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Abstract

UPPAAL TRON is a tool for on-line black-box conformance testing of
real-time systems. Typically, the model-based specifications are edited, sim-
ulated, and verified in the UPPAAL model-checker and, later on, used in
UPPAAL TRON for testing the Implementation Under Test (IUT). When-
ever a non-conformance is detected between the specifications and IUT, a
“failed”or “inconclusive”verdict is given. Analysing the test logs in order to
identify the path taken in the specification and the source of the failure is
tedious and time consuming, especially for long lasting test sessions. There-
fore, in order to reduce the time and effort for debugging test sessions, we
propose a tool-supported approach to transform TRON logs into a UPPAAL
simulation trace. This allows us to take advantage of UPPAAL’s capabilities
for simulation and visualisation of the test traces. The approach is exempli-
fied and evaluated on a traditional Smart Light controller example provided
by UPPAAL TRON. The results show that the approach is scalable enough
to be applied to more complex examples.

Keywords: UPPAAL, UPPAAL TRON, Difference Bounded Matrix, Ac-
tive clock reduction, TRON Log transformation



1 Introduction

Model-based testing (MBT) [25] [26] is a testing approach which reduces
the effort needed for testing. In MBT, test cases are generated as a whole
or in part from a abstract model that describes the expected behaviour of
the System Under Test (SUT). The two approaches for MBT test execution
are on-line and off-line [26]. In the off-line test execution approach, the
test suits are generated at once and executed later on via test automation
frameworks. In contrast, on-line testing combines on-the-fly test generation
and test execution. In the case of on-line test execution, the abstract test
suite exists only as a concept but not as an explicit artifacts. In on-line
testing, a single test primitive is generated from the model of IUT which is
then mapped to an executable input on the IUT. The test inputs are designed
and executed one at a time and then the produced output by the IUT as well
as its time of occurrence are checked against the specification. A new test
primitive is produced and so forth until it is decided to end the test or an
error is detected [22].

The black-box conformance testing for real-time systems is an approach
to check the external behaviour of a given implementation under test (IUT)
against its formal specification. The IUT is black-box and thus we only
rely on its observable input/output behaviour [19]. Automated tools for
test generation have been developed for various languages and models, both
un-timed [3,15,18] and timed [5–7,17].

UPPAAL is an integrated tool environment for modelling, validation and
verification of real-time systems [2]. The environment assumptions and sys-
tem requirements are modelled as network of timed automata referred as
UPPAAL Timed Automata (UPTA). UPPAAL TRON(Testing for Real-time
system ONline) [24] in short TRON, an extension UPPAAL, which is used
for on-line black-box conformance testing of real-time systems. The test
generation in TRON is performed via symbolic execution [21]. At each step,
the available symbolic states to be visited, are calculated and a decision is
taken based on the received input or via random choice. A test session stops
when the model goes to a final state, the test duration expires or an error is
encountered. The TRON presents the progress of the test session in terms
of symbolic states, available inputs and expected outputs, and valuations of
clocks and integer variables in the models. Depending on the verbosity level
of the logging, an observed test run is a timed trace consisting of a sequence
of (input or output) actions and time delays [23]. In addition,

In many situations, especially when a failed or inconclusive test result is
encountered, one would like to understand and visualise which traces have
been taken on the model in a given test session, which symbolic states have
been visited, and what were the values of the variables in each state. Such
information is rather difficult to obtain from the test execution logs of TRON,
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especially for long lasting sessions.

Contribution: This work proposes a tool-supported approach to trans-
form TRON testing logs into UPPAAL simulation traces, for a posteriori
analysis. In order to implement the approach, we defined an algorithm for
the reconstruction of the model’s symbolic runs in order to expose the causes
of test fails on the level of user comprehensible abstraction. The benefit of
our approach is that it allows one to check the sequence of symbolic states
taken in the model, including clock and variable valuations, as well as channel
synchronizations. This allows one to take advantage of UPPAAL’s capabil-
ities for simulation and visualisation, and thus to improve the debugging
process and reduce cognitive effort needed to identify the underline causes of
inconclusiveness or failure.

Related Work. To our best of knowledge there is no other work on
converting TRON test logs into UPPAAL simulation traces. The one of
closest work to ours is used by David in the UPPAAL Automata Parser
library [9] which is used to transform the UPPAAL simulator trace into
human-readable format. The second closest work is used by de Kock [13]
named UPPAAL2OCTOPUS developed by Embedded System Innovation,
which converts UPPAAL simulation trace to Octopus-format latter used by
a tool called ResVis. In contrast, our approach converts the TRON testing
log into a UPPAAL simulation trace by reconstructing the symbolic state
space.

This paper is divided into the following sections. Section 2 revisits back-
ground information and concepts related to timed automata, UPPAAL and
TRON. Section 3 details our transformation approach, followed by a brief
overview of tool support in Section 4. We exemplify and evaluate the scala-
bility our approach with a Smart Lamp controller example in Section 5. The
conclusions will be outlined in Section 6.

2 Background

In the following subsection, we briefly discuss the timed automata formalism,
followed by a short introduction of the UPPAAL and TRON tools.

2.1 Timed Automata

A timed automaton A is a tuple (S,X ,L, ε, I) [10] where S is a finite set
of locations, the s0 ∈ S denotes the initial location and X is a finite set of
clocks. The finite set of labels is denoted by L and ε is a finite set of edges.
Each edge e is a tuple (s, L, ψ, ρ, s′) where s ∈ S is the source location and
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s′ ∈ S is the target location, L ⊆ L is a set of action labels (input and
output actions), ψ ∈ ΨX it the enabling condition, and ρ : X → X ∗ is the
assignment function. I is a function that associates a conditions I(s) ∈ ΨX
to every control location s ∈ S called invariant of s. A state of A is a pair
(s, v) ∈ S × Vx such that v satisfy the condition I(s). At any state, A can
evolve either by moving through an edge that changes the location and the
value of some clocks (discrete transition), or by letting time pass with out
changing the location (time transition) [11].

