TY - JOUR
T1 - Palladium catalysts supported on N-functionalized hollow vapor-grown carbon nanofibers
T2 - The effect of the basic support and catalyst reduction temperature
AU - Sahin, Serap
AU - Mäki-Arvela, Päivi
AU - Tessonnier, Jean-Philippe
AU - Villa, Alberto
AU - Reiche, Sylvia
AU - Wrabetz, Sabine
AU - Su, Dangsheng
AU - Schlögl, Robert
AU - Salmi, Tapio
AU - Murzin, Dmitry Yu
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2011/11/28
Y1 - 2011/11/28
N2 - The basic N-functionalized vapor-grown carbon nanofibers (N-VGCF) were synthesized by post-treating oxidized VGCFs in gaseous NH3 at high temperature (ammonolysis) prior to Pd addition by sol immobilization. The catalysts were characterized by nitrogen adsorption, hydrogen temperature programmed desorption, adsorption microcalorimetry and by SEM and TEM. Catalytic activity was evaluated in a model reaction, synthesis of (R)-1-phenylethyl acetate starting from hydrogenation of acetophenone to racemic 1-phenylethanol over Pd supported on N-VGCFs, at 70 °C under atmospheric hydrogen pressure in toluene, followed by acylation over an immobilized lipase in the same reaction pot. The main parameters investigated in this work were the role of the basic N-VGCF supports as well as the reduction procedure of the supported Pd catalysts (Pd-N-VGCF). The results revealed that the catalytic activity of the Pd-N-VGCF catalysts was highly dependent on the reduction procedure. The highest desired product yield, 35%, was obtained over a Pd-N-VGCF catalyst when the support was treated at 400 °C with gaseous ammonia prior to Pd addition.
AB - The basic N-functionalized vapor-grown carbon nanofibers (N-VGCF) were synthesized by post-treating oxidized VGCFs in gaseous NH3 at high temperature (ammonolysis) prior to Pd addition by sol immobilization. The catalysts were characterized by nitrogen adsorption, hydrogen temperature programmed desorption, adsorption microcalorimetry and by SEM and TEM. Catalytic activity was evaluated in a model reaction, synthesis of (R)-1-phenylethyl acetate starting from hydrogenation of acetophenone to racemic 1-phenylethanol over Pd supported on N-VGCFs, at 70 °C under atmospheric hydrogen pressure in toluene, followed by acylation over an immobilized lipase in the same reaction pot. The main parameters investigated in this work were the role of the basic N-VGCF supports as well as the reduction procedure of the supported Pd catalysts (Pd-N-VGCF). The results revealed that the catalytic activity of the Pd-N-VGCF catalysts was highly dependent on the reduction procedure. The highest desired product yield, 35%, was obtained over a Pd-N-VGCF catalyst when the support was treated at 400 °C with gaseous ammonia prior to Pd addition.
KW - Carbon nanofiber
KW - Hydrogenation
KW - Lipase
KW - Pd
UR - http://www.scopus.com/inward/record.url?scp=80054937906&partnerID=8YFLogxK
U2 - 10.1016/j.apcata.2011.09.017
DO - 10.1016/j.apcata.2011.09.017
M3 - Article
AN - SCOPUS:80054937906
SN - 0926-860X
VL - 408
SP - 137
EP - 147
JO - Applied Catalysis A: General
JF - Applied Catalysis A: General
IS - 1-2
ER -