Predicting Reaction Times in Word Recognition by Unsupervised Learning of Morphology

S Virpioja, Minna Lehtonen, A Hultén, R Salmelin, K Lagus

    Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaLukuTieteellinenvertaisarvioitu

    4 Sitaatiot (Scopus)


    A central question in the study of the mental lexicon is how morphologically complex words are processed. We consider this question from the viewpoint of statistical models of morphology. As an indicator of the mental processing cost in the brain, we use reaction times to words in a visual lexical decision task on Finnish nouns. Statistical correlation between a model and reaction times is employed as a goodness measure of the model. In particular, we study Morfessor, an unsupervised method for learning concatenative morphology. The results for a set of inflected and monomorphemic Finnish nouns reveal that the probabilities given by Morfessor, especially the Categories-MAP version, show considerably higher correlations to the reaction times than simple word statistics such as frequency, morphological family size, or length. These correlations are also higher than when any individual test subject is viewed as a model.
    AlkuperäiskieliEi tiedossa
    OtsikkoArtificial Neural Networks and Machine Learning – ICANN 2011
    ToimittajatT Honkela, W Duch, M Girolami, S Kaski
    ISBN (elektroninen)978-3-642-21735-7
    DOI - pysyväislinkit
    TilaJulkaistu - 2011
    OKM-julkaisutyyppiA3 Kirjan osa tai toinen tutkimuskirja