Sorption enhanced catalysis for CO2 hydrogenation towards fuels and chemicals with focus on methanation

Liangyuan Wei, Wim Haije, Henrik Grénman, Wiebren de Jong

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaLukuTieteellinenvertaisarvioitu


Hydrogen produced by the electrolysis of water using sustainable electricity will play an increasingly important role as an energy and a feedstock vector. Shifting from fossil to renewable resources means that new industrial platforms have to be set up to provide carbon-based fuels and bulk base chemicals to replace the current fossil resources based routes. The global demand cannot be met by indirect use of carbon dioxide via biomass necessitating the use from point sources or direct air capture, which changes the value of CO2 from waste to commodity chemicals. The production of chemicals by hydrogenation of CO2 is typically hampered by the thermodynamic conversion being far from 100% under currently viable reaction conditions. The equilibrium can, however, be shifted to increase conversion by removing one of the reaction products, namely water, from the reaction mixture with sorbents like zeolites. Prerequisite to conversion enhancement and process intensification is the close proximity of sorption and catalytic sites. This review presents the state of the art in synthesis and application of these, in fact, bifunctional materials.

OtsikkoHeterogeneous Catalysis
AlaotsikkoMaterials and Applications
ISBN (elektroninen)9780323856126
ISBN (painettu)9780323856324
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA3 Kirjan osa tai toinen tutkimuskirja


Sukella tutkimusaiheisiin 'Sorption enhanced catalysis for CO2 hydrogenation towards fuels and chemicals with focus on methanation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.