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Abstract

In the last decade, the fuzzy pay-off method has emerged as a widely used
alternative approach for real option valuation thanks to its simplicity that
makes it easily approachable by practitioners from various application do-
mains. In this study, a new direction for real option valuation is pursued
by proposing a granular fuzzy pay-off method. We motivate the proposal
by discussing how the extension of the original approach with granular rep-
resentation can further improve the fuzzy pay-off method. The design of
the granular fuzzy pay-off method is founded on the principle of justifiable
granularity, which in turn relies on numeric data to build information gran-
ules that are semantically sound and experimentally justified. To illustrate
the method, a case study in R&D investment in manufacturing is worked
out. The extended granular fuzzy pay-off method improves performance and
usability in cases with uncertainty.
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1. Introduction

Real option can be defined as the right, but not the obligation, to under-
take a business initiative: contracting, staging, abandoning, or deferring, a
capital investment project, to give an example (Amram & Kulatilaka, 1999).
The adjective “real” is employed as the business initiatives referenced usually
involve a tangible asset rather than a financial instrument (Liitolf-Carroll &
Pirnes, 2009).

The ability of analyzing, evaluating and choosing business initiatives
bears a significant effect on the profitability and growth of a company. How-
ever, the precise value of a real option is difficult to estimate. Traditional
option valuation methods have typically been based on discounted cash flow
analysis relying on established measures such as the internal rate of return
(IRR) or the net present value (NPV) to support decisions (Ho & Liao,
2011). These methods are readily applicable when project uncertainties and
risks can be reduced to one single discount rate (Grinblatt & Titman, 2002).
However, these traditional models require the estimation of several parame-
ters, which can be a difficult task in an uncertain decision making environ-
ment (Carlsson & Fullér, 2003). For this reason, real option valuation has
become a growing area of both practical application and academic research
in recent decades. This can be attributed to the ability of real option valua-
tion models to deal with uncertainty and offering robust estimations on the
profitability of an investment and on the value of an asset even in the lack
of historical data.

Real option valuation allows decision makers to respond in an optimal
way when facing uncertainty by emphasizing the value of managerial flexibil-
ity. Traditional real option valuation models were built based on the notions
and assumptions of financial option valuation, notably: (i) differential equa-
tions, e.g., Black-Scholes option pricing formula (Black & Scholes, 1973),
(ii) lattices, e.g., the binomial option valuation method (Cox et al., 1979),
and (iii) simulations, e.g., Monte Carlo methods (Boyle, 1977). However,
these approaches present some drawbacks when utilized in the context of
real options (Collan et al., 2009): (i) their complexity demands a good un-
derstanding of the underlying mathematics (this makes more difficult their
application in practice), (ii) they do not consider procedural or structural
uncertainty (Collan et al., 2016), (it must usually be of parametric type),



and (iii) they were assumed to precisely simulate the underlying market as a
process. Even though the assumptions of these models may hold for certain
considerably efficiently traded financial securities (for instance, currencies
and stocks), this assumption, in general, does not hold for real business ini-
tiatives that (i) have a market that may not at all be said to present even
weak market efficiency, or (ii) simply do not have markets (Collan et al.,
2009). In a nutshell, instead of focusing more on managerial relevance, tra-
ditional real option analysis utilizes complex statistical models that increase
the complexity of calculus (Favato et al., 2015), which in turn hinders the
development of the real option analysis field (Mathews et al., 2007).

An alternative approach present in the literature is that of using scenarios
as speculative descriptions of potential future outcomes, increasing the like-
lihood of capturing possible threats and chances (Favato et al., 2015). The
most important approaches based on scenarios for real option analysis in-
clude: (i) the Datar-Mathews (DM) approach (Mathews et al., 2007; Datar
& Mathews, 2004), and (ii) the fuzzy pay-off method (FPOM) (Collan et al.,
2009; Borges et al., 2018). Both methods differ from traditional approaches
in the way they handle uncertainty: the DM approach is founded on proba-
bility theory, and the FFPOM is founded on fuzzy logic and fuzzy set theory
(Zadeh, 1965, 2015). The DM approach uses a Monte Carlo simulation that
has as input a collection of cash flow scenarios that are used to generate a
pay-off distribution to model the N PV of future project outcomes (Mathews
et al., 2007). Even though relying on the same basic idea of simulating sce-
narios, the FFPOM represents the expected future distribution of estimated
cash flows via fuzzy numbers/possibility distributions (Collan et al., 2009).

