Abstrakti
Let E, F be either Fréchet or complete DF-spaces and let A(E, F) ⊆ B(E, F) be spaces of operators. Under some quite general assumptions we show that: (i) A(E, F) contains a copy of c0 if and only if it contains a copy of l∞; (ii) if c0 ⊆ A(E, F), then A(E, F) is complemented in B(E, F) if and only if A(E, F) = B(E, F); (iii) if E or F has an unconditional basis and A(E, F) ≠ L(E, F), then A(E, F) ⊇ c0. The above results cover cases of many clssical operator spaces A. We show also that EεF contains l∞ if and only if E or F contains l∞.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 250-269 |
Sivumäärä | 20 |
Julkaisu | Results in Mathematics |
Vuosikerta | 28 |
Numero | 3 |
DOI - pysyväislinkit | |
Tila | Julkaistu - marrask. 1995 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |