the population is ranked according to its fitness

46

Algorithm 1 Graph-search based approach [95]
1: procedure WorstPath(G, Ur, INode)
2: all circuits ← FindAllElementaryCircuits(G) . Use Johnson’s
algorithm[103] to get a set of all elementary circuits

3: worst circuit ← SelectMax({(c, CRU(Ur, c)) | c ∈ all circuits}) . Select
the circuit with the highest resource utilization

4: if INode ∈/ worst circuit then
5: short paths ← ShortestPathsFrom(G, INode) . Get all
the shortest paths from the initial node to all the other nodes using Dijkstra’s
algorithm[104]

6: short paths to cir ← {p | p ∈ short paths ∧ p ∩ worst circuit =6 ∅}
7: min short path ← SelectMinLen(short paths to cir) . Select the
shortest path with the minimal length

8: worst path ← MergePaths(min short path, worst circuit)
9: else

10: worst path ← worst circuit
11: end if
12: end procedure
13: function CRU(RU, Path) . Calculate resource utilization per node of the

given P ath
14: return Sum({RU [n] | n ∈ P ath})÷ | P ath |
15: end function
16: function MergePaths(path, circuit) . Merge the given path with circuit
17: node joint ← path ∩ circuit
18: Q ← Queue(circuit)
19: top node ← Q.dequeue()
20: while top node =6 node joint do
21: Q.Enqueue(top node)
22: top node ← Q.dequeue()
23: end while
24: return path ∪ Q
25: end function

47

value that specifies the superiority of an individual with respect to other
individuals in the population. The individuals with higher fitness values
have higher chances of surviving and reproducing the offspring for the next
generation of solutions as compared to the individual with lower fitness
value, analogous to natural selection. After simulating a certain number of
generations of the solutions, the best solution across all the generations is
chosen to be a near-optimal solution of the given problem.

In our method, each individual in the population represents a workload
model with a different probability distribution. The first generation of the
population is created by randomly modifying the probability distributions
of the given workload model. We calculate the fitness value of each in-
dividual, which represents the expected level of resource utilization that
a workload model with a given probability distribution will create on the
SUT. The conjecture is that a workload model with a higher probability of
the worst-case user scenario will create a greater resource utilization. Thus,
the objective of our method is to find a workload model with the highest
probability of the worst-case user scenario. The next generation is obtained
by applying genetic operators to individuals with higher fitness values. We
simulate the evolution process for a fixed number of generations. At the end
of the process, we choose the individual with the highest fitness value among
all generations as the near-worst workload model. In order to extract the
near-worst case user scenario from the model, we start our walk from the
start() state in the model and select the outgoing edge on each state with
the highest probability. We halt when we revisit a state.

Tool Support The method is fully automated with tool support. The
tool is based on Algorithm 2. It requires a workload model (G), resource
utilization of each user action (U r) for a given resource type (e.g., CPU
or memory), crossover operator probability (Cp), mutation operator prob-
ability (Mp), mutation rate (Mr), population size (P), and the maximum
number of generations (I) as inputs. It starts the evolution process and
simulates the given number of generations of the given workload model. It
monitors different statistics (such as maximum, minimum, and average fit-
ness of the individuals) for every generation. At the end of the evolution
process, the tool walks through the workload model with the highest fit-
ness value among all the generations and provides the near-worst case user
scenario. The tool utilizes the DEAP [107] library to establish our genetic
algorithm.

48

Algorithm 2 Pseudocode of genetic algorithm [95]
1: procedure GA(I, P, G, Cp,Mp,Mr, U

r)
2: P op ← CreatePopulation(P, G). Randomly generate initial population
of size P based on the model G

3: for all Chromosome c ∈ P op do
4: Fitness(c, Ur) . Calculate fitness of a chromosome
5: end for
6: for i ← 1 to I do . Evolve the initial population for I generations
7: BinaryTournament(P op) . Select chromosomes for the next
generation

8: TwoPointCrossover(P op, Cp) . Use to two-point crossover operator
based on Cp probability

9: Mutate(P op, Mp,Mr) . Mutate the individuals based on Mp

probability
10: for all Chromosome c ∈ P op do
11: Fitness(c)
12: end for
13: end for
14: end procedure

3.1.4 Empirical Validation
In this section, we will demonstrate the applicability of our performance
exploration approaches by carrying out different experiments on an auction
web application, called YAAS. The YAAS web application has a REST-
ful [77] interface that is based on the HTTP protocol and is implemented
in the Python programming language.
In the first experiment, we have applied PerfX [101] to the user model

shown in Figure 3.3 and generated a set of 93 mutants of the workload
model in about 5 seconds. Each mutant is used for load generation using
MBPeT (discussed in Section 2.4) tool for 10 minutes. This load generation
step took approximately 15 hours. Based on the load generation results, we
have identified four mutants: MutantD, MutantM, MutantN, and MutantC,
which have created the highest disk, memory, network, and CPU utilization
on the SUT as compared to the other mutants, respectively. Table 3.1
presents the mutants with their resource utilization. The tester can further
analyze the identified mutants to inspect which user scenarios are causing
high resource utilization in order to debug and improve the performance of
the SUT.
In the second experiment, we demonstrate the applicability of our ex-

act [95] and approximate method [95]. We have applied both methods to
the DTMC user model shown in Figure 3.2. Both methods took less than 1
minute to identify the same worst-case user scenario for the CPU resource
in the given model. We have constructed a new workload model, namely the

49

0.25 I 3 I browse()

0.10 I 2 / browse()

0.60 141 browse()

0.40 I 3 I search(string)

0.30 I 3 I exit()

0.45 / 2 / get_bids(id)

0.50 I 6 f bid(id,price,username,password)

0.20 141 browse()

0.87 I 3 f get_auction(id)

0.05 I 4 I browse()

0.30 I 4 I exit()

0.03 I 2 / exit() 0.20 I 2 / exit()

Figure 3.3: Workload model

Resource Original MutantC MutantM MutantD MutantN
CPU (%) 76.22 92.42 71.44 91.63 89.47
Memory (GB/s) 3.28 1.50 3.37 0.97 0.93
Disk Write (KB/s) 117.04 76.16 104.38 247.69 76.56
Net Send (MB/s) 1.29 2.27 1.62 2.18 3.09
Net Recv. (KB/s) 71.62 90.02 80.12 114.11 116.16

Table 3.1: Resource utilization of the mutants vs original workload model.
A bold value is the highest value in that resource category.

worst path model, which includes only the identified user scenario by setting
the transition probabilities to 1. Figure 3.4 illustrates the worst path model,
where we have highlighted the identified user scenario with red edges.
We have utilized the worst path model in Figure 3.4, the original work-

load model in Figure 3.2, and nine random variants of the original workload
model for load generation using the MBPeT tool. These random variants
are created by randomly changing the probability distributions of the loca-
tions in the original model. The reason behind creating random variants of
the original model and using them for load generation is to show how much
the identified user scenario increases the CPU utilization on the SUT com-
pared to the different variants of the model. Figure 3.5 depicts the results of
the experiment. The average resource utilization caused by the worst path
model is approximately three times higher than the other workload models.
One can notice that, in the previous experiment, the approximate

method produces the worst-case user scenario. Since the method is based on
a heuristic algorithm (i.e., GA), we cannot guarantee that the method will
always be able to find the worst-case user scenario. The purpose of our third
experiment is to measure the accuracy of our approximate method. We have

50

1.0/2

0 .0/2

1.0/4

Figure 3.4: Worst path model with respect to CPU

randomly created eight sparse pseudo-workload models having a different
number of states and edges listed in Table 3.2. Every edge in pseudo-
workload models is associated with a random think time value; and every
state executes a dummy action, which causes a specific amount of hypo-
thetical resource utilization. In order to establish the statistical significance
of the results, we have applied our approximate to each pseudo-workload
model 10 times. The results of the experiment show that our method was
able to find the worst-case user scenario in 73% of the cases.

In the last experiment, we evaluate the scalability of our approximate
method. We have applied the exact and the approximate method to each
pseudo-workload method listed in Table 3.2 and monitored the execution
times of both methods. Figure 3.6 exhibits a comparison between the scal-
ability of the approximate and the exact method. One can observe that the
execution time of the exact method rises rapidly for the model with more
than 20 states.

51

I
I

I
I

,,----------
/

I
I

I
I

I

0

20

40

60

80

100

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

N
u

m
b

er
 o

f
u

se
rs

C
P

U
 U

sa
ge

 (
p

er
ce

n
ta

ge
)

Time (seconds)

Worst path model 9 Models with random probability distribution Original model Ramp

Figure 3.5: CPU utilization caused by the workload models

States Edges Elementary Circuits
10 23 25
12 42 270
14 50 2 030
16 73 53 211
18 85 189 776
19 95 907 861
20 103 6 141 014
21 111 12 764 464

Table 3.2: Random pseudo-workload models

3.1.5 Related Work
There are many approaches (e.g., [108, 109, 110, 111, 112]) that employ
performance modeling techniques to predict and find the performance bot-
tlenecks in web applications.
Jindal et al. [113] have presented a tool, called Terminus, for building

a regression-based performance model in order to predict the capacity of a
microservice (i.e., the maximum number of requests it can handle without
violating service level objective). The authors collect performance data by
conducting different load generation sessions and measuring the capacity of a
microservice on various deployment configurations. The performance data
is used to train the regression model. The results of the model are used
for capacity planning for the application user test (AUT) and bottleneck

52

...

0

50

100

150

200

250

300

10 12 14 16 18 19 20 21

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Generated sparse models (number of nodes)

Approximate Exact

Figure 3.6: Comparison between the execution times of the approximate
and the exact method

detection.
Duttagupta et al. [114] have proposed an analytical model-based ap-

proach to identify bottlenecks in software and hardware of the AUT by
evaluating the performance of the AUT in terms of the number of users.
The analytical model comprises two layers of queuing networks. It requires
the service demands of all software and hardware resources at each tier
of the AUT. The model is solved iteratively to obtain performance pre-
diction for the AUT. Gao et al. [115] also utilized a queuing network for
performance analysis and bottleneck identification by building a model of a
composite web service. A composite web service comprises various service
centers, and the internal control flow of those service centers is specified as
a Markov chain model.
Ayala-Rivera et al. [116] have presented an approach, namely DY-

NAMO, which modifies the workload during the performance test ses-
sion with respect to performance metrics of the SUT. The objective of
the approach is to find an appropriate workload which identifies workload-
dependent issues in the SUT. One needs to specify adaptive policies (e.g.,
when and how much the workload needs to be changed). These policies are
used by the approach to adjust the workload. Hernández-Orallo and Vila-
Carbó [117] have used a histogram-based workload model to characterize
web traffic distributions. The model is used to calculate the response time
and rejection probability distribution of HTTP requests using histogram
calculus. Bogárdi-Mészöly and Levendovszky [118] have customized the
Mean-Value Analysis evaluation algorithm to capture the behavior of the
thread pool and build a performance model. The proposed algorithm is
employed to infer the performance metrics of ASP.NET based web applica-
tions.
Xiao et al. [119] have proposed ΔInfer approach to identify Workload-

53

Dependent Performance Bottlenecks (WDPBs). The authors argued that
performance bottlenecks are caused due to the WDPB loops which exe-
cute resource-intensive statements. The approach identifies those loops for
a given workload by predicting iteration counts of WDPB loops using com-
plexity models for the workload size. Stewart and Shen [15] have proposed
a profile-driven performance modeling approach for multi-component web
services. Application profiles are constructed offline to capture component
resource requirements and inter-component communications. Subsequently,
the model is utilized to predict performance bottlenecks in the SUT with
respect to different operating configurations. Nistor et al. [120] have pre-
sented a tool, called Toddler, which identifies loops that perform similar
operations across iterations. The conjecture is that these loops are probably
executing redundant tasks, and fixing them could improve the performance
of the AUT. Toddler needs to instrument the code of the AUT and other
third-party libraries used in the code in order to monitor the loops.
To summarize, in all the studies presented above, the authors estimate

the performance of the system at design time using design specifications. In
contrast, we evaluate the performance of the system after it has been fully
implemented, and we use models that describe the expected behavior of
the user. There are several shortcomings regarding performance modeling
based approaches. For example, in many cases, design specifications are not
accessible on time for performance model construction [121]. Furthermore,
most of these approaches require access to the source code of the SUT, which
is not always feasible. Nowadays, modern software systems are incredibly
complex; as a result, it has become more difficult to predict the performance
of a complex system than weather [122].
There is a large amount of research work (e.g., [123, 124, 125, 126, 127])

which uses genetic algorithms to generate test data for software testing, but
most of the work is targeted towards functional testing. Garousi et al. [128]
have presented a model-based testing approach to find faults concerning
network traffic in a distributed system. The authors provide a UML [129]
model of the SUT as an input to a custom genetic algorithm for generating
stress test requirements. These requirements consist of certain control flow
paths in UML sequence diagrams, which can cause stress to the network.

3.2 Exploring the input space for identi-
fying performance bottlenecks

As we have stated before, almost two-thirds of the performance bottlenecks
are detectable on certain input combinations [37]. Executing all possible
input combinations in order to find those combinations that can trigger
performance bottlenecks in a large-scale complex system can be a time and

54

cost-intensive task because there can be numerous input combinations [37,
94]. In this section, we present a method to explore a large input space
to identify as many input combinations as possible for the user actions
that can trigger performance bottlenecks in a black-box system without
any prior domain knowledge. Instead of exhaustively exploring the input
space, our method only explores those regions of the input space that have
a higher chance of triggering performance bottlenecks. In this method, we
are not interested in sequences of the user actions, but individual input
combinations for the user actions.

Our method, namely PerfXRL [130], employs a Deep Reinforcement
Learning (DRL) [131] algorithm, called DDQN [132], to explore a large
input space of the SUT efficiently. DRL is an aggregation of Reinforcement
learning (RL) [133] and deep learning [134] methods. RL is a reward-based
machine learning technique where an agent learns by interacting with an
unknown environment in order to accomplish a goal. The agent collects
feedback (or a reward) from the environment by executing an action based
on the current state of the environment. The purpose of the agent is to
maximize the expected cumulative rewards over time by finding the optimal
(or a near-optimal) sequence of actions. In DRL, the agent employs Deep
Neural Networks (DNNs) to learn the environment. A DNN [134] is a multi-
layer neural network that can approximate a complex function by learning
higher-level representations of the given training data.

In our case, the unknown environment is the SUT and the main objec-
tive of the agent is to uncover as many input combinations as possible that
trigger performance bottlenecks by non-exhaustively exploring the input
space of the SUT. We denote those input combinations as relevant combi-
nations. The agent executes various input combinations against the SUT
while observing their performance impact on the SUT in a feedback loop,
as shown in Figure 3.7. The agent is trained in an episodic manner. In each
episode, the agent begins from a random input combination and executes
a predefined number of steps. At each step, we create a new input combi-
nation based on the action suggested by the agent. The input combination
is executed against the SUT. Based on the performance impact caused by
the combination, we determine the reward for the agent. A positive reward
is given for those input combinations which cause resource-intensive com-
putations on the SUT; otherwise, a negative reward is given to the agent.
The reward is used to improve the selection of future actions by the agent.
As the agent executes more input combinations, it starts to learn the in-
put space of the SUT and to execute those combinations that are likely
to cause resource utilization on the SUT. The identification of resource-
intensive computations is made by executing different input combinations
against the SUT and monitoring the deviations of the KPI values (e.g.,

55

input combination

PerfXRL KPI

SUT

Relevant Combinations

CPU load, disk usage, or elapsed execution time of the SUT) from certain
pre-configured acceptable performance thresholds. Such thresholds can be
derived from different sources such as requirement specifications or Service
Level Agreements (SLAs) and vary from system to system. During the
process, the approach maintains a list of the identified good combinations,
which can be used later on for debugging the performance of the SUT.

Figure 3.7: PerfXRL

Tool Support The method is fully automated with tool support. One
needs to define the input space of the SUT and the reward function for
the agent for the tool to work. Additionally, the tool requires parameter
values for the DDQN algorithm, such as the number of training steps per
episode and the number of episodes. Ahmad et al. [130] provide more details
about the parameters and their values. The tool executes the given number
of episodes and provides a list of relevant combinations found during the
performance exploration of the SUT. The tool employs the Keras-rl [135]
library to implement the DDQN algorithm.