Discrete transitions. Let e = (s, L, ψ, ρ, s′) ∈ ε be an edge. The au-
tomaton has discrete transition from state (s, v) to state (s′, v′), denoted
(s, v) −→L

0 (s′, v′), if v satisfies ψ and v′ = v[ρ] [11].

Time transitions. Let t ∈ R+. The state (s, v) has a time transition to
(s, v + t). denoted (s, v) −→∅t (s, v + t), if for all t′ ≤ t, v + t′ satisfies the
invariant I(s) [11].

Clocks, Bounds and Zones. Let χ = {x1, . . . , xn} be a set of variables
called clocks, ranging over the non-negative reals R≥0. A clock valuation is
a function v : χ 7→ R≥0, assigning to each clock x a non-negative real value
v′(x). For X ⊆ χ, v[X := 0] is the valuation v′, such that ∀x ∈ X. v′(x) = 0
and ∀x /∈ X.v′(x) = v(x). For every t ∈ R≥0 , v + t is the valuation v′ such
that ∀x ∈ χ. v(x) = v′(x) + t.

A bound over X is a constraint of the form xi#c or xi − xj#c, where
1 ≤ i 6= j ≤ n,# ∈ {<,≤,≥, >} and c ∈ N ∪ {∞}. In order to have
unified form for clock constraints (so called clock difference), [4] introduces a
reference clock 0 with constant value of 0. All the other clocks are assumed
to progress with same speed. If we introduce a reference clock variable x0 to
represent 0, then bounds can be uniformly written as:

xi − xj ≺ d , where 0 ≤ i 6= j ≤ n,≺∈ {<,≤} and d ∈ Z ∪ {∞} [12].

The set of clocks including the reference clock became C0 = C∪{0} , then
any zone D ∈ B(C) can be rewritten as a conjunction of constraints of the
form:

x− y � n for x, y ∈ C0,�∈ {<,≤} and n ∈ Z [4].

If the rewritten zone has two constraints on the same pair of variables,
only the tightest of them is significant. Thus, a zone can be represented using
at most |C0|2 atomic constraints of the form of x−y ≤ n such that each pair of
clocks x−y is mentioned only once. These zones are then stored in |C0|×|C0|
matrices, where each element in such a matrix represents the bound on the
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difference between two clocks [4]. The matrix is called Difference Bound
Matrix (DBM) [14].

Since zones are frequently used objects in symbolic state-space explo-
ration, their effective representation is a major issue when building a verifi-
cation tool [4]. UPPAAL verification engine computes reachability relation
on zones [16]. The zones represent the reachable set of states and clock valu-
ations and represented symbolically as DBM. The DBM are the key objects
for symbolic state-space exploration for timed system.

To compute the DBM representation for a zone D, all clocks in C0 are
numbered and assigned one row and one column in the matrix. The row is
used to store lower bounds on the difference between the clocks and all other
clocks whereas the columns are used for upper bounds [4]. The elements in
the matrix are then computed, according to [4] in three steps.

� For each bound in xi − xj ≤ n, in D, Let Dij = {n,≤}.

� For each clock difference xi − xj, that is unbounded in D, let Dij = ∞,
Where ∞ is a special value denoting that no bound is present.

� Finally add the implicit constraints that all clocks are positive i.e. 0 −
xi ≤ 0 and that the difference between a clock and itself is always 0, i.e.
xi − xi ≤ 0.
As an example, consider the zone D = x− 0 < 20∧ y− 0 ≤ 20∧ y− x ≤

10 ∧ x − y ≤ −10. To construct the matrix representation of D, the clocks
are numbered as 0, x, y. The resulting matrix representation is shown as:

M(D) =

 (0,≤) (0,≤) (0,≤)
(20,≤) (0,≤) (−10,≤)
(20,≤) (10,≤) (0,≤)


2.2 UPPAAL

UPPAAL is a tool for modelling, simulation and verification of real-time sys-
tems and a suitable choice for modelling of set of non-deterministic process
having finite control structure and real-valued clocks. The model processes
communicate via channels or shared variables. Typical area of application of
the tool includes real-time controller and communication protocols [1].

The main components of UPPAAL are: a model editor, a simulator, and
a model checker. The editor allows modelling of UPPAAL timed automata
(UPTA) which is an extension of TA with bounded integer variables and sim-
ple data types. It serves as a modelling or design language to describe system
behaviour as networks of automata extended with clock and data variables.
The simulator is a validation tool which enables the examination of possible
dynamic executions of a system during early design (or modelling) stages. It
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provides an inexpensive means of fault detection prior to verification by the
model checker. The latter provides exhaustive coverage of dynamic behaviour
of the system. The simulator also allows visualization of error (diagnostic)
traces found as result of verification efforts. The model checker is used to
check invariant and bounded-liveness properties by exploring the symbolic
state-space of a system, i.e., reachability analysis in terms of symbolic states
represented by constraints [1].

In addition to features listed above, UPPAAL modelling language sup-
ports process templates and (bounded) data structures as data variables,
constants, arrays, etc. A process template is a timed automaton extended
with a list of formal parameters and a set of locally declared clocks, variables,
and constants. Typically, a system description consists of a set of instances
of timed automata declared as a parametrized instance of the process tem-
plates, and of some global data, such as global clocks, variables, synchroniza-
tion channels, etc. In addition, the instances may be defined from templates
re-used from existing system descriptions. Thus, the adopted notion of pro-
cess templates (particularly when used in combination with the possibility to
declare local process data) allows for convenient re-use of existing models [1].