Investment projects related to innovations typically lack historical data
that could be used to build sophisticated models, and instead can be assessed
only by the subjective opinion of domain experts. This setting highlights the
problems related to using probability theory to handle the vagueness and
imprecision inherent in the articulation of expert assessments, as in these
problems the precise levels of future cash flows are unknown, that is, the
uncertainty is genuine (Carlsson et al., 2007). To deal with this kind of
uncertainty, the fuzzy set theory proposed by Zadeh (1975a,b,c) is a more
appropriate tool as it relies on the notion of imprecision existing in human
decision making and can represent the imprecise, uncertain, or vague, knowl-
edge (as, for instance, estimated future cash flows), which human reasoning
is particularly adaptive to (Zadeh, 1996; Morente-Molinera et al., 2019, 2020;
Zuheros et al., 2018). Consequently, in recent years the use of fuzzy set the-
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ory has been considered as a valid alternative to deal with uncertainty in
option valuation (see Carlsson & Fullér (2003); Collan et al. (2016); Borges
et al. (2018); Carlsson & Fullér (2011); Kim & Lee (2018); Rodger (2013);
Tolga & Kahraman (2008); Yoshida (2003); Zhang & Watada (2018)).

In this study, relying on the concept of granular structure, which links un-
certainty to information in the generalized theory of uncertainty proposed by
Zadeh (2005), the main objective is to design and develop a granular F'POM
based on the concepts of information granules and information granularity
(Cabrerizo et al., 2014; Liu et al., 2018). In particular, a granular FPOM
that yields information granules is developed by distributing a certain infor-
mation granularity level throughout the structure of the existing FFPOM.
Information granularity is considered to be a notable asset of design: the
optimal distribution results in a granular FFPOM that, being more abstract
than its numeric counterpart, is able to represent (cover) experimental data
in the form of cash flow estimations. The term “granular” pertains here
to a wealth of possible realizations designed via the principle of justifiable
granularity (Pedrycz & Homenda, 2013; Wang et al., 2019), which offers an
algorithmic and conceptual method of building information granules on the
basis of numeric data. According to this principle, we design information
granules by creating a sound balance between the criteria of specificity and
coverage, which are generally utilized when measuring the quality of an in-
formation granule. In this manner, the constructed granular model better
represents experimental data, e.g., cash flow estimations, and helps managing
uncertainty.

The study is structured into five main sections. Section 2 briefly recalls
the FPOM. Section 3 is devoted to the design and development of the
granular F'POM , which is composed of three steps: (i) forming information
granules of type-1 (in particular, intervals), (ii) extending the type-1 granules
to information granules of type-2 (specifically, interval type-2 fuzzy sets),
and (iii) computing the real option value from the interval type-2 fuzzy set
constructed. Section 4 reports a case study in the manufacturing context to
illustrate the granular FPOM, and Section 5 presents some conclusions.

2. The fuzzy pay-off method

To make this study self-contained, in this section we briefly describe the
basics of the FFPOM , which was proposed by Collan et al. (2009).



The FFPOM is based on the fuzzy set theory, which was developed to deal
with imprecision and it is the main part of the theory allowing the handling
of decisions in environments under uncertainty (Bellman & Zadeh, 1970).
In particular, the FPOM makes use of fuzzy numbers (Marin et al., 2019),
which are used in fuzzy set theory to quantify subjective fuzzy observations
or estimates, and fuzzy logic for creating the feasible pay-off distribution of
a real option by means of three cash flow scenarios:

» A basic scenario (most likely to happen),
e an optimistic scenario (the highest possible outcome), and
e a pessimistic scenario (the lowest possible outcome).

The estimated N PV of each scenario is calculated and then used to build a
triangular fuzzy number (called fuzzy N PV) illustrating the degree to which
a given estimated NPV belongs to the feasible NPV collection of the real
option. In the same way as the DM approach does to its pay-off distribution
with the aim of including the real option flexibility within a project, the
FPOM maps the negative estimated NPV's of its pay-off distribution into
0. This is done to reflect that, if we expect a negative result, we have the
right to not continue with the real option.

The FFPOM makes use of the fuzzy N PV to calculate the value of a real
option, ROV | as (Carlsson & Fullér, 2011):

I3 Alz)da ‘

ROV =
ffooo A(z)dx

E(Ay), (1)

where A denotes the fuzzy NPV, fooo A(x)dx calculates the area of the posi-
tive side of A, [*°_A(z)dx calculates the total area of A, and E(A,) denotes
the possibilistic mean of the positive side of A, which is calculated as shown
in Carlsson & Fullér (2001).

