On a stochastic Ricker competition model

    Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

    Abstrakti

    We model the evolution of two competing populations by a two-dimensional size-dependent branching process of Ricker type. For a small force of inhibition by the present population (modeling, e.g., scarcity of food) the process typically follows the corresponding deterministic Ricker competition model closely, for a very long time. Under some conditions, notably a mutual invasibility condition, the deterministic model has a coexistence fixed point in the open first quadrant. The asymptotic behaviour is studied through the quasi-stationary distribution of the process. We initiate a study of those distributions as the inhibitive force approach 0.

    AlkuperäiskieliEi tiedossa
    OtsikkoDifference Equations, Discrete Dynamical Systems and Applications
    ToimittajatLluís Alsedà i Soler, Jim M. Cushing, Saber Elaydi, Alberto Adrego Pinto
    KustantajaSpringer
    Sivut135–144
    ISBN (elektroninen)978-3-662-52927-0
    ISBN (painettu)978-3-662-52926-3
    TilaJulkaistu - 2016
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
    Tapahtuma18th International Conference on Difference Equations and Applications - 18th International Conference on Difference Equations and Applications
    Kesto: 23 heinäkuuta 201227 heinäkuuta 2012

    Konferenssi

    Konferenssi18th International Conference on Difference Equations and Applications
    Ajanjakso23/07/1227/07/12

    Viittausmuodot