3.2.1 Empirical Validation
In this section, we evaluate PerfXRL [130] by comparing it to random testing
that uniformly samples an input combination without replacement from the
input space of the SUT for a given number of times. Random testing has
been proven to be more effective than other systematic testing methods for
a black-box system with a large input space [136, 137, 138].
We have applied our approach to a reference web application RU-

BiS [139]. RUBiS implements an auction site. It has been widely used
in academia for performance evaluation1 . The size of the input space of
RUBiS is 3 100 000 (i.e., the total number of input combinations). For the

1http://scholar.google.com/scholar?q=Specification+and+Implementation+of+
Dynamic+Web+Site+Benchmarks

56

http://scholar.google.com/scholar?q=Specification+and+Implementation+of+Dynamic+Web+Site+Benchmarks
http://scholar.google.com/scholar?q=Specification+and+Implementation+of+Dynamic+Web+Site+Benchmarks

.L

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000
Number of input value combinations executed

0

20,000

40,000

60,000

80,000

100,000

Cu
m

ul
at

iv
e

pe
rfo

rm
an

ce
 b

ot
tle

ne
ck

s PerfXRL
Random testing

Figure 3.8: Comparison between the number of cumulative performance
bottlenecks found by PerfXRL and random testing

evaluation purpose, we uniformly injected artificial bottlenecks on 9% of
the total input combinations. We ran both approaches (i.e., PerfXRL and
random testing) against RUBiS for 30 times to establish the statistical sig-
nificance of the results. Each approach is allowed to execute 775 000 input
combinations, which is 25% of the total input combinations.

Figure 3.8 presents the cumulative number of artificial performance bot-
tleneck identified by PerfXRL and random testing after executing the same
amount of input combinations. The solid lines in the figure illustrate the
average values, while the shaded region encapsulating the lines expresses the
standard deviation. The standard deviation of random testing was compar-
atively small; therefore, it is not visible in the figure. On average, PerfXRL
and random testing identified about 100 800 and 58 405 bottlenecks, respec-
tively. In other words, PerfXRL found 72% more bottlenecks than random
testing after executing the same number of input combinations.

3.2.2 Related Work

Many researchers (e.g., [140, 141]) have investigated the topic of generating
test data for performance testing.

Burnim et al. [142] proposed a test input generation approach, called
WISE, which identifies worst-case inputs for a given program. The ap-
proach is based on symbolic execution. The approach exhaustively executes
the program for small input sizes and learns the relationship between the
complexity and the inputs, which is later on used to guide the symbolic
execution to search for worst-case test inputs of larger sizes. A similar ap-

57

proach has been proposed by Saumya et al. [143], called XSTRESSOR. The
approach builds a predictive model by running the given program under
test against small size test input data and monitoring the behavior of the
program. Subsequently, the model is used to predict the worst-case path
condition for large-scale test input. In another approach [144], the authors
have argued that the behavior of the program under test against small size
input does not accurately predict the behavior of the program against large
size input. They have proposed an approach, called PySE, which utilizes
symbolic execution to acquire the behavioral information and incrementally
updates its policy to drive the program execution toward the worst-case
using reinforcement learning. Aquino et al. [145] have combined symbolic
execution with a memetic search algorithm to find a path in the program un-
der test that exhibits the worst-case execution time of the program. Zhang
et al. [94] have integrated symbolic execution with an iterative-deepening
search method to eliminate unpromising paths and explore only those paths
that are likely to induce resource-consuming behavior in the program under
test. Chen et al. [146] have proposed another symbolic execution-based ap-
proach, called PerfPlotter, which identifies program paths in terms of inputs
for revealing best-case and worst-case execution times of the program under
test.

Toffola et al. [147] have proposed an approach, namely PerfSyn, to create
test programs that can identify performance bottlenecks at the method level
of the program under test. The approach employs graph search algorithms
to mutate the test programs and guide the search towards mutations that
can uncover bottlenecks in the methods. Lemieux et al. [148] have presented
an approach, called Perffuzz, for identifying the inputs that can expose
the performance problems in the program under test. The approach uses
feedback-directed mutational fuzzing to produce inputs without any domain
knowledge about the program. However, the approach does require access
to the source code of the program.

Furthermore, there are some approaches [149, 150] that focus on finding
a certain input combination that maximizes a specific criterion, for example,
computational complexity or execution time.

In summary, all the methods presented in this section have shortcom-
ings, such as requiring rigorous domain knowledge about the SUT or having
access to the source code of the SUT. In contrast, we aim to identify as many
input combinations as possible that can trigger performance bottlenecks in
a black-box system without any prior domain knowledge.

58

3.3 Conclusion

In this chapter, we have presented a set of novel tool-supported perfor-
mance exploration approaches to infer the worst-case user scenarios in a
given workload model that can cause high resource utilization on the SUT,
resulting in poor performance of the system. The results of the experiments
presented in Section 3.1.4 show that the proposed approaches can be used to
reveal the potential performance bottlenecks in the SUT by automatically
exploring the user scenario space.
Moreover, we have introduced an approach to explore a large input space

of the SUT to identify the input combinations that can trigger performance
bottlenecks in a black-box system without any prior domain knowledge. The
results of the experiments conducted in Section 3.2.1 substantiate that our
approach is more effective than random testing in finding the input combi-
nations which can trigger resource-intensive computations on the SUT.
The proposed approaches do not need extensive prior domain knowledge

or access to the source code of the SUT. Therefore, they can be applied to
software applications in other domains by modifying their input artifacts
such as workload models and input spaces with respect to those specific
applications.

59

60

Chapter 4

Conclusions and Future
Work

“An ounce of performance is worth pounds of promises.”

— Mae West

This chapter summaries our main contributions. Consequently, we discuss
the limitations of the research. The final section provides an overview of
possible directions in which the work could be continued.

4.1 Summary

As we have previously mentioned in Chapter 1, the problem targeted in
this thesis is the use of automated approaches to test and improve the per-
formance of software systems. In Chapter 2, we proposed our model-based
performance testing approach. The approach uses the workload models to
generate an on-the-fly realistic workload against the SUT. We have pre-
sented how PTA models can be used to represent the dynamic behavior
of real users more accurately than the sequential scripts. We have pre-
sented three systematic methods to generate user models: (1) mining the
common navigational patterns from the usage log files; (2) capturing the
HTTP requests made by the browser to the SUT in real-time; (3) inspect-
ing the requirement specifications manually. Further, we have defined a
set of validation rules to ensure the syntactic and semantic correctness of
the workload models. We have implemented the approach as a tool called
Model-based Performance Testing (MBPeT). The tool is able to parallelize
the load generation process among several computing nodes in order to
achieve a high load generation rate. Throughout the performance test ses-
sion, MBPeT monitors different KPIs such as response time, error rate,

61

resource utilization, and throughput. The utility of the MBPeT is demon-
strated by conducting several test sessions. The results show that MBPeT
can generate a realistic workload in order to benchmark the performance of
the SUT effectively.
In Chapter 3, we have presented three model-based performance explo-

ration approaches: the mutation-based, the approximate, and the exact ap-
proach. These approaches are used to infer the worst user scenario in a given
workload model that can cause high resource utilization on the SUT, result-
ing in poor performance of the system. Such user scenarios are beneficial to
identify potential performance bottlenecks in the SUT. The mutation-based
approach explores the user scenario space randomly. Therefore, it does not
guarantee to find the worst user scenario, and it needs to be run for a sig-
nificant amount of time in order to get better results. The exact approach
is deterministic and always provides the worst user scenario; however, it
does not scale well to large models with numerous loops. The approximate
approach utilizes genetic algorithms to explore the user scenario space. It
cannot always find the worst user scenario, but it can identify a near-worst
user scenario faster than the other methods, even for large models. An as-
sessment of the approaches shows that the worst user scenario does trigger
more resource-intensive computations on the SUT and cause more stress to
the SUT as compared to the original model.
Nowadays, systems exhibit huge input spaces with many input parame-

ters and large ranges. As a result, it has become impractical to exhaustively
test all possible input combinations in order to identify performance bottle-
necks. It is indicated that almost two-thirds of the performance bottlenecks
are detectable on certain input combinations [37]. To address this problem,
in Chapter 3, we have introduced a methodology to explore a large space
of input combinations to identify performance bottlenecks in a black-box
system without any prior domain knowledge. The approach is implemented
as a tool called PerfXRL. The tool only explores a subset of the input space
and tries to find as many input combinations as possible, which can trigger
performance bottlenecks in the SUT. Our evaluation of the method indicates
that it is effective enough to detect 72% more bottlenecks than alternative
approaches.

