Multi-Population Parallel Imperialist Competitive Algorithm for Solving Systems of Nonlinear Equation

Amin Majd, Mahdi Abdollahi, Golnaz Sahebi, Davoud Abdollahi, Masoud Daneshtalab, Juha Plosila, Hannu Tenhunen

    Tutkimustuotos: Artikkeli kirjassa/raportissa/konferenssijulkaisussaKonferenssiartikkeliTieteellinenvertaisarvioitu

    5 Sitaatiot (Scopus)


    The widespread importance of optimization and solving NP-hard problems, like solving systems of nonlinear equations, is indisputable in a diverse range of sciences. Vast uses of non-linear equations are undeniable. Some of their applications are in economics, engineering, chemistry, mechanics, medicine, and robotics. There are different types of methods of solving the systems of nonlinear equations. One of the most popular of them is Evolutionary Computing (EC). This paper presents an evolutionary algorithm that is called Parallel Imperialist Competitive Algorithm (PICA) which is based on a multi-population technique for solving systems of nonlinear equations. In order to demonstrate the efficiency of the proposed approach, some well-known problems are utilized. The results indicate that the PICA has a high success and a quick convergence rate.

    AlkuperäiskieliEi tiedossa
    Otsikko2016 International Conference on High Performance Computing & Simulation (HPCS)
    DOI - pysyväislinkit
    TilaJulkaistu - 2016
    OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisuussa
    TapahtumaInternational Conference on High Performance Computing & Simulation (HPCS) - 2016 International Conference on High Performance Computing & Simulation (HPCS)
    Kesto: 18 toukokuuta 201622 heinäkuuta 2016


    KonferenssiInternational Conference on High Performance Computing & Simulation (HPCS)