2.2.1 UPPAAL Simulation and Trace format:

In UPPAAL, a system is modelled as a network of several timed automata
in parallel. The (symbolic) state of the system is defined by the locations
of all automata, the constraints currently satisfied, and the values of the
discrete variables [2]. One symbolic state is displayed at a time, where the
control locations are visualized with highlighted locations in the timed au-
tomata graphs and data is shown by means of variable valuation and clock
constraints, as shown in Figure 1.

In the beginning, all processes are in the initial locations. The initial entry
of simulator trace consists of processes locations, zone entry, variables as
described in previous section. Subsequent entries consist of process locations,
zone, variables and the transition taken to evolve to the next state. To
represent the transitions in a simulation trace, the processes index with the
edge number is present as m n where m ∈ processes and n ∈ ε.

While simulating a model in UPPAAL, a trace is obtained consisting of:

1. Location(s) of the processes in model.

2. Zone (clock information).

3. Variables.

4. Transition taken by simulator.
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Figure 1: UPPAAL Simulator GUI

The format of the simulation trace is defined based on the following
exteded BNF.

〈trace〉 ::= 〈state〉 (〈state〉 〈transition〉)*
〈state〉 ::= 〈locvec〉 〈zone〉 〈varvec〉
〈locvec〉 ::= (〈location〉 〈nl〉)* 〈dot〉 〈nl〉
〈zone〉 ::= (〈clock〉〈nl〉〈clock〉〈nl〉〈bound〉〈dot〉)* 〈dot〉 〈nl〉
〈varvec〉 ::= (〈NUM 〉 〈nl〉)* 〈dot〉 〈nl〉
〈transition〉 ::= (〈process〉 〈space〉 〈edge〉 〈nl〉)+ 〈dot〉 〈nl〉

where <nl> is a newline character, <space> is a space character, <dot> is a dot
character and <NUM> is an integer value. <location>, <clock>, <process> and
<edge> are integers referring to a location, clock, process or edge, respectively.

The zone entry consist of clock and values represented in DBM format
i.e. x − y ≤ n where x, y is the clock number in DBM and n ∈ Z. In order
to save space in memory, active clock reduction filter is applied to rectify
the clocks which are not active or equals. The algorithm to reduce number
of clock was presented in [11]. “a clock is active at some control location
if its value at the location may influence the future evolution of the system.
This may happen whenever the clock appears in the invariant condition of
the location, it is tested in the condition of some of the outgoing edges, or an
active clock takes its value when moving through an outgoing edge.”
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Figure 2: Example for Trace format generated by the UPPAAL Simulator

For example, the UPPAAL simulation trace shown in Figure 2 can be
divided into four major sections. The initial section contains location index
of the process identified by its ordinal position. The zone section contains the
clock constraints consist of clock index of DBM and the bound value. The
zone section only contains active clocks and one of the equal clocks (see [11]
for details) at a given state-set. The variable vector section is used to store
the variable’s values. The ordinal position of the values relates to the variable
which appears in layout section of the intermediate format.

2.2.2 UPPAAL Intermediate format Structure:

The Intermediate format was introduced in UPPAAL 3.6. During the verifi-
cation process, the UPTA model is transformed into an intermediate format
as shown in Figure 5. The intermediate format is then used to identify pro-
cesses, locations, edges, guards, updates, synchronizations and variables. The
TRON follows the same approach during online testing. The intermediate
format can be explicitly generated with UPPAAL verification engine called
verifyta and stored in a file for further use. Figure 5 provides a summary of
the intermediate format (IF), based on the following structure.

Layout: This section contains information about constants, clocks, vari-
ables, meta-data, cost, locations and static. The clock information contains
clock name and number in DBM. Variables and meta information is sup-
plemented by minimum and maximum value, initial value and its ordinal
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1 layout
2 #index : const : value
3 #index : c l ock : nr : name
4 #index : var : min :max : i n i t : nr : name
5 #index : meta : min :max : i n i t : nr : name
6 #index : co s t
7 #index : l o c a t i on : f l a g s : name
8 #index : s t a t i c : min :max : name
9 26 : c l ock : 1 : i n t e r f a c e . x

10 27 : l o c a t i on : : i d l e
11 28 : l o c a t i on : : i gno r ing
12 29 : l o c a t i on : : a l e r t
13 30 : l o c a t i on : : touched
14 31 : l o c a t i on : : r e l e a s i n g
15 32 : l o c a t i on : : ho ld ing
16 33 : const :17
17 34 : const :13
18 35 : l o c a t i on : : i d l e
19 36 : l o c a t i on : committed : goingOn
20 37 : l o c a t i on : committed : go ingOff .
21 .
22 .
23 68 : c l ock : 5 : l eve lAdapter . x
24 69 : var : −32767 :32767 :0 :4 :

↪→ l eve lAdapter . data
25 70 : l o c a t i on : committed : id16
26 71 : l o c a t i on : : i d l e
27 72 : l o c a t i on : : s i g n a l
28 .
29 .
30 .
31
32 i n s t r u c t i o n s
33 #address : opcode
34 0 : 0 1 push 1
35 2 : 33 ha l t
36 3 : 0 0 push 0
37 5 : 33 ha l t
38 6 : 0 1 push 1
39 8 : 33 ha l t
40 9 : 0 1 push 1
41 11 : 33 ha l t
42 .
43 .
44 .
45
46 p ro c e s s e s
47 #index : i n i t i a l : name
48 0 : 2 7 : i n t e r f a c e
49 1 : 3 5 : sw i t cher
50 2 : 4 5 : dimmer
51 3 : 4 9 : user
52 4 : 5 5 : graspAdapter
53 5 : 6 1 : r e l easeAdapter
54 6 : 7 1 : l eve lAdapter
55 .
56 .
57