4.2 Limitations

One of the primary limitations relate to all the proposed approaches is the
restricted validation that is conducted over two web applications. The pro-
posed approaches are supposed to work with all kinds of software systems
where one can directly interact with them through their public interfaces.
However, in this thesis, we perform validation only on web applications be-

62

cause the research work presented in this thesis has been carried out over
several research projects that focus mainly on web application systems. An-
other limitation is that we have not tested the maximum load generation
capacity of our MBPeT tool (presented in Chapter 2). During our evalu-
ation, the tool was hosted on a private cloud featuring an 8-core CPU, 16
GB of memory, and 7200 rpm hard drive.
We have validated the PerfXRL tool by randomly injecting artificial

bottlenecks into the subject application. Therefore, there is a chance that
we may get different results when we run PerfXRL against a system with
real bottlenecks. However, this experimental design allowed us to evaluate
PerfXRL in a controlled environment and get reliable results.
For PerfXRL, like other machine learning-based approaches, one needs

to tune some hyperparameters to get good results. Further, one set of
values of hyperparameters for one case study might not work well for others.
During our evaluation, we have selected the values for hyperparameters
based on the practical experiences reported by other researchers [131, 132].

4.3 Future Work

There are many directions for future research in order to enhance and ad-
vance the approaches presented in this thesis. We have only tested the
MBPeT tool in the context of web applications. We aim to apply the tool
to the software systems from the other domains. Furthermore, as discussed
in the previous section, the tool has not been tested for its maximum load
generation capacity. We plan to deploy it on public clouds such as Amazon
EC21 to benchmark its load generation capacity.
The approximate approach (discussed in Chapter 3) to infer the worst

user scenario optimizes a given workload model for a single resource type
(e.g., CPU, memory, or disk). We aim to employ a multi-objective optimiza-
tion algorithm [151] for optimizing the model for more than one resource
type. A similar improvement can be made to our PerfXRL approach, where
we are just using one KPI (i.e., elapsed execution time) to identify per-
formance bottlenecks. In the future, we plan to utilize several KPIs to
recognize performance bottlenecks.

1https://aws.amazon.com/ec2/

63

https://aws.amazon.com/ec2/

64

Bibliography

[1] S. Lauesen. Software Require-
ments: Styles and Techniques.
Addison-Wesley, 2002.

[2] A. M. Turing. On Computable
Numbers, with an Applica-
tion to the Entscheidungsprob-
lem. Proceedings of the Lon-
don Mathematical Society, s2-
42(1):230–265, 01 1937.

[3] F. C. Williams. Early comput-
ers at Manchester University.
Radio and Electronic Engineer,
45(7):327–331, July 1975.

[4] F. C. Williams and T. Kil-
burn. Electronic Digital Com-
puters. Nature, 162(4117):487–
487, 1948.

[5] John W. Tukey. The Teach-
ing of Concrete Mathematics.
The American Mathematical
Monthly, 65(1):1–9, 1958.

[6] Marc Andreessen. Why soft-
ware is eating the world. Wall
Street Journal, 20(2011):C2,
2011.

[7] Martin Hiller. Thoughts
on the Future of the Au-
tomotive Electronic Architec-
ture. Presentations at the
FUSE Final Seminar, https:

//bit.ly/2FJ24HR, Septem-
ber 2016. Online; accessed on
19th September, 2019.

[8] Ondrej Burkacky, Johannes
Deichmann, Georg Doll, and
Christian Knochenhauer. Re-
thinking car software and elec-
tronics architecture. https:
//mck.co/2Tf7Qcq, February
2018. Online; accessed on 19th
September, 2019.

[9] Paul A. Judas and Lorraine E.
Prokop. A historical compila-
tion of software metrics with
applicability to NASA’s Orion
spacecraft flight software siz-
ing. Innovations in Sys-
tems and Software Engineer-
ing, 7(3):161–170, Sep 2011.

[10] Mark Norris. Understand-
ing networking technology:
concepts, terms, and trends.
Artech House, Inc., 1999.

[11] System Architecture Vir-
tual Integration. Motivation
for Advancing the SAVI
Program. https://savi.
avsi.aero/about-savi/
savi-motivation/, 2006.
Online; accessed on 19th
September, 2019.

65

https://bit.ly/2FJ24HR
https://bit.ly/2FJ24HR
https://mck.co/2Tf7Qcq
https://mck.co/2Tf7Qcq
https://savi.avsi.aero/about-savi/savi-motivation/
https://savi.avsi.aero/about-savi/savi-motivation/
https://savi.avsi.aero/about-savi/savi-motivation/

[12] Frank Elberzhager and
Matthias Naab. High qual-
ity at short time-to-market:
Challenges towards this goal
and guidelines for the real-
ization. In Dietmar Winkler,
Stefan Biffl, and Johannes
Bergsmann, editors, Software
Quality: Methods and Tools
for Better Software and Sys-
tems, pages 121–132, Cham,
2018. Springer International
Publishing.

[13] D Zubrow. IEEE stan-
dard classification for software
anomalies. IEEE Computer
Society, 2009.

[14] ISTQB. Certified Tester Foun-
dation Level Syllabus. https:
//bit.ly/2FNgbfj, 2018. On-
line; accessed on 19th Septem-
ber, 2019.

[15] S McConnell. Code Complete:
A Practical Handbook of Soft-
ware Construction 2nd Edi-
tion. Redmond. Washington:
Microsoft Press, 2009.

[16] Mark Dowson. The ariane 5
software failure. ACM SIG-
SOFT Software Engineering
Notes, 22(2):84, 1997.

[17] WIRED. Metric Math Mis-
take Muffed Mars Meteorol-
ogy Mission. https://bit.
ly/2QMm3fh, 2010. Online;
accessed on 19th September,
2019.

[18] NASA. Mars Climate Orbiter
Team Finds Likely Cause of

Loss. https://go.nasa.gov/
36QOAWu, September 1999. On-
line; accessed on 19th Septem-
ber, 2019.

[19] Tricentis. Software Fail Watch:
5th Edition. https://bit.
ly/35L4hgB, 2017. Online;
accessed on 19th September,
2019.

[20] Luciano Baresi and Mauro
Pezzè. An introduction to soft-
ware testing. Electronic Notes
in Theoretical Computer Sci-
ence, 148(1):89 – 111, 2006.
Proceedings of the School of
SegraVis Research Training
Network on Foundations of
Visual Modelling Techniques
(FoVMT 2004).

[21] James A Whittaker. What is
software testing? And why is
it so hard? Software, IEEE,
17(1):70–79, 2000.

[22] Paul Ammann and Jeff Of-
futt. Introduction to software
testing. Cambridge University
Press, 2008.

[23] Patrice Godefroid, Michael Y.
Levin, and David Molnar.
Sage: Whitebox fuzzing for
security testing. Queue,
10(1):20:20–20:27, January
2012.

[24] Glenford J. Myers, Corey San-
dler, and Tom Badgett. The
Art of Software Testing. Wiley
Publishing, 3rd edition, 2011.

66

https://bit.ly/2FNgbfj
https://bit.ly/2FNgbfj
https://bit.ly/2QMm3fh
https://bit.ly/2QMm3fh
https://go.nasa.gov/36QOAWu
https://go.nasa.gov/36QOAWu
https://bit.ly/35L4hgB
https://bit.ly/35L4hgB

[25] Boris Beizer. Software Test-
ing Techniques (2Nd Ed.). Van
Nostrand Reinhold Co., New
York, NY, USA, 1990.

[26] G.D. Everett and R. McLeod.
Software Testing: Testing
Across the Entire Software
Development Life Cycle. Wiley
- IEEE. Wiley, 2007.

[27] Mark Utting and Bruno Leg-
eard. Practical Model-Based
Testing: A Tools Approach.
Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA,
2007.

[28] Mark Utting, Alexander
Pretschner, and Bruno Leg-
eard. A taxonomy of model-
based testing approaches.
Software Testing, Verification
and Reliability, 22(5):297–312,
2012.

[29] Margus Veanes, Colin Camp-
bell, Wolfram Schulte, and
Nikolai Tillmann. Online
testing with model programs.
SIGSOFT Softw. Eng. Notes,
30(5):273–282, September
2005.

[30] Justyna Zander, Ina Schiefer-
decker, and Pieter J Moster-
man. Model-based testing for
embedded systems. CRC press,
2011.

[31] Filippos I Vokolos and Elaine J
Weyuker. Performance test-
ing of software systems. In
Proceedings of the 1st inter-
national workshop on Software

and performance, pages 80–87.
ACM, 1998.