As an illustration, let us assume three cash flow scenarios provided by
an expert, with each scenario as a separate cash flow statement with annual

cash flows (see Table 1). The NPV of each scenario is computed as follows
(Jones & Smith, 1982):

_N o
NPV_;(HW, (2)



Table 1: Cash flow by scenario (in millions of euros).
Year

Scenario 0 1 2 3 4 5 6 7 8 9 10
Optimistic | 0 7 7 7 7 7 7 7 7 7 7

Basic o -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Pessimistic |0 -2 -2 -2 -2 -2 -2 -2 -2 -2 =2

pa(z)

—10.04 —5.02 ROV = 3.05 35.13

Figure 1: NPV scenarios as a triangular fuzzy number.

being cf; the cash flow in the year ¢ and i the discount rate or return that
could be earned in alternative investments. Then, assuming a discount rate
of 15%, the NPV of the optimistic scenario, NPV ?, is equal to 35.13, the
NPV of the basic scenario, NPV ®, is equal to —5.02, and the NPV of the
pessimistic scenario, NPV is equal to —10.04. The triangular fuzzy number
built by these three scenarios is represented in Fig. 1. In this example, the
core, pa(x) = 1, becomes a single value (—5.02 millions of euros) whereas
the support given by the left and right tails covers the area between —10.04
and 35.13 millions of euros. The cash flow values outside the support have
pa(z) =0, and are not considered. The real option value obtained using (1)
is equal to 3.05.

The FPOM has attracted great attention since it was proposed and has
been employed for analysis, development and research projects (Collan &
Luukka, 2014), large industrial investments (Collan, 2011), corporate ac-
quisitions (Collan & Kinnunen, 2011), investments into information systems
(Collan et al., 2014), aerospace industry (Rodger, 2013), and patents (Collan



& Kylédheiko, 2013), among others. However, it should be noted that Borges
et al. (2018) proved that, because the ROV value generated by the FFPOM
from a fuzzy NPV can in some situations be lower than the value of the
possibilistic mean calculated from the same fuzzy NPV, the FPOM can be
interpreted to function in a finance-theoretically incorrect way. The reason
is associated with the method that is employed to obtain a single value repre-
senting a fuzzy number. To avoid it, in place of using the possibilistic mean,
Borges et al. (2018) employed the center of gravity to carry out this task.

3. A granular fuzzy pay-off method for real option valuation

We are concerned with elevating the FFPOM to a higher level of abstrac-
tion, which is referred to as the granular FFPOM. To do so, we structure the
design of the granular FFPOM into three steps. The first step is devoted to
form a granular representative of type-1 (in particular, an interval) for each
one of the three NPV scenarios. The second step is devoted to construct an
information granule of type-2 (specifically, an interval type-2 fuzzy number)
using the obtained information granules of type-1 in the first step. The third
step is devoted to compute the real option value from the information gran-
ule of type-2 built in the second step. The next subsections describe these
three steps in detail.

3.1. Obtaining a granular representative

The basic step behind the FFPOM is to construct the triangular fuzzy
number representing the three NPV scenarios (optimistic, basic, and pes-
simistic) in which each scenario is a separate cash flow statement with annual
cash flows. For each NPV scenario, each annual cash flow can be estimated
by an expert (as in the example shown in Section 2). However, according
to social psychology research, groups tend to make a better decision than
the most skillful person in them (Yang, 2010). Therefore, a group of ex-
perts are usually involved in estimating the three NPV scenarios and then
a representative for each scenario must be obtained.

This is formalized as follows. We assume a group of experts, £ =
{e1,€a,...,en}. Then, each expert e, provides an optimistic estimation,
cff,, a basic estimation, cf?, and a pessimistic estimation, cff,, for the
cash flow of every year t. Using (2), the NPV of the optimistic scenario,
NPV, the NPV of the basic scenario, NPV}, and the NPV of the pes-
simistic scenario, NPV}”, are obtained for each expert e;. Then, a repre-
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sentative for the optimistic scenario, NPV?°, is obtained by aggregating all
the NPV? (k = 1,...,m), a representative for the basic scenario, NPV?,
is obtained by aggregating all the NPV (k = 1,...,m), and a representa-
tive for the pessimistic scenario, N PV?  is obtained by aggregating all the
NPVP (k = 1,...,m). Finally, the representatives of the pessimistic, ba-
sic, and optimistic, that is, NPV°, NPV’ and NPV?, form a triangular
fuzzy number. The problem consists in forming an only item, which may be
taken as a sound (optimal in relation to a given criterion) representative of
experimental evidence that is composed of numeric data.

