Abstrakti
In this paper we present a framework for subspace identification of multiple-input multiple output linear time-invariant systems from data corrupted by outliers and piece-wise linear trends. The subspace identification problem is formulated as a sparsity constrained rank minimization problem that is relaxed using the nuclear norm and the l1-norm. The proposed identification method has been validated on a simulated example and on a case study using data from a pilot-plant distillation column.
Alkuperäiskieli | Ei tiedossa |
---|---|
Otsikko | 27th European Symposium on Computer Aided Process Engineering |
Toimittajat | Antonio Espuña, Moisès Graells, Luis Puigjaner |
Kustantaja | Elsevier |
Sivut | 307–312 |
ISBN (elektroninen) | 978-0-444-63970-7 |
ISBN (painettu) | 978-0-444-63965-3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2017 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | European Symposium on Computer Aided Process Engineering (ESCAPE) - 27th European Society of Computer-Aided Process Engineering (ESCAPE) Kesto: 1 lokak. 2017 → 5 lokak. 2017 |
Konferenssi
Konferenssi | European Symposium on Computer Aided Process Engineering (ESCAPE) |
---|---|
Ajanjakso | 01/10/17 → 05/10/17 |