SimuShips - A High Resolution Simulation Dataset for Ship Detection with Precise Annotations

Minahil Raza, Hanna Prokopova, Samir Huseynzade, Sepinoud Azimi, Sebastien Lafond

Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

3 Sitaatiot (Scopus)
31 Lataukset (Pure)

Abstrakti

Obstacle detection is a fundamental capability of an autonomous maritime surface vessel (AMSV). State-of-the-art obstacle detection algorithms are based on convolutional neural networks (CNNs). While CNNs provide higher detection accuracy and fast detection speed, they require enormous amounts of data for their training. In particular, the availability of domain-specific datasets is a challenge for obstacle detection. The difficulty in conducting onsite experiments limits the collection of maritime datasets. Owing to the logistic cost of conducting on-site operations, simulation tools provide a safe and cost-efficient alternative for data collection. In this work, we introduce SimuShips, a publicly available simulation-based dataset for maritime environments. Our dataset consists of 9471 high-resolution (1920x1080) images which include a wide range of obstacle types, atmospheric and illumination conditions along with occlusion, scale and visible proportion variations. We provide annotations in the form of bounding boxes. In addition, we conduct experiments with YOLOv5 to test the viability of simulation data. Our experiments indicate that the combination of real and simulated images improves the recall for all classes by 2.9%.
AlkuperäiskieliEnglanti
OtsikkoOCEANS 2022, Hampton Roads
KustantajaIEEE
Sivut1-5
Sivumäärä5
ISBN (painettu)978-1-6654-6810-7
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
TapahtumaOCEANS -
Kesto: 17 lokak. 2022 → …

Julkaisusarja

NimiOceans
ISSN (painettu)0197-7385

Konferenssi

KonferenssiOCEANS
Ajanjakso17/10/22 → …

Sormenjälki

Sukella tutkimusaiheisiin 'SimuShips - A High Resolution Simulation Dataset for Ship Detection with Precise Annotations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Viittausmuodot