Data aggregation (Wang et al., 2019), from a formal perspective, is re-
lated to a mapping ¢, which usually assumes the form ¢ : R® — R, from an
experimental evidence space (n-dimensional) to an aggregation result space
(one-dimensional). Aggregation must generate some outcome representative
of several sources of experimental evidence, which usually come with an in-
trinsic diversity, considered a block. Therefore, the result of the aggregation
must be more abstract than the sources of experimental evidence. In the set-
ting of real option valuation, it means that it is not convincing enough that a
numeric value may be a good representative of a set of NPVs that are encoun-
tered in numeric form. The aggregation process can be enhanced by means
of information granules (Liu et al., 2018; Cabrerizo et al., 2018; Zhu et al.,
2017), which arise as a viable option worth pursuing. From a formal per-
spective, the aggregation is now concerned with a mapping ¢ : R — G(R),
being G(R) an information granule that can be related to any formalism of
Granular Computing (Cabrerizo et al., 2020; Callejas et al., 2019; Yao et al.,
2013), including rough sets, probabilities, fuzzy sets, and intervals, among
others.

In the granular FFPOM, we are interested in the aggregation of a collec-
tion of N PV's yielding a particular information granule Y, whose granularity
must reflect the diversity of the NPV's to be aggregated. To quantify and
accommodate the diversity of the NPV, the information granule Y must
be of a higher type than the type of the elements to be aggregated. In this
case, the NPV's (numbers) are information granules of type-0. Therefore,
the aggregation of the NPV's must lead to an information granule of type-
1, which is a granular construct completely determined by a set of numeric
parameters. Here, we are interested in information granules as intervals.
Consequently, the bounds of the intervals are their numeric parameters.

The principle of justifiable granularity helps realize the granular character
of Y (Pedrycz & Homenda, 2013; Wang et al., 2019). This principle is related
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to a way of building information granules on a basis of some available exper-
imental data. The crux of this principle is associated with a construction of
information granules so that they are conceptually meaningful (that is, they
come with a well-defined semantics) and they are experimentally justifiable
(that is, they are justifiable by experimental evidence). The principle of jus-
tifiable granularity involves two criteria that are in conflict: (i) specificity
(Marin et al., 2018; Yager, 1992), which stresses the semantics of the in-
formation granule, and (ii) coverage (Esteve-Calvo & Lloret-Climent, 2006),
which states how much data samples are embraced in the formed information
granule. The definition of both criteria depend on the formal nature of the
information granule to be formed (Pedrycz, 2015). Therefore, a sound com-
promise of these criteria must be achieved when formalizing the information
granules.
Let us consider an information granule Y formalized as an interval [aopt, bopt]

and a collection of NPV's, Z = {z1, 29, ..., 2.}, 2 € R. The procedure behind
the principle of justifiable granularity is structured into two steps:

1. Obtaining a numeric representative w of Z. To do so, a number of
alternatives, as the mean, median, or generalized mean, could be used.
In this study, the mean is used for the sake of simplicity:

1 n
w:E;zi. (3)

2. Obtaining the bounds of the interval. To do so, we individually de-
termine the upper bound b, and the lower bound a,,. First, we
determine the upper bound b,, by computing the specificity, sp, and
coverage, cov, as:

|b— w

e 1 _—_—
spl(, b)) =1 = P,

(4)

and
card{z | z € [w,b]}

card{zy | zx > w}

cov(|w, b)) = (5)

where 2,0, = argmaxy=i2, n 2.

The key task is to build an interval in order to get both the specificity
and coverage to achieve the highest values (Fu & Lu, 2019). However, these

9



two criteria are commonly in conflict and cannot be at maximum at the same
time (Ouyang et al., 2019): increasing the coverage will reduce the specificity
and vice versa. Therefore, we determine b,,, by maximizing the product of
the specificity and coverage:

bopt = ary mgxx{sp[w, b] - cov|w, b]}. (6)
The lower bound a, is determined similarly. Briefly, we have:
Qopr = argmax{spla, w] - covla, wl}, (7)

where | |
w —a
sp([a,w]) =1- |Z - w|7

card{zy | zx € [a,w]}

cov(la, w]) = card{z | zr <w}

and 2y, = argming—y o, 2.

The algorithms of differential evolution (Storn & Price, 1997) and particle
swarm optimization (Kennedy & Eberhart, 1995) can serve here as a sound
alternative to optimization.