58 l o c a t i o n s
59 #index : proce s s : i nva r i an t
60 27 : 0 : 6
61 28 : 0 : 21
62 29 : 0 : 42
63 30 : 0 : 63
64 31 : 0 : 84
65 32 : 0 : 99
66 35 : 1 : 237
67 70 : 6 : 838
68 71 : 6 : 847
69 72 : 6 : 862
70 .
71 .
72 edges
73 #proce s s : source : t a rg e t : guard : sync :

↪→ update
74 0 : 2 7 : 2 8 : 1 0 2 : 1 1 4 : 1 0 8
75 0 : 2 8 : 2 7 : 1 1 7 : 1 2 6 : 1 2 3
76 0 : 2 9 : 3 0 : 1 2 9 : 1 4 1 : 1 3 5
77 0 : 3 0 : 2 7 : 1 4 4 : 1 5 3 : 1 5 0
78 0 : 2 8 : 2 9 : 1 5 6 : 1 7 7 : 1 7 4
79 0 : 2 9 : 3 2 : 1 8 0 : 2 0 1 : 1 9 8
80 0 : 3 2 : 3 1 : 2 0 4 : 2 1 6 : 2 1 0
81 0 : 3 1 : 2 7 : 2 1 9 : 2 2 8 : 2 2 5
82 1 : 3 5 : 3 6 : 2 5 8 : 2 7 9 : 2 6 7
83 1 : 3 5 : 3 7 : 2 8 2 : 3 0 9 : 2 9 1
84 1 : 3 6 : 3 5 : 3 1 2 : 3 2 1 : 3 1 8
85 1 : 3 7 : 3 5 : 3 2 4 : 3 3 3 : 3 3 0
86 2 : 4 2 : 4 4 : 4 0 5 : 4 1 4 : 4 1 1
87 2 : 4 4 : 4 3 : 4 1 7 : 4 4 1 : 4 2 3
88 .
89 .
90 6 : 7 1 : 7 2 : 8 8 3 : 9 0 1 : 8 8 9
91 6 : 7 2 : 7 0 : 9 0 4 : 9 1 6 : 9 1 0
92 .
93 .
94 exp r e s s i on s
95 #address : reads : wr i t e s : t ext
96 0 : : : 1
97 6 : : : 1
98 9 : 2 6 : : x
99 1 5 : 2 , 2 2 : : e p s i l on + to l e r anc e

100 21 : 2 , 2 2 , 2 6 : : x <= eps i l on +
↪→ t o l e r anc e

101 3 0 : 2 6 : : x
102 3 6 : 2 , 2 3 : : d e l t a + to l e r anc e
103 42 : 2 , 2 3 , 2 6 : : x <= de l ta + to l e r anc e
104 5 1 : 2 6 : : x
105 5 7 : 2 : : t o l e r anc e
106 6 3 : 2 , 2 6 : : x < t o l e r anc e
107 7 2 : 2 6 : : x
108 7 8 : 2 : : t o l e r anc e
109 8 4 : 2 , 2 6 : : x < t o l e r anc e
110 9 3 : : : 1
111 .
112 .
113

Figure 3: Intermediate format example

number in a given template and its name. The cost is represents the cost of
delay in certain situations or the cost of particular actions. UPPAAL sup-
ports cost annotations of the model and can do minimal cost reachability
analysis [20]. The location information consists of location flag i.e. normal,
urgent and committed. The static label somehow related to return value of
the functions used in the UPTA model.

Instructions: A list of instructions used by the model. Describes how
expressions are calculated, including functions used in the model. The in-
structions are written in a form of assembly language.
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Processes: The Processes section (lines 30-38) contains information about
the index, the initial location and the name of the process. For example, first
entry on line 32 shows that the index of process interface is 0 and the index
of the initial location is 27. By referring the index, it can be easily identified
that index 27 is for location “idle”.

Locations: Location section (lines 41-54) mainly consists of the index, the
process index , the location index and the expression index for the invariant in
expression section (lines 79 - onwards). For example on line 44, the invariant
index is 21. By referring to expression section, we can identify that the
location invariant expression is: x <= epsilon+ tolerance .

Edges: All information about edges is present in this section in the follow-
ing format :

process : source : target : guard : sync : update

Process is the index number from the processes section. Source and target
value is the index number which belongs to location section. Guard, sync
and update value belong to the index number in expression section.

Expression section: The last section of intermediate contains a textual
representation of the expression, and lists of the variables the expression
concerns. Expressions such as guards, updates and invariants in use by the
model.

2.3 UPPAAL TRON

The on-line testing algorithm presented in [22] is implemented as a tool
named UPPAAL TRON (Testing Real-time systems ONline) in short TRON.
The IUT is attached to TRON via a test-adapter and considered as a black-
box since its state cannot be directly observed (see Figure 4). Only com-
munication events via input/output channels are visible. The user supplies
TRON with the model of the IUT that consists of closed timed automata
network in parallel composition with assumptions on the environment.

Figure 4: UPPAAL TRON framework [2]

9



Test primitives are generated directly form the model, executed and the
system responses are checked at the same time (on-the-fly) while connected
to IUT, thus avoiding huge intermediate test suites. During the testing,
the tool follows state changes available in the model or can be driven by
environment model [2].

2.3.1 Log format:

During the test session, the changing of state evolves the testing session into
a new state along with clocks and variable valuation. The evolved state
can be logged to investigate weather it conforms to the locations, clocks
and variable valuations of the model. TRON can produce logs on different
verbosity levels depending on the required information. The default level
9, contains information about the current state set before applying delay
and output events, and also enables some diagnostic information when test
verdict is failed or inconclusive. Compared to level 9, level 22 also contains
information about events applied by the UPPAAL engine, choices considered
when emulating the environment, and the current reachable states set before
each update. The structure of the TRON log on verbosity level 22 is shown
in Listing 1.

