Steelmaking integrated with a polygeneration plant for improved sustainability

Hamid Ghanbari Toudeshki, Mikko Helle, Frank Pettersson, Henrik Saxén

    Tutkimustuotos: LehtiartikkeliArtikkeliTieteellinenvertaisarvioitu

    8 Sitaatiot (Scopus)

    Abstrakti

    In this study, a process integration approach was used to investigate process economics and carbon dioxide emissions from a steelmaking plant. The suggested superstructure includes the main process units in steelmaking and a polygeneration system producing methanol, heat and electricity. In the steel plant, advanced blast furnace technologies such as top gas recycling and cold oxygen injection have been implemented. The effect of partially replacing of coke with alternative fuels with lower carbon barrier, such as oil, natural gas and biomass on liquid steel production cost and carbon dioxide emission from the integrated plant has been investigated. The results of the analysis demonstrate that an integration of steelmaking with a polygeneration system could increase the total energy efficiency and decrease the emissions of the system. The combinations of technologies and alternative fuels were found to reveal potential paths towards more sustainable steelmaking concepts.
    AlkuperäiskieliEi tiedossa
    Sivut1033–1038
    Sivumäärä6
    JulkaisuChemical Engineering Transactions
    Vuosikerta29
    DOI - pysyväislinkit
    TilaJulkaistu - 2012
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Viittausmuodot