Let Z0 = {zb, 25, ... 28}, Z° = {20,29,..., 2%}, and ZP = {2} 28 ... 2P},
be the collection of NPVs for the basic scenario, the collection of NPV's
for the optimistic scenario, and the collection of NPVs for the pessimistic
scenario, respectively. The procedure described is applied in this step to
obtain three information granules formalized as intervals [a? ,, b2 ], [a2 ., b2 ],

opt’ ~opt optr “opt
and [ab,,, b)), that reflect the diversity of the elements of Z°, Z°, and Z7,
respectively.

3.2. Building a type-2 information granule

This second step is devoted to constructing a type-2 information granule
using the three intervals (type-1 information granules) obtained in the first
step. Recall that a type-2 information granule has parameters in the form of
type-1 information granules instead of numeric entities (type-0 information
granules).

An early objection that was formulated related to fuzzy sets (type-1 infor-
mation granules) is that it seems incongruous that something that is “fuzzy”
has a very precisely defined membership function (Mendel & John, 2002). To
overcome this limitation, Zadeh (1975a) introduced type-2 fuzzy sets as fuzzy
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Figure 2: UMF (solid), LMF (dashed), and FOU (shaded) for an interval type-2 fuzzy set
A.

sets having fuzzy membership degrees. Type-2 fuzzy sets add a third dimen-
sion to modelling imprecision providing more degrees of freedom. However,
they are computationally more expensive. For this reason, interval type-2
fuzzy sets are mostly employed because the computations related to them
are typically manageable even in applications requiring real time decision
support (Mendel et al., 2006). Therefore, the three intervals are used to
construct an interval type-2 fuzzy number.

Definition 1. If an interval type-2 fuzzy set A can be expressed as:

A= (Auv Al) = ([a?7gu7 a, ag? hu]? [CLé? a’l7 a’lLH hl])? (1())
then A is called an interval type-2 fuzzy number, where h* = 1 denotes
the membership value of the elements a* and a“ in the trapezoidal upper
membership function (UMF) pau(z), and ht € [0,1] denotes the membership
value of the element a' in the triangular lower membership function (LMF)
pg(x). The UMF pgu(x) and the LMF pq(x) are two type-1 membership
functions that bound the footprint of uncertainty (FOU) of A (see Fig. 2),
which is computed as:

FOU(A) = | [pan (), pa (). (11)

zeX

Then, using the three intervals obtained in the first step, the procedure
to determine the interval type-2 fuzzy number A is as follow (see Fig. 3):

11



al = al)

I _p l I _ ,o0 u — po
opt al—bopt a a, =a ay =D

opt

Figure 3: Interval type-2 fuzzy number A.

A" is determined as follows:

u 3 p
aj' is equal to @

b
opt*

b
opt*

— a" is equal to a

— a" is equal to b

u

3 (]
— ay is equal to by,

— Use straight lines to connect the following points: (aj’,0), (a“, 1),
(a*,1), and (ay,0).
This results in the trapezoidal UM F' pau(z).

Al is determined as follows:

— aj is equal to by ,.

— Obtain the intersection point (a', ') of the right leg and the left
leg of the left and right most-extreme triangles (see Fig. 3) using:
, - (@ —al)+af- (a, —a)

u l u w
a = , 12
@ —a)) + (, — a) (12)

! !
a, —a

h' =

. 13
o —— (13)

u__

l

— a, is equal to a

o
opt*

12



— Use straight lines to connect the following points: (a¥,0), (a!,0),

(al, i), (al,0), and (a¥,0).
This results in the triangular LM F ().

The interval type-2 fuzzy number A constructed using this procedure is
called the interval type-2 fuzzy N PV of the project and represents its pay-off
distribution.

3.3. Computing the real option value

Considering that the real option value must be computed as the weighted
mean of the positive outcomes of a pay-off distribution (Datar & Mathews,
2004), the FPOM computes the real option value as the possibilistic mean
of the positive NPV outcomes (Collan et al., 2009). However, Borges et al.
(2018) proved that there exist scenarios where the project without real op-
tions leads to a higher value than the same project with real options, which
is inconsistent with the theory (Amram & Kulatilaka, 1999; Cox & Martin,
1983). This is due to the usage of the possibilistic mean to generate a crisp
representation of the fuzzy number (Carlsson & Fullér, 2001). To solve this
issue, Borges et al. (2018) utilized the center of gravity to obtain a crisp
representation of the fuzzy number.