[32] Sai Matam and Jagdeep Jain.
Performance Testing Primer,
pages 3–12. Apress, Berkeley,
CA, 2017.

[33] BM Subraya and SV Subrah-
manya. Object driven perfor-
mance testing of web appli-
cations. In Quality Software,
2000. Proceedings. First Asia-
Pacific Conference on, pages
17–26. IEEE, 2000.

[34] Bugzilla@Mozilla. Bugzilla
keyword descriptions.
https://bugzilla.mozilla.
org/describekeywords.cgi.
Online; accessed on 19th
September, 2019.

[35] E.J. Weyuker and F.I. Voko-
los. Experience with perfor-
mance testing of software sys-
tems: issues, an approach, and
case study. Software Engineer-
ing, IEEE Transactions on,
26(12):1147–1156, 2000.

[36] Pierre Bourque, Richard E.
Fairley, and IEEE Computer
Society. Guide to the Software
Engineering Body of Knowl-
edge (SWEBOK(R)): Version
3.0. IEEE Computer Society
Press, Washington, DC, USA,
3rd edition, 2014.

[37] Guoliang Jin, Linhai Song, Xi-
aoming Shi, Joel Scherpelz,
and Shan Lu. Understanding
and detecting real-world per-
formance bugs. In Proceedings

67

https://bugzilla.mozilla.org/describekeywords.cgi
https://bugzilla.mozilla.org/describekeywords.cgi

of the 33rd ACM SIGPLAN
Conference on Programming
Language Design and Imple-
mentation, PLDI ’12, pages
77–88, New York, NY, USA,
2012. ACM.

[38] San Murugesan, Yogesh Desh-
pande, Steve Hansen, and
Athula Ginige. Web Engineer-
ing: a New Discipline for De-
velopment of Web-Based Sys-
tems, pages 3–13. Springer
Berlin Heidelberg, Berlin, Hei-
delberg, 2001.

[39] Jeff Offutt. Quality attributes
of web software applications.
IEEE Softw., 19(2):25–32, mar
2002.

[40] D. Gourley, B. Totty, M. Sayer,
A. Aggarwal, and S. Reddy.
HTTP: The Definitive Guide.
Definitive Guides. O’Reilly
Media, Incorporated, 2002.

[41] Oswaldo Olivo, Isil Dillig, and
Calvin Lin. Static detection of
asymptotic performance bugs
in collection traversals. In
ACM SIGPLAN Notices, vol-
ume 50, pages 369–378. ACM,
2015.

[42] Chia Hung Kao, Chun Cheng
Lin, and Juei-Nan Chen. Per-
formance testing framework
for rest-based web applica-
tions. In Quality Software
(QSIC), 2013 13th Interna-
tional Conference on, pages
349–354. IEEE, 2013.

[43] Daniel A Menascé. Load test-
ing of web sites. Internet
Computing, IEEE, 6(4):70–74,
2002.

[44] T. F. Abdelzaher, K. G. Shin,
and N. Bhatti. Performance
guarantees for web server end-
systems: a control-theoretical
approach. IEEE Transac-
tions on Parallel and Dis-
tributed Systems, 13(1):80–96,
Jan 2002.

[45] Ben Shneiderman. Response
time and display rate in
human performance with com-
puters. ACM Comput. Surv.,
16(3):265–285, September
1984.

[46] Irina Ceaparu, Jonathan
Lazar, Katie Bessiere, John
Robinson, and Ben Shneider-
man. Determining causes and
severity of end-user frustra-
tion. International Journal of
Human–Computer Interaction,
17(3):333–356, 2004.

[47] Akamai. Akamai reveals 2
seconds as the new threshold
of acceptability for ecommerce
web page response times.
https://bit.ly/2sjUvEy,
2009. Retrieved: Septem-
ber, 2015.

[48] Greg Linden. Marissa Mayer
at Web 2.0. https://bit.ly/
2TlaYng, November 2006. On-
line; accessed on 19th Septem-
ber, 2019.

68

https://bit.ly/2sjUvEy
https://bit.ly/2TlaYng
https://bit.ly/2TlaYng

[49] R. Longbotham and R. Ko-
havi. Online experiments:
Lessons learned. Computer,
40(09):103–105, sep 2007.

[50] Daniel A. Menascé and Virǵılio
A. F. Almeida. Challenges
in scaling e-business sites. In
26th International Computer
Measurement Group Confer-
ence, December 10-15, 2000,
Orlando, FL, USA, Proceed-
ings, pages 329–336. Computer
Measurement Group, 2000.

[51] Philipp Leitner and Cor-Paul
Bezemer. An exploratory
study of the state of practice
of performance testing in java-
based open source projects.
In Proceedings of the 8th
ACM/SPEC on International
Conference on Performance
Engineering, ICPE ’17, page
373–384, New York, NY, USA,
2017. Association for Comput-
ing Machinery.

[52] Ian Sommerville. Software En-
gineering (7th Edition). Pear-
son Addison Wesley, 2004.

[53] J Shaw. Web application per-
formance testing - a case study
of an on-line learning applica-
tion. BT Technology Journal,
18(2):79–86, 2000.

[54] N. J. Gunther. Hit-and-run
tactics enable guerrilla capac-
ity planning. IT Professional,
4(4):40–46, July 2002.

[55] Brady Forrest. Bing and
Google Agree: Slow Pages

Lose Users. https://bit.ly/
2tUxU1M, June 2009. Online;
accessed on 19th September,
2019.

[56] Ron Kohavi, Randal M.
Henne, and Dan Sommerfield.
Practical guide to controlled
experiments on the web:
Listen to your customers not
to the hippo. In Proceedings
of the 13th ACM SIGKDD
International Conference on
Knowledge Discovery and
Data Mining, KDD ’07, page
959–967, New York, NY,
USA, 2007. Association for
Computing Machinery.

[57] Connie U Smith and Lloyd G
Williams. Performance solu-
tions: a practical guide to cre-
ating responsive, scalable soft-
ware, volume 1. Addison Wes-
ley Longman Publishing Co.,
Inc., 2002.

[58] A. Nistor, T. Jiang, and
L. Tan. Discovering, report-
ing, and fixing performance
bugs. In 2013 10th Work-
ing Conference on Mining
Software Repositories (MSR),
pages 237–246, May 2013.

[59] Shahed Zaman, Bram Adams,
and Ahmed E. Hassan. A qual-
itative study on performance
bugs. In Proceedings of the 9th
IEEE Working Conference on
Mining Software Repositories,
MSR ’12, page 199–208. IEEE
Press, 2012.

69

https://bit.ly/2tUxU1M
https://bit.ly/2tUxU1M

[60] Dirk Draheim, John Grundy,
John Hosking, Christof Lut-
teroth, and Gerald Weber.
Realistic load testing of web
applications. In Software
Maintenance and Reengineer-
ing, 2006. CSMR 2006. Pro-
ceedings of the 10th European
Conference on, pages 11–pp.
IEEE, 2006.

[61] Hilary J. Holz, Anne Ap-
plin, Bruria Haberman, Don-
ald Joyce, Helen Purchase, and
Catherine Reed. Research
methods in computing: What
are they, and how should we
teach them? In Work-
ing Group Reports on ITiCSE
on Innovation and Technology
in Computer Science Educa-
tion, ITiCSE-WGR ’06, page
96–114, New York, NY, USA,
2006. Association for Comput-
ing Machinery.

[62] Ken Peffers, Tuure Tuunanen,
Marcus A. Rothenberger, and
Samir Chatterjee. A design sci-
ence research methodology for
information systems research.
Journal of Management Infor-
mation Systems, 24(3):45–77,
2007.

[63] Tanwir Ahmad, Fredrik Ab-
bors, Dragos Truscan, and
Ivan Porres. Model-Based Per-
formance Testing Using the
MBPeT Tool. Technical Re-
port 1066, 2013.

[64] Fredrik Abbors, Dragos Tr-
uscan, and Tanwir Ahmad.

Tool support for automated
workload model creation from
web server logs. Technical Re-
port 1112, 2014.

[65] Marta Kwiatkowska, Gethin
Norman, Roberto Segala, and
Jeremy Sproston. Automatic
verification of real-time sys-
tems with discrete probabil-
ity distributions. Theoretical
Computer Science, 282(1):101
– 150, 2002. Real-Time and
Probabilistic Systems.

