Stratified Gaussian graphical models

H Nyman, Johan Pensar, J Corander

    Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

    3 Sitaatiot (Scopus)

    Abstrakti

    Gaussian graphical models represent the backbone of the statistical toolbox for analyzing continuous multivariate systems. However, due to the intrinsic properties of the multivariate normal distribution, use of this model family may hide certain forms of context-specific independence that are natural to consider from an applied perspective. Such independencies have been earlier introduced to generalize discrete graphical models and Bayesian networks into more flexible model families. Here, we adapt the idea of context-specific independence to Gaussian graphical models by introducing a stratification of the Euclidean space such that a conditional independence may hold in certain segments but be absent elsewhere. It is shown that the stratified models define a curved exponential family, which retains considerable tractability for parameter estimation and model selection.
    AlkuperäiskieliEi tiedossa
    Sivut5556–5578
    Sivumäärä23
    JulkaisuCommunications in Statistics - Theory and Methods
    Vuosikerta46
    Numero11
    DOI - pysyväislinkit
    TilaJulkaistu - 2017
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Keywords

    • Context-specific independence
    • Multivariate normal distribution
    • Bayesian model learning
    • Gaussian graphical model

    Viittausmuodot