Taking into account these considerations, in the granular F'POM the real
option value is computed as:

aredpoy( ~

- C(A+)> (14)

ROV = )

where A denotes the interval type-2 fuzzy NPV, area Fou(A), symbolizes the

area of the positive side of FOU(A), area rou () symbolizes the total area of

FOU(A), and ¢(A,) denotes the centroid of the positive side of A. On the
one hand, areapoy 4y, and areapoy ) are calculated as follows:

rcarouy, = | o) - (o)l (15)
orcarouin = [ lnan(o) = ua(a) (16)

In order to compute ¢(A, ), we use the Nie & Tan (2008)’s method as it
reduces greatly the computation cost and the closed-form nature of its output
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enables theoretical analysis of interval type-2 fuzzy logic systems (Mendel
& Liu, 2013) (refer to Nie & Tan (2008) for a detailed description of the
method). However, other methods like those proposed in Mendel & Liu
(2013), Karnik & Mendel (2001), and Wu & Mendel (2009), could be also
used.

Similar to the FPOM , the granular F POM reflects the right to not con-
tinue with a business initiative if a negative result is anticipated by mapping
the negative NPV values of the pay-off distribution into 0. Therefore, ac-
cording to (14), if the whole interval type-2 fuzzy number A is above 0, the
real option value is equal to the centroid of the interval type-2 fuzzy number
A, and if the whole interval type-2 fuzzy number A is below 0, the real option
value is equal to 0.

4. An illustrative example in the manufacturing context

A new technology is often developed to solve an existing or emerging
problem in some phase of production (incrementally), such as a bottleneck
in material flow, or to develop a new process to improve both output and
efficiency (radically), such as a totally new process to utilize recycled mate-
rial. Depending on the size and the quality of the problem area, the efforts
to find solutions may require extensive tests with a pilot application. Testing
phases like this intend to provide new information to managers making the
decision whether to invest in the new technology. However, they may also be
expensive investments by themselves. Therefore, the decision to run a pilot
project often needs approval by the managers responsible for investments and
research and development (R&D), including the managing director (hence-
forward “R&D investment management”).

According to Mitchell & Hamilton (2007), R&D investment management
has looked at R&D from two perspectives. From the administrative point
of view, R&D is as a necessary cost of business (the cost centre approach)
where R&D is an overhead expense. Specifically, such views are preferred
for evaluation of early-stage or exploratory research efforts. From the view-
point of operational management, R&D is an investment (the profit centre
approach) and seeks to evaluate funds allocated to R&D with profitability
criteria. Therefore, financial and market-based criteria should be used for
evaluation. Addressing the profitability criteria, Mitchell & Hamilton (2007)
concluded that the traditional R&D profitability analysis methods with re-
turn on investment or discounted present values (NPV and [RR) fail to
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deal with the implications of cutting funding from the research program and
that they may also lead to failures in positioning a company in key technical
areas that again may lead to ignoring the downstream options available in
the research pipeline.

For the two-stage R&D utilization program, with the pilot and the op-
erational stages, the new technology or solution is expected to provide op-
erational benefits. Therefore, the analysis should be made with the profit
center approach. The operational stage is here seen as a real option. The
cost of the pilot stage, usually without any substantial cash flows, actually
is the cost for acquiring this real option. Cash flows of the improved oper-
ations of the new production process are treated as incremental cash flows,
that is, cash flows showing the improvement (difference) produced by the
R&D investment to the previous situation without the investment, and they
represent the operational benefits of the investment.

To justify this two-stage investment, the R&D investment management
need to estimate operational cash flows. However, it is practically impossible
to evaluate the effects of the new process precisely, as one single annual cash
flow estimate. After all, the pilot project itself is to generate such new infor-
mation about expected operational benefits. In addition, due to asymmetric
information within the R&D investment management group about the op-
erational benefits, and due to differing expert opinions in the group, it is in
most cases impossible to reach any solution to the investment problem with
market-based data, and market efficiency cannot thus be assessed explicitly.
Instead, expert knowledge and a process to reach consensus (Gao & Li, 2019;
Xu et al., 2019) should be used to generate the information embedded and
represented in the cash flows implicitly.

In the present case, the process to reach consensus is carried out first by
allowing eight managers (experts), two R&D project managers (e; and es),
two R&D portfolio managers (e3 and e4), two factory managers (e; and eg),
the business controller (e7) and the managing director (eg), to give their cash
flow estimates. Secondly, the granular F POM developed in this study helps
to reach a consensus about the value of the real option.

Now, a two-stage evaluation process can be described. In the first stage,
when the managers review existing data and reports they confirm the need
to produce a feasibility study to find a more precise common understanding
about the project. Then the managing director collects the expected (basic),
optimistic and pessimistic views of all the managers about the cash flows (see

Table 2).
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Table 2: Cash flows provided by the managers (in millions of euros).