Processes and
locations

(p0.l0, p1.l1, ........pn−1.lm)
where m,n is the maximum number of pro-
cesses and locations respectively.

Clock Constraints
x ∼ n and x− y ∼ n
where n ∈ N, and ∼∈ {≤,≥, <,>}, x, y ∈ C0

Variables
var = n
where var ∈ {variables} and n ∈ N

Inputs, outputs, internal events and test : The available inputs,
outputs and internal choices are shown as:

ch@ < n : m >
where ch ∈ P{channels}, <∈ {[, (}, >∈ {), ]} and m, n ∈ R≥0.

Line 1 in Listing 1 shows the currently enabled locations, line 2 shows
clock constraints, line 3 shows available inputs and the time interval until
TRON will wait for input. Internal events are listed on line 4 and output
events are listed on line 5. The selection of a channel or an event is shown
with the clause “Choosing form”at line 6 with channel and the time interval.
If TRON has to wait for some reason, the “wait for”clause shown at line 7
shows the allowed interval for which TRON can wait. On line 8, the “Chose
to wait until”shows the time until TRON waited and “Test”clause at line 9
shows the time unit when Test event is received form IUT.
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1 ( i n t e r f a c e . i d l e sw i t cher . i d l e dimmer . PassiveUp user . i d l e graspAdapter . i d l e
↪→ r e l easeAdapter . i d l e l eve lAdapter . i d l e )

2 i n t e r f a c e . x<=0, i n t e r f a c e . x−dimmer . x<=0, i n t e r f a c e . x−graspAdapter . x<=0, i n t e r f a c e . x−
↪→ r e l easeAdapter . x<=0, i n t e r f a c e . x−l eve lAdapter . x<=0, i n t e r f a c e . x−#t<=0, dimmer . x
↪→ <=0, dimmer . x−i n t e r f a c e . x<=0, dimmer . x−graspAdapter . x<=0, dimmer . x−r e l ea seAdapter
↪→ . x<=0, dimmer . x−l eve lAdapter . x<=0, dimmer . x−#t<=0, graspAdapter . x<=0,
↪→ graspAdapter . x−i n t e r f a c e . x<=0, graspAdapter . x−dimmer . x<=0, graspAdapter . x−
↪→ r e l easeAdapter . x<=0, graspAdapter . x−l eve lAdapter . x<=0, graspAdapter . x−#t<=0,
↪→ r e l easeAdapter . x<=0, re l easeAdapter . x−i n t e r f a c e . x<=0, re l easeAdapter . x−dimmer . x
↪→ <=0, re l easeAdapter . x−graspAdapter . x<=0, re l easeAdapter . x−l eve lAdapter . x<=0,
↪→ r e l easeAdapter . x−#t<=0, l eve lAdapter . x<=0, l eve lAdapter . x−i n t e r f a c e . x<=0,
↪→ l eve lAdapter . x−dimmer . x<=0, l eve lAdapter . x−graspAdapter . x<=0, l eve lAdapter . x−
↪→ r e l easeAdapter . x<=0, l eve lAdapter . x−#t<=0, #t<=0, #t−i n t e r f a c e . x<=0, #t−dimmer . x
↪→ <=0, #t−graspAdapter . x<=0, #t−r e l easeAdapter . x<=0, #t−l eve lAdapter . x<=0 on=0
↪→ i u tLeve l=0 OL=0 envLevel=0 leve lAdapter . data=0

3 Inps : grasp@ [0;+ i n f )
4 In t s : ( empty )
5 Outs : ( empty )
6 Choosing from inputs : grasp@ [0;+ i n f )
7 Wait f o r [0 ;+ i n f )
8 Chose to wait un t i l 43078 us
9 TEST: grasp ( )@[50000 us ;50000 us ] at [ 5 ; 5 ] on 1

Listing 1: TRON log example

3 Approach

For back-traceability and debugging purposes, we developed an approach to
convert the log produced by TRON into a simulation trace for UPPAAL.
The approach is not trivial, since it requires the reconstruction of the state
space in order to identify the timed transitions information and calculating
the next symbolic state of the simulation trace. As presented in Section 2.1,
during the test execution, an UPTA can evolve by taking discrete or time
transitions. Both types of transitions are encountered in the TRON log. In
contrast, in the symbolic execution done in UPPAAL, the time transitions
are hidden. The transformation (depicted in Algorithm 1) takes as input a
TRON log file (on verbosity level 22) and applied the following steps which
are discussed later in this section.

� Identify active (available) locations.
� Extract clock information from constraints.
� Re-calculate clock constraints.
� Extract variable values.
� Calculate next transition(s) taken by TRON.

3.1 Identify active (available) locations

The first entry in state set contains information about the processes and
locations as shown in Listing 1. In order to calculate location vector of the
trace, state-set processes and their locations are searched in the layout section
of intermediate format as described in Subsection 2.2.2. When the ordinal
position of the state-set process entry corresponds to the process index in
the intermediate format, the location index is then resolved by collecting
all locations of the process and by assigning them value from 1 to n. For
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Algorithm 1 Transformation

1: procedure Tranform(Log)
2: σ := ∅
3: for each s ∈ Log do → for each state-

set in log
4: σ := σ∪ {ρ(s)} → parse log, extract

state-set
5: Γ := ∅
6: for each s = {l ∈ µ, z ∈ Ψ, v ∈ ν, t ∈ τ} ∈

σ do
7: Γ := Γ ∪ {s}
8: T := ∅ → Traceset
9: for each (s, s′) ∈ Γ do
10: if (µ ∈ s 6= µ ∈ s′) ∨

(TEST event has some channel(ch)) then
11: t := ∅
12: t := t ∪ {s′} → Add location