[66] Charles Miller Grinstead and
James Laurie Snell. Introduc-
tion to probability. American
Mathematical Soc., 2012.

[67] G.E.P. Box and N.R. Draper.
Empirical Model-Building and
Response Surfaces. Wiley Se-
ries in Probability and Statis-
tics. Wiley, 1987.

[68] Maria Calzarossa, Luisa Mas-
sari, and Daniele Tessera.
Workload Characterization Is-
sues and Methodologies, pages
459–482. Springer Berlin Hei-
delberg, Berlin, Heidelberg,
2000.

[69] S. Barber. Creating effective
load models for performance
testing with incomplete empir-
ical data. In Proceedings. Sixth
IEEE International Workshop
on Web Site Evolution, pages
51–59, Sep. 2004.

[70] Soumen Chakrabarti. Chap-
ter 2 - crawling the web. In

70

Soumen Chakrabarti, editor,
Mining the Web, The Morgan
Kaufmann Series in Data Man-
agement Systems, pages 17 –
43. Morgan Kaufmann, San
Francisco, 2003.

[71] GSMA. The State of Mobile
Internet Connectivity 2019.
https://bit.ly/30iIE6s,
2019. Online; accessed on 19th
September, 2019.

[72] Barry C. Arnold. Pareto and
Generalized Pareto Distribu-
tions, pages 119–145. Springer
New York, New York, NY,
2008.

[73] J. B. MacQueen. Some meth-
ods for classification and anal-
ysis of multivariate observa-
tions. In L. M. Le Cam and
J. Neyman, editors, Proc. of
the fifth Berkeley Symposium
on Mathematical Statistics and
Probability, volume 1, pages
281–297. University of Califor-
nia Press, 1967.

[74] Apache. HTTP Sever
Project - Log Files.
https://httpd.apache.org/
docs/current/logs.html,
2019. Online; accessed on 19th
September, 2019.

[75] Microsoft. Configure Log-
ging in IIS. https://bit.
ly/2Tkgaru, 2013. Online;
accessed on 19th September,
2019.

[76] Fredrik Abbors, Tanwir Ah-
mad, Dragos Truscan, and

Ivan Porres. Performance
Testing in the Cloud using
MBPeT, page 191–225. TUCS
General Publication. Turku
Centre for Computer Science,
2013.

[77] Leonard Richardson and Sam
Ruby. Restful web services.
O’Reilly, first edition, 2007.

[78] Christian Vögele, André van
Hoorn, Eike Schulz, Wilhelm
Hasselbring, and Helmut Kr-
cmar. Wessbas: extrac-
tion of probabilistic workload
specifications for load testing
and performance prediction—
a model-driven approach for
session-based application sys-
tems. Software & Systems
Modeling, 17(2):443–477, May
2018.

[79] The Apache Software Founda-
tion. Apache JMeter. http:
//jmeter.apache.org/. On-
line; accessed on 19th Septem-
ber, 2019.

[80] Mahnaz Shams, Diwakar Kr-
ishnamurthy, and Behrouz Far.
A model-based approach for
testing the performance of web
applications. In Proceedings
of the 3rd International Work-
shop on Software Quality As-
surance, SOQUA ’06, page
54–61, New York, NY, USA,
2006. Association for Comput-
ing Machinery.

[81] David Mosberger and Tai Jin.
Httperf—a tool for measur-

71

https://bit.ly/30iIE6s
https://httpd.apache.org/docs/current/logs.html
https://httpd.apache.org/docs/current/logs.html
https://bit.ly/2Tkgaru
https://bit.ly/2Tkgaru
http://jmeter.apache.org/
http://jmeter.apache.org/

ing web server performance.
SIGMETRICS Perform. Eval.
Rev., 26(3):31–37, December
1998.

[82] Giancarlo Ruffo, Rossano Schi-
fanella, Matteo Sereno, and
Roberto Politi. WALTy: A
user behavior tailored tool
for evaluating web applica-
tion performance. In Net-
work Computing and Applica-
tions, 2004.(NCA 2004). Pro-
ceedings. Third IEEE Interna-
tional Symposium on, pages
77–86. IEEE, 2004.

[83] Daniel A. Menascé,
Lawrence W. Dowdy, and
Virǵılio A. F. Almeida.
Performance by Design -
Computer Capacity Planning
By Example. Prentice Hall,
2004.

[84] Diwakar Krishnamurthy,
Jerome A. Rolia, and
Shikharesh Majumdar. A
synthetic workload gener-
ation technique for stress
testing session-based systems.
IEEE Trans. Software Eng.,
32(11):868–882, 2006.

[85] Henning Schulz, Tobias
Angerstein, and André van
Hoorn. Towards automating
representative load testing in
continuous software engineer-
ing. In Companion of the 2018
ACM/SPEC International
Conference on Performance
Engineering, ICPE ’18, page
123–126, New York, NY,

USA, 2018. Association for
Computing Machinery.

[86] S. M. Shariff, H. Li, C. Beze-
mer, A. E. Hassan, T. H. D.
Nguyen, and P. Flora. Im-
proving the testing efficiency
of selenium-based load tests.
In Proc. IEEE/ACM 14th Int.
Workshop Automation of Soft-
ware Test (AST), pages 14–20,
May 2019.

[87] Satish Gojare, Rahul Joshi,
and Dhanashree Gaigaware.
Analysis and design of se-
lenium webdriver automation
testing framework. Procedia
Computer Science, 50:341 –
346, 2015. Big Data, Cloud
and Computing Challenges.

[88] Varsha Apte, T. V. S.
Viswanath, Devidas Gawali,
Akhilesh Kommireddy, and
Anshul Gupta. Autoperf:
Automated load testing and
resource usage profiling of
multi-tier internet applica-
tions. In Walter Binder,
Vittorio Cortellessa, Anne
Koziolek, Evgenia Smirni, and
Meikel Poess, editors, Proceed-
ings of the 8th ACM/SPEC
on International Conference
on Performance Engineering,
ICPE 2017, L’Aquila, Italy,
April 22-26, 2017, pages
115–126. ACM, 2017.

[89] Cornel Barna, Marin Litoiu,
and Hamoun Ghanbari.
Model-based performance

72

testing: Nier track. In Soft-
ware Engineering (ICSE),
2011 33rd International Con-
ference on, pages 872–875.
IEEE, 2011.

[90] Xuefeng Guan, Bo Cheng, Ai-
hong Song, and Huayi Wu.
Modeling users’ behavior for
testing the performance of a
web map tile service. Transac-
tions in GIS, 18(S1):109–125,
2014.

[91] Microfocus. LoadRunner.
https://bit.ly/2QSUeCc,
2020. Online; accessed on 19th
Jan, 2020.

[92] I. Molyneaux. The Art of Ap-
plication Performance Testing:
From Strategy to Tools. The-
ory in practice. O’Reilly Me-
dia, 2014.

[93] Antonia Bertolino. Soft-
ware testing research and prac-
tice. In Egon Börger, An-
gelo Gargantini, and Elvinia
Riccobene, editors, Abstract
State Machines 2003, pages 1–
21, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[94] Pingyu Zhang, Sebastian El-
baum, and Matthew B. Dwyer.
Automatic generation of load
tests. In Proceedings of the
2011 26th IEEE/ACM Inter-
national Conference on Au-
tomated Software Engineering,
ASE ’11, pages 43–52, Wash-
ington, DC, USA, 2011. IEEE
Computer Society.

[95] Tanwir Ahmad, Dragos Tr-
uscan, and Ivan Porres. Iden-
tifying worst-case user sce-
narios for performance test-
ing of web applications using
markov-chain workload mod-
els. Future Generation Com-
puter Systems, 87:910 – 920,
2018.

[96] Richard A DeMillo, Richard J
Lipton, and Frederick G Say-
ward. Hints on test data se-
lection: Help for the practic-
ing programmer. Computer,
11(4):34–41, 1978.

[97] Richard G. Hamlet. Testing
programs with the aid of a
compiler. Software Engineer-
ing, IEEE Transactions on,
(4):279–290, 1977.

[98] Y. Jia and M. Harman. An
analysis and survey of the de-
velopment of mutation testing.
IEEE Transactions on Soft-
ware Engineering, 37(5):649–
678, Sep. 2011.

[99] Timothy A. Budd and Ajei S.
Gopal. Program testing by
specification mutation. Com-
puter Languages, 10(1):63 – 73,
1985.