Year
Manager | Scenario |0 1 2 3 A4 5 6 7
Optimistic | 0 5 5 5 7 7 7 7
e1 Basic 0 2 2 2 4 4 4 4
Pessimistic |0 -2 -2 -2 -1 -1 -1 -1
Optimistic | 0 6 6 7 9 9 9 9
€9 Basic 0 3 3 4 5 5 5 5
Pessimistic [0 —2 -2 -1 0 0 0 0
Optimistic | 0 4 4 5 5 8 8 8
es Basic 0 1 1 2 2 3 3 3
Pessimistic |0 -3 -3 -2 -2 -1 -1 -1
Optimistic | 0 3 3 3 5) 5) 5) 5)
es Basic 0O O 0 0 1 1 1 1
Pessimistic [0 -3 -3 -3 -2 -2 -2 =2
Optimistic | 0 4 4 5 5 5 5 5
es Basic 0 1 1 2 2 2 2 2
Pessimistic |0 -2 -2 -1 -1 -1 -1 -1
Optimistic | 0 3 3 4 4 5 5 5
€6 Basic 0O -1 -1 0 0 1 1 1
Pessimistic |0 -3 -3 -2 -2 -1 -1 -1
Optimistic | 0 3 3 3 4 4 4 4
ey Basic o -1 -1 -1 1 1 1 1
Pessimistic |0 -3 -3 -3 -2 -2 -2 =2
Optimistic | 0 4 4 5 5 6 6 6
es Basic 0 O 0 1 1 3 3 3
Pessimistic [0 -3 -3 -2 -2 -2 -2 =2
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Table 3: NPV scenarios for each manager (in millions of euros)

Manager

NPV e1 €9 e €4 es €g er

&

Optimistic | 24.55 31.25 23.09 16.23 19.17 16.32 14.35  20.48
Basic 12.07 16.89  8.00 1.87 6.69 —0.32 —-040 5.14

Pessimistic | —6.44 —-3.91 —-8.64 -10.60 —5.78 —-8.64 —10.60 —9.94

To allow a consensus to be found, a pay-off value is then calculated with
the granular FPOM. 1t is given to all participants and included in the
feasibility study. In the following subsections, we describe in detail how this
can be carried out.

4.1. Granular representation

First, we must compute for each manager e, (k = 1,...,8) the NPV
of the optimistic scenario, NPV, the NPV of the basic scenario, NPV,
and the NPV of the pessimistic scenario, NPV,”. Using the three future
cash flow scenario values provided by the managers (see Table 2) and (2),
the N PV's of the three scenarios for each manager are shown in Table 3 (we
have assumed a discount rate of 15%). According to it, the collection of
NPV for the basic scenario, Z°, the collection of N PVs for the optimistic
scenario, Z°, and the collection of NPV's for the pessimistic scenario, Z?,
are:

Zb = {12.07,16.89,8.00,1.87,6.69, —0.32, —0.40, 5.14}
Z° = {24.55,31.25,23.09,16.23,19.17, 16.32, 14.35, 20.48}
7P = {—6.44,-3.91,-8.64, —10.60, —5.78, —8.64, —10.60, —9.94}

Once these three NPV collections have been obtained, a representative
formalized as an interval is determined for each one of them. This is done as
follows:

o Using (3), the numeric representatives w’, w®, and w?, of Z° Z° and
ZP respectively, are:

w® = 6.24 w® = 20.68 wP = —=8.07
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Figure 4: Interval type-2 fuzzy NPV A associated with the example in the manufacturing
context.

 Using, for example, a particle swarm optimization algorithm (Kennedy
& Eberhart, 1995), we obtain the following optimal bounds of the inter-
val, which makes an optimal balance between coverage and specificity:

[ opta bl;pt] — [514, 800]
Opt,bzpt] = [19.17,24.55]
[ opta bgpt] - [_864, —578]

4.2. Construction of the interval type-2 fuzzy NPV

Once the three intervals have been determined, the interval type-2 fuzzy
NPV A is constructed. According to the intervals obtained, the interval
type-2 fuzzy NPV A is equal to (see Fig. 4):

A = (A4 AY = ([a¥ = —8.64,a" = 5.14,a" = 8.00, a = 24.55, h* = 1],
a} = —578a_658a:1917hl_0897])

where a' and h' are computed by using (12) and (13) as follows:

;1917 (8.00 — (—5.78)) + (—=5.78) - (19.17 — 5.14)  183.07

_ - — 6.58
4 (8.00 — (—5.78)) + (19.17 — 5.14) 27.81
19.17 — 6.58
l = ——
W= 19.17 — 5.14 0897
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4.3. Computation of the real option value