Vector to trace
13: t := t ∪ {calculateZone(z)}
14: t := t ∪ {v}
15: t := t∪ {TransitionV ector(s, s′, ch)}
16: T := T ∪ t
17: else (TEST : delay to)
18: Skip

19: for each t ∈ T do
20: write t
21: function calculateZone(z)
22: ψ := ∅, l := ∅, u := ∅

23: for each (x > n) ∈ z do → where x ∈
C0 and n ∈ N

24: l := l ∪ {x > n}
25: for each (x < n) ∈ z do → where x ∈
C0 and n ∈ N

26: u := u ∪ {x < n}
27: for each x ∈ l do → where x ∈
C0 and n ∈ N

28: for each y ∈ u do
29: if (x < y) then
30: ψ ∪ {(x − y) ∼ n} →

where x, y ∈ C0 and n = {x − y : x, y ∈ u, n ∈
N},∼∈ {<,≤}

31: if (x > y) then
32: ψ ∪ {(x − y) ∼ n} →

where x, y ∈ C0 and n = {x − y : x, y ∈ l, n ∈
N},∼∈ {<,≤}

33: return (ψ)

34: function TransitionVector(ss, st, ch)
35: t := ∅
36: for each e = {s, L, ψ, ρ, s′} do
37: if (ss = s ∧ st = s′) then
38: t := t ∪ e
39: else(ch ∈ L)
40: t := t ∪ {e}
41: return (t)

example, line 26 in Figure 5 contains 27:0:6. The first value (i.e. 27) identifies
the global index for location (i.e. 27:location::idle ). The next value is the
process index (i.e. 0:27:interface) and the last number identifies the invariant
global index (i.e. 6). The entry 27:0:6 in location section will results in 1,
because idle is the first location in the layout section of IF file. Subsequently,
ignoring, alert and touched correspond to location 2,3 and 4 respectively in
the interface process.

1 layout
2 #index : const : value
3 #index : c l ock : nr : name
4 #index : var : min :max : i n i t : nr : name
5 #index : meta : min :max : i n i t : nr : name
6 #index : co s t
7 #index : l o c a t i on : f l a g s : name
8 #index : s t a t i c : min :max : name
9 26 : c l ock : 1 : i n t e r f a c e . x

10 27 : l o c a t i on : : i d l e
11 28 : l o c a t i on : : i gno r ing
12 29 : l o c a t i on : : a l e r t
13 30 : l o c a t i on : : touched
14 .
15 .
16 .
17 .
18
19

20 p ro c e s s e s
21 #index : i n i t i a l : name
22 0 : 2 7 : i n t e r f a c e
23 1 : 3 5 : sw i t cher
24 .
25 .
26 .
27 l o c a t i o n s
28 #index : proce s s : i nva r i an t
29 27 : 0 : 6
30 28 : 0 : 21
31 29 : 0 : 42
32 30 : 0 : 63
33 31 : 0 : 84
34 32 : 0 : 99
35 35 : 1 : 237
36 .
37 .
38

Figure 5: Layout, processes and locations section
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3.2 Extracting clock information and calculating clock
constraints

Location information is followed by clock constraints, which are in the form
of zones as described in Subsection 2.1.

1 i n t e r f a c e . x>=50
2 graspAdapter . x>=50
3 re l easeAdapter . x>105
4 #t>105
5
6 i n t e r f a c e . x<=60
7 i n t e r f a c e . x−dimmer . x<=55
8 i n t e r f a c e . x−graspAdapter . x<=0
9 i n t e r f a c e . x−re l easeAdapter . x<−55

10 i n t e r f a c e . x−l eve lAdapter . x<=55
11 i n t e r f a c e . x−#t<−55
12
13 dimmer . x<=5
14 dimmer . x−i n t e r f a c e . x<=−50
15 dimmer . x−graspAdapter . x<=−50
16 dimmer . x−re l easeAdapter . x<−105
17 dimmer . x−l eve lAdapter . x<=0
18 dimmer . x−#t<−105
19
20 graspAdapter . x<=65
21 graspAdapter . x−i n t e r f a c e . x<=5
22 graspAdapter . x−dimmer . x<=60
23 graspAdapter . x−re l easeAdapter . x

↪→ <−55
24 graspAdapter . x−l eve lAdapter . x<=60

25 graspAdapter . x−#t<−55
26
27 re l easeAdapter . x<121
28 re l easeAdapter . x−i n t e r f a c e . x<61
29 re l easeAdapter . x−dimmer . x<116
30 re l easeAdapter . x−graspAdapter . x<56
31 re l easeAdapter . x−l eve lAdapter . x

↪→ <116
32 re l easeAdapter . x−#t<=0
33
34 leve lAdapter . x<=5
35 leve lAdapter . x−i n t e r f a c e . x<=−50
36 leve lAdapter . x−dimmer . x<=0
37 leve lAdapter . x−graspAdapter . x<=−50
38 leve lAdapter . x−re l easeAdapter . x

↪→ <−105
39 leve lAdapter . x−#t<−105
40
41 #t<121
42 #t−i n t e r f a c e . x<61
43 #t−dimmer . x<116
44 #t−graspAdapter . x<56
45 #t−re l easeAdapter . x<=0
46 #t−l eve lAdapter . x<116
47

Figure 6: TRON clock constraints example

Clock information: The clock information can be understood by taking
the following example from Figure 6 into account. We applied some format-
ting to enhance the visualization.

Block 1

 lower-bound


interface.x >= 50
graspAdapter.x >= 50
releaseAdapter.x > 105
#t > 105

Block 2



upper-bound
{
interface.x <= 60

clock difference


interface.x− dimmer.x <= 55
interface.x− graspAdapter.x <= 0
interface.x− levelAdapter.x <= 55
interface.x− levelAdapter.x < 5
interface.x−#t < −55

...