[100] Lei Mi and Kerong Ben. A
method of software specifica-
tion mutation testing based on
uml state diagram for consis-
tency checking. Procedia En-
gineering, 15:110 – 114, 2011.
CEIS 2011.

73

https://bit.ly/2QSUeCc

[101] Tanwir Ahmad, Fredrik Ab-
bors, and Dragos Truscan. Au-
tomatic performance space ex-
ploration of web applications.
Lecture Notes in Computer
Science, 9512:223–235, 2016.

[102] Michael Olan. Unit testing:
test early, test often. Journal
of Computing Sciences in Col-
leges, 19(2):319–328, 2003.

[103] Donald B Johnson. Finding
all the elementary circuits of
a directed graph. SIAM Jour-
nal on Computing, 4(1):77–84,
1975.

[104] Michael L. Fredman and
Robert Endre Tarjan. Fi-
bonacci heaps and their uses
in improved network opti-
mization algorithms. J. ACM,
34(3):596–615, jul 1987.

[105] Tanwir Ahmad and Dragos Tr-
uscan. Automatic performance
space exploration of web ap-
plications using genetic algo-
rithms. In Proceedings of the
31st Annual ACM Symposium
on Applied Computing, SAC
’16, pages 795–800, New York,
NY, USA, 2016. ACM.

[106] Mandavilli Srinivas and
Lalit M Patnaik. Genetic algo-
rithms: A survey. Computer,
27(6):17–26, 1994.

[107] Félix-Antoine Fortin, François-
Michel De Rainville, Marc-
André Gardner, Marc
Parizeau, and Christian

Gagné. DEAP: Evolutionary
algorithms made easy. Journal
of Machine Learning Research,
13:2171–2175, jul 2012.

[108] Louis Slothouber. A model of
web server performance. In
Proceedings of the 5th Interna-
tional World wide web Confer-
ence, 1996.

[109] John Dilley, Rich Friedrich,
Tai Jin, and Jerome Rolia.
Web server performance mea-
surement and modeling tech-
niques. Performance evalua-
tion, 33(1):5–26, 1998.

[110] Mark S Squillante, David D
Yao, and Li Zhang. Web traffic
modeling and web server per-
formance analysis. In Decision
and Control, 1999. Proceedings
of the 38th IEEE Conference
on, volume 5, pages 4432–4439.
IEEE, 1999.

[111] Paul Reeser and Rema Hariha-
ran. An analytic model of web
servers in distributed comput-
ing environments. Telecommu-
nication Systems, 21(2):283–
299, 2002.

[112] Vittorio Cortellessa, An-
tinisca Di Marco, and Paola
Inverardi. Model-Based Soft-
ware Performance Analysis.
Springer Publishing Company,
Incorporated, 1st edition,
2011.

[113] Anshul Jindal, Vladimir
Podolskiy, and Michael

74

Gerndt. Performance mod-
eling for cloud microservice
applications. In Proceedings
of the 2019 ACM/SPEC
International Conference
on Performance Engineer-
ing, ICPE ’19, page 25–32,
New York, NY, USA, 2019.
Association for Computing
Machinery.

[114] S. Duttagupta, R. Virk, and
M. Nambiar. Software bot-
tleneck analysis during perfor-
mance testing. In Proc. Int.
Conf. and Workshop Comput-
ing and Communication (IEM-
CON), pages 1–7, October
2015.

[115] Aiqiang Gao, Dongqing Yang,
Shiwei Tang, and Ming Zhang.
Mining models of composite
web services for performance
analysis. Lecture notes in com-
puter science, 3882:828, 2006.

[116] Vanessa Ayala-Rivera, Ma-
ciej Kaczmarski, John Mur-
phy, Amarendra Darisa, and
A. Omar Portillo-Dominguez.
One size does not fit all: In-test
workload adaptation for per-
formance testing of enterprise
applications. In Proceedings
of the 2018 ACM/SPEC In-
ternational Conference on Per-
formance Engineering, ICPE
’18, page 211–222, New York,
NY, USA, 2018. Association
for Computing Machinery.

[117] Enrique Hernández-Orallo
and Joan Vila-Carbó. Web

server performance analysis
using histogram workload
models. Computer Networks,
53(15):2727–2739, 2009.

´ [118] Agnes Bogárdi-Mészöly and
Tihamér Levendovszky. A
novel algorithm for perfor-
mance prediction of web-based
software systems. Performance
Evaluation, 68(1):45–57, 2011.

[119] Xusheng Xiao, Shi Han, Dong-
mei Zhang, and Tao Xie.
Context-sensitive delta infer-
ence for identifying workload-
dependent performance bottle-
necks. In Proceedings of the
2013 International Symposium
on Software Testing and Anal-
ysis, ISSTA 2013, page 90–100,
New York, NY, USA, 2013. As-
sociation for Computing Ma-
chinery.

[120] A. Nistor, L. Song, D. Mari-
nov, and S. Lu. Tod-
dler: Detecting performance
problems via similar memory-
access patterns. In 2013 35th
International Conference on
Software Engineering (ICSE),
pages 562–571, May 2013.

[121] N.R. Pusuluri. Software
Testing Concepts And Tools.
Dreamtech Press, 2006.

[122] David H Bailey and Allan
Snavely. Performance model-
ing: Understanding the past
and predicting the future. In
European Conference on Par-

75

allel Processing, pages 185–
195. Springer, 2005.

[123] Joachim Wegener, André
Baresel, and Harmen Sthamer.
Evolutionary test environment
for automatic structural test-
ing. Information and software
technology, 43(14):841–854,
2001.

[124] Ruilian Zhao, Mark Harman,
and Zheng Li. Empirical
study on the efficiency of
search based test generation
for EFSM models. In 2010
third international conference
on software testing, verifica-
tion, and validation workshops,
pages 222–231. IEEE, 2010.

[125] Oliver Bühler and Joachim
Wegener. Evolutionary
functional testing. Comput-
ers & Operations Research,
35(10):3144 – 3160, 2008. Part
Special Issue: Search-based
Software Engineering.

[126] Gordon Fraser and Andreas
Zeller. Mutation-driven gener-
ation of unit tests and oracles.
IEEE Transactions on Soft-
ware Engineering, 38(2):278–
292, 2011.

[127] Hirohide Haga and Akihisa
Suehiro. Automatic test case
generation based on genetic al-
gorithm and mutation analy-
sis. In 2012 IEEE Interna-
tional Conference on Control
System, Computing and Engi-

neering, pages 119–123. IEEE,
2012.

[128] Vahid Garousi, Lionel C.
Briand, and Yvan Labiche.
Traffic-aware stress testing of
distributed real-time systems
based on UML models using
genetic algorithms. Journal
of Systems and Software,
81(2):161–185, 2008.

[129] Tom Pender. UML bible. John
Wiley & Sons, Inc., 2003.

[130] Tanwir Ahmad, Adnan Ashraf,
Dragos Truscan, and Ivan
Porres. Exploratory per-
formance testing using rein-
forcement learning. In 2019
45th Euromicro Conference on
Software Engineering and Ad-
vanced Applications (SEAA),
pages 156–163, Aug 2019.

[131] Volodymyr Mnih, Koray
Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex
Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level
control through deep rein-
forcement learning. Nature,
518(7540):529, 2015.

[132] Ziyu Wang, Tom Schaul, Mat-
teo Hessel, Hado van Has-
selt, Marc Lanctot, and Nando
de Freitas. Dueling Network
Architectures for Deep Rein-
forcement Learning. arXiv e-
prints, page arXiv:1511.06581,
Nov 2015.

76

[133] Richard S Sutton, Andrew G
Barto, Francis Bach, et al. Re-
inforcement learning: An in-
troduction. MIT press, 1998.

[134] Yann LeCun, Yoshua Ben-
gio, and Geoffrey Hinton.
Deep learning. nature,
521(7553):436, 2015.

[135] Matthias Plappert. keras-
rl. https://github.com/
keras-rl/keras-rl, 2016.

[136] Ilinca Ciupa, Andreas Leitner,
Manuel Oriol, and Bertrand
Meyer. Experimental assess-
ment of random testing for
object-oriented software. In
Proceedings of the 2007 Inter-
national Symposium on Soft-
ware Testing and Analysis, IS-
STA ’07, pages 84–94, New
York, NY, USA, 2007. ACM.

