Abstrakti
Possibilistic clustering methods have gained attention in both applied and theoretical research. In this paper, we formulate a general objective function for possibilistic clustering. The objective function can be used as the basis of a mixed clustering approach incorporating both fuzzy memberships and possibilistic typicality values to overcome various problems of previous clustering approaches. We use numerical experiments for a classification task to illustrate the usefulness of the proposal. Beyond a performance comparison with the three most widely used (mixed) possibilistic clustering methods, this also outlines the use of possibilistic clustering for descriptive classification via memberships to a variety of different class clusters. We find that possibilistic clustering using the general objective function outperforms traditional approaches in terms of various performance measures.
Alkuperäiskieli | Ei tiedossa |
---|---|
Otsikko | Information Processing and Management of Uncertainty in Knowledge-Based Systems |
Toimittajat | JP Carvalho, Lesot M-J, U Kaymak, S Vieira, B Bouchon-Meunier, RR Yager |
Kustantaja | Springer |
Sivut | 711–722 |
Sivumäärä | 12 |
ISBN (elektroninen) | 978-3-319-40596-4 |
ISBN (painettu) | 978-3-319-40595-7 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International conference on information processing and management of uncertainty in knowledge-based systems - IPMU 2016 Kesto: 1 tammik. 2016 → … |
Konferenssi
Konferenssi | International conference on information processing and management of uncertainty in knowledge-based systems |
---|---|
Ajanjakso | 01/01/16 → … |
Keywords
- Classification
- Membership function
- Possibilistic clustering
- Typicality values