Block n



upper-bound
{

#t < 121

clock difference


#t− interface.x < 61
#t− dimmer.x < 116
#t− graspAdapter.x < 56
#t− releaseAdapter.x <= 0
#t− levelAdapter.x < 116
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Block 1 of the clock information contains lower limits of the clocks. The
clocks present in this block are the only clock which are active and unequal as
proposed in [11]. The upper-bound of the clock is available in the beginning
of corresponding block. By using these clock constraints from Figure 6, we
can populate a DBM like matrix to visualize the clock constraints.



t interface dimmer graspAdapter releaseAdapter levelAdapter

t (105, 121) 61) 116) 56) 0] 116)
interface (−55 [50, 60] 55] 0] −55) 55]
dimmer [5 [−50 ?, 5] −50] −105) 55]

graspAdapter (−55 [5 [60 [50, 65] −55) 60]
releaseAdapter [0 (61 (116 (56 (105, 121) 116)
levelAdapter (−105 [−50 [0 [−50 (−105 ?, 5]


Figure 7: DBM like structure containing clock constraints

3.3 Calculating clock constraints

Clock reduction for UPPAAL has been originally discussed in [11]. The
original approach used an iterative algorithm to reduce the number of clocks
in the timed automata. In our approach, we used the information present
in the TRON log to calculate clock constraints zones of a state-set which
consist of active and unequal clocks. The resulting clock constraints are
in the format which is used by UPPAAL simulator to store trace. In our
approach, we only consider those clocks which have both upper and lower
bonds (see Figure 7) due to their boundedness property. The boundedness
of the ithclock can be determined by observing the lower and upper bound
at the intersection of the ith row and the ith column. Additionally, due to
boundedness property of the clocks, one can calculate the entire matrix by
subtracting the corresponding bounds of the clocks.

For example, the matrix elements in Figure 7 shows the clock constraints
extracted from Figure 6. Neither dimmer nor levelAdapter has the lower-
bound available in the TRON log entry (see Figure 7). Due to infiniteness,
both of these clocks were excluded during the transformation which indicates
that the clocks are not active or that they are equal to some other clock.
Additionally, the entries above the diagonal elements i.e, the upper-bounds,
can be calculated by subtracting the lower-bound of clocks. Similarly, the
elements below diagonal of the matrix i.e, lower-bound can be calculated by
subtracting the upper-bound of the clocks.

For example, to calculate the matrix entries of #t − interface.x and
interface.x − #t, clock t = (50, 121) and clock interface.x =[50,60]. By
subtracting the upper-bounds of the clocks, we can obtain the upper-bound
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of interface i.e. 121 − 60 = 21 and similarly, by subtracting lower-bounds,
we can obtain the lower-bound element of the matrix i.e. 50− 105 = −55.
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Figure 8: Memory required to store a zone of N clocks

Our approach reduced the memory usage for calculating the state-set
reachability by using the lower bond and the upper bond of a clock. The
memory required to store the clocks information is twice as the number of
clocks present in a zone i.e, for N clocks only 2N units of memory are
required. Moreover, the original approach in DBM requires N2 units of
memory to store the clock information. However, our approach requires
N2 − 2N units of memory for a zone composed of N clocks. Equation 1
computes the overall memory reduction M(red) for n zones. Figure 8 shows
the memory required for both N2 and 2N where N includes all the clocks
including the reference clock 0.

M(red) =
n∑
z=1

N2
z − 2Nz (1)

On-the-fly (run-time) calculation of the clock constraints may result in extra
CPU usage and increased over-all turn-around time.

3.4 Constructing variable vector

The UPPAAL simulation trace also contains values for discrete variables [2]
for a given symbolic state. Extracting variable values from TRON log is
a straight forward process. The variable values are in the form of x =
n where x ∈ {variables} and n ∈ N. The ordinal position of variable
in TRON log corresponds to the variable position in the UPPAAL simula-
tion trace. For example, Listing 1 contains variables and their values i.e,
on = 0 iutLevel = 0 OL = 0 envLevel = 0 levelAdapter.data = 0. The
corresponding vector for UPPAAL simulation trace will be as follow:
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Figure 9: Variable vector with corresponding variable names (see Figure 2)

3.5 Calculate next transition(s)

The last part of the UPPAAL simulation trace for a given state consists of
transitions taken by simulator. Each transition consists of a process index
and a edge number which was taken to evolve to the current state. In the
TRON log, we encountered two variants of transitions namely time transi-
tion and discrete transitions. We also classified discrete transition into three
categories i.e, discrete transition without synchronization, discrete transition
with synchronization, and discrete transitions with select.

3.5.1 Time Transition (delay):

It is possible that TRON is applying delay at some state-set and does not
take any transition (see Sec.2.1 ). However, whenever TRON takes time
transitions, the log entry has the following format: TEST : delay to <time
unit >on <number of states>. This implies that no transition has been taken
and delay applied to the last n number of states.

3.5.2 Discrete transition without synchronization:

These transition are taken when an edge does not have a synchronization,
but it is enabled by its guard and the invariant conditions of the destina-
tion location. These transitions can be identified by observing state location
vector. The evolved state location vector has at least one location different
compared to the previous location vector. The edge connecting the source
and target locations can be identified by querying the intermediate format
file. One limitation of our approach is that it is able to identify self-looping
edges without synchronization. Except this limitation, the approach works
well because of the clock and variable values are calculated and extracted
separately. In case of the modification of variables and/or clock resets oc-
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curred by the self-looping edge, the calculated clock values and the extracted
variable vector rectifies the discrepancies.