[137] J. W. Duran and S. C.
Ntafos. An evaluation of ran-
dom testing. IEEE Transac-
tions on Software Engineering,
SE-10(4):438–444, July 1984.

[138] Dick Hamlet. When only ran-
dom testing will do. In Pro-
ceedings of the 1st Interna-
tional Workshop on Random
Testing, RT ’06, pages 1–9,
New York, NY, USA, 2006.
ACM.

[139] C. Amza, E. Cecchet,
A. Chanda, Alan L. Cox,
S. Elnikety, R. Gil, J. Mar-
guerite, K. Rajamani, and
W. Zwaenepoel. Specification

and implementation of dy-
namic web site benchmarks.
2002.

[140] Joachim Wegener, Klaus
Grimm, Matthias Grocht-
mann, Harmen Sthamer, and
Bryan Jones. Systematic test-
ing of real-time systems. In
4th International Conference
on Software Testing Analysis
and Review (EuroSTAR 96),
1996.

[141] Monika Dhok and Murali Kr-
ishna Ramanathan. Directed
test generation to detect loop
inefficiencies. In Proceedings of
the 2016 24th ACM SIGSOFT
International Symposium on
Foundations of Software En-
gineering, FSE 2016, page
895–907, New York, NY, USA,
2016. Association for Comput-
ing Machinery.

[142] J. Burnim, S. Juvekar, and
K. Sen. Wise: Automated test
generation for worst-case com-
plexity. In 2009 IEEE 31st
International Conference on
Software Engineering, pages
463–473, May 2009.

[143] C. Saumya, J. Koo, M. Kulka-
rni, and S. Bagchi. Xstres-
sor : Automatic generation of
large-scale worst-case test in-
puts by inferring path condi-
tions. In 2019 12th IEEE
Conference on Software Test-
ing, Validation and Verifica-
tion (ICST), pages 1–12, April
2019.

77

https://github.com/keras-rl/keras-rl
https://github.com/keras-rl/keras-rl

[144] J. Koo, C. Saumya, M. Kulka-
rni, and S. Bagchi. Pyse: Au-
tomatic worst-case test genera-
tion by reinforcement learning.
In Proc. Validation and Verifi-
cation (ICST) 2019 12th IEEE
Conf. Software Testing, pages
136–147, April 2019.

[145] A. Aquino, G. Denaro, and
P. Salza. Worst-case execu-
tion time testing via evolution-
ary symbolic execution. In
Proc. IEEE 29th Int. Symp.
Software Reliability Engineer-
ing (ISSRE), pages 76–87, Oc-
tober 2018.

[146] Bihuan Chen, Yang Liu, and
Wei Le. Generating perfor-
mance distributions via proba-
bilistic symbolic execution. In
Proceedings of the 38th Inter-
national Conference on Soft-
ware Engineering, ICSE ’16,
pages 49–60, New York, NY,
USA, 2016. ACM.

[147] Luca Della Toffola, Michael
Pradel, and Thomas R. Gross.
Synthesizing programs that ex-
pose performance bottlenecks.
In Proceedings of the 2018
International Symposium on
Code Generation and Opti-
mization, CGO 2018, page
314–326, New York, NY, USA,
2018. Association for Comput-
ing Machinery.

[148] Caroline Lemieux, Rohan Pad-
hye, Koushik Sen, and Dawn
Song. Perffuzz: Automat-
ically generating pathological

inputs. In Proceedings of the
27th ACM SIGSOFT Inter-
national Symposium on Soft-
ware Testing and Analysis, IS-
STA 2018, pages 254–265, New
York, NY, USA, 2018. ACM.

[149] Qi Luo, Aswathy Nair,
Mark Grechanik, and Denys
Poshyvanyk. FOREPOST:
finding performance problems
automatically with feedback-
directed learning software
testing. Empirical Software
Engineering, 22(1):6–56, Feb
2017.

[150] Du Shen, Qi Luo, Denys
Poshyvanyk, and Mark
Grechanik. Automating per-
formance bottleneck detection
using search-based application
profiling. In Proceedings of
the 2015 International Sympo-
sium on Software Testing and
Analysis, ISSTA 2015, pages
270–281, New York, NY, USA,
2015. ACM.

[151] Michael T. M. Emmerich and
André H. Deutz. A tuto-
rial on multiobjective opti-
mization: fundamentals and
evolutionary methods. Natu-
ral Computing, 17(3):585–609,
Sep 2018.

78

SCENARIOS</>

Tanwir Ahmad

Performance Exploration and
Testing of Web-based Sofware
Systems

Tanw
ir A

hm
ad

 /
/ Perfo

rm
ance Exp

lo
ratio

n and
 Testing

 o
f W

eb
-b

ased
 So

ftw
are System

s /
/ 2

0
2

0

Tanwir Ahmad

Performance Exploration and Testing of
Web-based Sofware Systems
Modern society relies heavily on a wide range of inter-connected sofware systems for
fnance, energy distribution, communication, and transportation. Due to the adoption
of the Internet, almost all fnancial, government, and social sectors rely heavily on web-
based information systems. These systems need to be very fast and reliable, and should
be able to support a vast number of concurrent users. As sofware users are immensely
perceptive about the performance of the sofware system, the companies relying on
web-based application systems for businesses strive to provide high-quality web ser-
vices in order to stay competitive in the worldwide market.

In this thesis, we propose a set of approaches for performance testing and exploration
of web-based sofware systems. Although we target web-based sofware systems, our
methods can be easily adapted to diferent types of sofware systems. Our contribu-
tions fall into two categories: approaches for model-based performance testing and ap-
proaches for performance explorations of black-box systems with large input spaces. In
the frst category, as a frst contribution, we provide model-based performance testing,
where we generate realistic workloads using probabilistic models in order to benchmark
the performance of the system under test. As an extension of the frst contribution, we
provide an approach for extracting the workload models from server logs as an alterna-
tive to their manual creation based on the tester’s experience. In the second category
of contributions, we are interested in exploring the performance of black-box sofware
systems with large input spaces without prior knowledge of the domain. We propose
diferent exploratory performance testing approaches to identify not only the worst user
scenario with respect to a given workload model but also a set of input combinations
that trigger performance issues and severely degrade the performance of sofware-in-
tensive systems.

ISBN 978-952-12-4000-3

	Abstract
	Sammanfattning
	Acknowledgements
	List of publications included
	List of publications relevant but not included
	List of publications not included
	Acronyms
	Contents
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Research Objectives and Aims
	1.3 Research Methodology
	1.4 Research Contributions
	1.5 Thesis Overview

	Chapter 2 Model-based Performance Testing of Web-based Software Systems
	2.1 Modeling user behavior
	2.2 Constructing workload models
	2.2.1 Analyzing requirement specifications
	2.2.2 Mining system's usage log
	2.2.3 Capturing user interactions

	2.3 Model Consistency Rules
	2.4 Model-based Performance Testing Process
	2.5 Tool Support for Load Generation
	2.6 Empirical Validation
	2.6.1 Experiment 1: Performance testing
	2.6.2 Experiment 2: Generating workload models

	2.7 Related Work
	2.8 Conclusions

	Chapter 3 Performance Exploration of Web-based Software Systems
	3.1 Exploring User Scenario Space
	3.1.1 Mutation based exploration
	3.1.2 Exact method using graph-search algorithms
	3.1.3 Approximate method using genetic algorithms
	3.1.4 Empirical Validation
	3.1.5 Related Work

	3.2 Exploring the input space for identifying performance bottlenecks
	3.2.1 Empirical Validation
	3.2.2 Related Work

	3.3 Conclusion

	Chapter 4 Conclusions and Future Work
	4.1 Summary
	4.2 Limitations
	4.3 Future Work

	Bibliography

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as page 1

 Blanks
 0
 Always
 118
 2
 /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
 1

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 LAST-1
 Tall
 1289
 415
 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 BeforeCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 2
 Page size: same as page 1

 Blanks
 0
 Always
 118
 2
 /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
 1

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 LAST-1
 Tall
 1289
 415
 AllDoc
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 1

 CurrentAVDoc

 SameAsPage
 AfterCur

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 -4

 D:20150206130427
 708.6614
 B5
 Blank
 498.8976

 Tall
 1
 0
 No
 1910
 350

 QI2.9[QI 2.9/QHI 1.1]
 None
 Right
 5.5179
 -0.2835

 Both
 111
 AllDoc
 124

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 219
 220
 219
 220

 1

 HistoryList_V1
 qi2base