The real option value is computed by using the interval type-2 fuzzy N PV
A obtained in the above step. According to (14), we need to compute the
area of the positive side of FOU(A) and the total area of FOU(A), which is
done as follows:

514 8.00
514 — x
aredpoy iy, = /0 gl ©8.00 — (—5.78))dx - /5.14 po
24.55 r —8.00
200 24.558.00
_/6-58 - 6.58 — x dr
; 6.58 — (—5.78)
/19.17 . T — 6.58 p
_ _— xXr
658 19.176.58
= 4.184+2.86+8.28 —4.33 — 5.65 = 5.33
5.14 8.00
5.14 — x
o 1— d 1d
aredpoy (A) /864 8.00 — (—5. 78)) v /5.14 !
/24 5 L r 8.00 p
xXr
800 24.558.00
/ 58 1 6. 58 - A
58 6.58 — (—5.78)
/ 19.17 x — 6. 58
dx
658 © 19.176.58

= 6.89 4 2.86 + 8.28 — 5.55 — 5.65 = 6.83

In addition, we must also compute the centroid associated with the pos-
itive side of the interval type-2 fuzzy NPV A. Using the Nie & Tan (2008)
method, we obtain that ¢(A,) is equal to 8.66. Therefore, the real option
value is:

5.33
ROV—@ 8.66 = 6.76

In the second stage, when the feasibility study has been done, the man-
agers gather again to share their views about the study and to update their
views on the cash flows, if necessary. In such a case, that is, in the case the
managers update their cash flow estimates, the granular FFPOM is applied
again to get a new real option value. Then, the meeting is able to negotiate
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Figure 5: Fuzzy NPV A associated with this case study in the manufacturing context.

on the decision to start the pilot project, to kill the whole project or to run
it partially, if possible. Yet another possibility is to keep the project alive
without substantial funding and evaluate it again later if it is still relevant.

Finally, to put the obtained real option value in a certain context, we re-
port the real option value obtained when using the original F'POM proposed
by Collan et al. (2009). In such a case, each N PV scenario is represented by
a numeric representative (information granule of type-0), which represents
to a lower extent the diversity of the cash flow scenarios given by the eight
managers. Using again the mean as numeric representative of each NPV
scenario, Fig. 5 depicts the fuzzy NPV A built by using the FPOM. Using
(1), the FPOM returns a value of 5.63, which is the real option value asso-
ciated with this fuzzy NPV A. Comparing with the granular FFPOM, the
real option value achieves now a lower value. The granular FPOM, being
more abstract than the original FF/POM, is able to deal with uncertainty in a
better way and can also better represent the diversity of cash flow scenarios
provided by the managers, which can increase the value associated with a
business case.

5. Concluding remarks

In this study, by engaging the crucial aggregation of future cash flow sce-
narios, we have proposed a novel approach to designing a granular FPOM,
which offers an efficient way of building information granules as intervals in
the presence of experimental data in the form of future cash flow scenarios.
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The criteria of specificity and coverage have served as suitable indicators to
quantify the quality of the information granules constructed. In contrast
to the “standard” FPOM, the proposed granular FFPOM, which is posi-
tioned at a higher level of abstraction, becomes better in dealing with the
uncertainty associated with experimental data in the form of future cash
flow scenarios. However, the understanding of the procedures involved in
the granular FFPOM is not so simplistic as in those involved in the original
FPOM (recall that simplicity was the main reason to build the FPOM (Col-
lan et al., 2009)). Therefore, a software implementing the proposed granular
FPOM could be necessary when used by real-world managers.

When building the information granules, it was assumed that the experts
are given the same importance when estimating future cash flow scenarios.
However, it is common that, in a group of experts, they have different back-
grounds and knowledge levels (Cabrerizo et al., 2013; Pérez et al., 2014).
Therefore, an interesting idea would be to reformulate the building of the
information granules so that it represents the knowledge level of the experts
by assigning an importance weight to each estimated cash flow based on the
knowledge level of the experts.

At the applied end of the spectrum of further studies, another direction in
which this research could be continued in the future is to investigate the ap-
plication of the granular F POM to the areas of patents (Agliardi & Agliardi,
2011; Lawryshyn et al., 2017), RFID investment (Lee & Lee, 2015), expan-
sion strategy (Yuan, 2009), aerospace industry (Rodger, 2013) and project
portfolio selection (Carlsson et al., 2007; Dou et al., 2019; Li & Yi, 2019).
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