3.5.3 Discrete transitions with synchronization:

The edges labelled with synchronization can be easily identified by the label
present in Inps, Ints, Outs clauses in the TRON log. The synchronization
might be an input event, an internal event or a output event. The Choosing
from : clause identifies the synchronizations (channels) that were used to
evolve to the given state.

3.5.4 Discrete transition with select:

The select operator implements the non-deterministic assignment i.e. in
order to provide a non-deterministic way to select a value from the set of
values. The non-deterministic behaviour of select results in additional edge
for each value in the set.

Start

U

END

y := 0,a?

y := 1,a?

y := 2,a?
Start

U

B

x : int[0, 2],y := x,a?

Figure 10: Edges generated by TRON for every value in select (left) and
corresponding UPPAAL model with select (right)

Figure 10 (left) shows how TRON generates edges for every value for
select in symbolic simulator and Figure 10 (right) shows how UPPAAL in-
ternally interprets the select operator in the symbolic simulation.

4 Tool support

In order to automate the proposed transformation approach, we have devel-
oped a tool called “Back-Tracer”in Java. The tool uses similar approach as
tracer utility in Uppaal Timed Automata Parser Library [9] for parsing the
UPTA model. The transformation process and the artefacts used by the tool
are shown in Figure 11. The tool take as an input : a TRON log file, an
intermediate format file, UPTA model, and a sample trace file.

The process of transformation consist of following steps:

1. Run a test session with TRON and obtain a log file.

2. Generate if file from the UPTA model by using verifyta (it only has
to be done once per model, as long as the model does not change).
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Figure 11: Back Tracer setup

3. Transform TRON log to UPPAAL simulator trace by executing Back-
Tracer with required parameters (i.e. an intermediate format file (if),
an UPTA model (xml) and a TRON log).

The intermediate format (if ) contains the information about the UPTA
model as described in Subsection 2.2.2. The user must generate the if file ini-
tially and after any modification in UPTA model (see [9] for how to generate
if file). The UPTA model is required for parsing the model and identifying
the indexes of the processes, locations, edges, invariants, guards, and syn-
chronizations etc. The TRON log is then used to construct the UPPAAL
simulation trace with the help of identified indexes. The binaries of Back-
Tracer tool are available at: http://users.abo.fi/jiqbal/back-tracer/.

5 Example and evaluation

The applicability of our approach is exemplified by using smart lamp con-
troller available with the TRON distribution. Figure 12 shows that the ex-
ample contains a Light controller simulator with light-level history, light level
bar and a lamp with colour-encoded level. A console window with events at
light controller side is also present at the bottom of light-level display. The
light controller is an essential component of smart lamp where the level of
light is changed by the time interval between consecutive user grasps and
releases. The TRON is behaving like a smart lamp user by issuing grasps
and releases events. At the same time it observes that the level of light of
the lamp is correct according to the lamp specification. We modified the
start-up command so that TRON produces test logs with the verbosity level
22 (-v22).

When a simulation is terminated, we used our BackTracer tool to trans-
form the TRON log into a UPPAAL simulation trace. The obtained trace
is then loaded to UPPAAL simulator to be analysed. Figure 13 shows a
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Figure 12: TRON test Session with Smart lamp

trace loaded successfully in UPPAAL simulator to visualize the test execu-
tion trace, locations, edges and the synchronization between processes in a
graphical manner.

Figure 13: UPPAAL simulator after loading trace file obtained by Back-
tracer
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5.1 Evaluation of tool support

During the development of the Back-tracer tool, we encountered many chal-
lenges including calculating the timing constraints and reducing the non-
active and equal clocks. The traditional approach [12] would imply the re-
construction of the entire symbolic state space. However, since we are inter-
ested in only a specific trace through the symbolic state space, we adopted
a simplified approach which only calculates the timing constraints. This al-
lows us to reduce the effort and time needed to implement our tool. Another
challenge was to understand the trace format of the UPPAAL simulator in
the absence of proper documentation.
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Figure 14: Graphs showing (a)Transformation time, (b) Maximum Heap size

With respect to our smart lamp controller example, the SUT and the
environment consisted of seven timed automata. To evaluate our tool, we
used the provided Java implementation of the lamp. We ran the on-line
testing session multiple times with different length of the test session, in
order to obtain log files with different lengths. We used these log files for
evaluating the time, CPU utilization and memory used by the tool. The
VisualVM profiler available on-line at [8] has been used for this purpose. For
time calculation, we used the Java time library to measure the transformation
time. Figures 14 (a) and (b) show that the transformation time and memory
used varies proportionally with the TRON log size. Further optimizations
can be applied to the tool in order to reduce the memory usage during the
transformation process which is beyond the scope of this paper. This shows
that the approach has the potential to scale up for larger log files.

6 Conclusions

The proposed approach has been deployed in transformation from TRON
log to UPPAAL simulator trace, with the purpose of analysing external be-
haviour of SUT against formal specifications and visualizing the trace during
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the test session. The proof of concepts and applicability of our transformation
tool have been demonstrated in an example called smart lamp controller.

The research study has faced several practical challenges in the transfor-
mation step of the approach. First challenge was to interpret and abstract
the execution log of TRON tool with different levels of verbosity. Secondly,
the selection of log verbosity level which provide adequate information for
transformation process. Thirdly, how to deal with select operator when it
was introduce in the model, which increased number of edges from source
to target location. Another important challenge was to calculate the clock
constraints based on the information present in the log. The solution to
that challenge was to apply our proposed simplified approach to identify and
calculate clock constrains instead of applying the clock reduction algorithm
presented in [11].

Our proposed approach has successful transformed the TRON execution
to log UPPAAL simulation trace. Apparently, the proposed approach provide
a sophisticate tool support to analyse and visualize the black-box (confor-
mance) testing trace in UPPAAL which was difficult to understand in long
lasting test sessions and inconclusive or failed test results.
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