Titania nanofibers in gypsum composites: an antibacterial and cytotoxicology study

Melinda Mohl, Aron Dombovari, Elena S. Tuchina, Pavel O. Petrov, Olga A. Bibikova, Ilya Skovorodkin, Alexey P. Popov, Anne-Riikka Rautio, Anjana Sarkar, Jyri-Pekka Mikkola, Mika Huuhtanen, Seppo Vainio, Riitta L. Keiski, Arthur Prilepsky, Akos Kukovecz, Zoltan Konya, Valery V. Tuchin, Krisztian Kordas

    Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

    18 Sitaatiot (Scopus)

    Abstrakti

    Further developments of antibacterial coatings based on photocatalytic nanomaterials could be a promising route towards potential environmentally friendly applications in households, public buildings and health care facilities. Hereby we describe a simple chemical approach to synthesize photocatalytic nanomaterial-embedded coatings using gypsum as a binder. Various types of TiO2 nanofiber-based photocatalytic materials (nitrogen-doped and/or palladium nanoparticle decorated) and their composites with gypsum were characterized by means of scanning (SEM) and transmission (TEM) electron microscopy as well as electron and X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques. These gypsum-based composites can be directly applied as commercially available paints on indoor walls. Herein we report that surfaces coated with photocatalytic composites exhibit excellent antimicrobial properties by killing both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under blue light. In the case of MSSA cells, the palladium nanoparticle-decorated and nitrogen-doped TiO2 composites demonstrated the highest antimicrobial activity. For the MRSA strain even pure gypsum samples were proven to be efficient in eradicating Gram-positive human pathogens. The cytotoxicity of freestanding TiO2 nanofibers was revealed by analyzing the viability of HeLa cells using MTT and fluorescent cell assays.
    AlkuperäiskieliEi tiedossa
    Sivut1307–1316
    JulkaisuJournal of Materials Chemistry. B
    Vuosikerta2
    Numero10
    DOI - pysyväislinkit
    TilaJulkaistu - 2014
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Viittausmuodot